依普拉芬对体外鸡胚小肠上皮细胞新型钙离子通道表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
试验I、鸡胚小肠上皮细胞培养与鉴定
     目的:培养鸡胚小肠上皮细胞。方法:从18日龄鸡胚中取一段十二指肠段,用组织块培养法和以50μg·mL-1嗜热菌蛋白酶与0.2μg·mL-1胶原酶I型联合消化获取的肠隐窝,在37.5℃、5% CO2的条件下,用含5%胎牛血清的完全培养基培养小肠上皮细胞。用差速消化法和差速贴壁法,进一步纯化、传代。采用形态学观察、Giemsa染色和免疫化学染色法进行小肠上皮细胞鉴定。结果:组织块培养法和酶联合消化培养法都可以得到鸡胚小肠上皮细胞,纯化后纯度理想。结论:鸡胚小肠上皮细胞培养成功,培养的细胞纯度理想,为下一步研究提供了实验材料。
     试验Ⅱ、依普拉芬对鸡胚小肠上皮细胞生长的影响
     目的:在建立鸡胚小肠上皮细胞体外培养方法的基础上,研究依普拉芬对鸡胚小肠上皮细胞增殖、分化和代谢功能的影响。方法:取生长状态良好的第二代小肠上皮细胞接种于96孔板,添加含1%FBS的DMEM对照组和含不同浓度的依普拉芬实验组,72 h后分别用MTT法、PNPP法测定小肠上皮细胞增殖率和小肠上皮细胞内碱性磷酸酶(ALP)活性。结果:(1)与对照组相比,10-6 mol·L-1,10-7 mol·L-1和10-8 mol·L-的依普拉芬均显著促进小肠上皮细胞增殖(P<0.01); 10-5mol·L-1依普拉芬显著抑制小肠上皮细胞的增殖(P<0.01);(2)与对照组相比,10-6 mol·L-1、10-7 mol·L-1和10-8 mol·L-1依普拉芬极显著促进小肠上皮细胞ALP活性(P<0.01),10-9mol·L-1显著促进小肠上皮细胞ALP活性(P<0.05); 10-5mol·L-1(?)勺依普拉芬显著抑制小肠上皮细胞内ALP活性(P<0.01)。结论:依普拉芬能显著促进小肠上皮细胞的增殖;使小肠上皮细胞内的ALP显著增加;但依普拉芬浓度越大,其上皮细胞则呈现明显的抑制作用。
     试验Ⅲ、依普拉芬对鸡胚小肠上皮细胞钙离子通道基因表达的影响
     目的:在建立鸡胚小肠上皮细胞体外培养方法的基础上,研究TRPV6在小肠上皮细胞上表达的定位以及依普拉芬对TRPV6、CaBP-D28k和PMCA1b mRNA表达的影响。方法:免疫细胞化学方法研究TRPV6表达定位;用含10-6mol·L-1、10-7mol·L-1、10-8mol·L-1、10-9mol·L-1和10-10mol·L-1不同浓度的依普拉芬以及含1% FBS的DMEM对照组处理第二代鸡胚小肠上皮细胞72 h后,用RT-PCR方法检测其TRPV6、CaBP-D28k和PMCA1b mRNA表达量变化。结果:(1) TRPV6表达定位于鸡胚小肠上皮细胞胞膜上;(2)与对照组相比,10-6 mol·L-1,10-7 mo·L-1、10-8 mol·L-1依普拉芬显著上调PMCA1b和CaBP-D28k mRNA的表达(P<0.01),10-9 mol·L-1依普拉芬作用下TRPV6的表达出现明显上升(P<0.05),10-6 mol·L-1、10-7mol·L-1、10-8 mol·L-1依普拉芬能够显著上调TRPV6 mRNA表达(P<0.01)。结论:鸡胚小肠上皮细胞胞膜上存在TRPV6表达;依普拉芬能显著上调小肠上皮细胞TRPV6、CaBP-D28k和PMCA1b mRNA表达量。
Experiment I:Culture and Identification of Small Intestinal Epithelial Cells in Chicken Embryos
     Objective:Cultured the small intestinal epithelium cells(IECs) of chicken embryos.
     Methods:Small intestinal crypt was isolated from the tissue mass which was collected from the duodenum in chicken embryos 18 days old and digested with 50μg·ml-1 thermolysin and 0.2 mg·ml-1 collagenaseⅠ. The IECs was cultured from small intenstinal crypt with complete medium containing 5% fetal bovine serum at 37.5℃in a cell incubator with 5% CO2 and was purified by the methods of differential digestion, differential adhesion and mechanical curettage. IECs was identified by immunocyto-chemistry assay for keratin. Results:The tissue mass culture and the combined enzyme digestion were both fit for the culture of IECs. These cultured cells had ideal purity after purified. Conclusion:The results confirmed that IECs culture was successful. This method was simple, efficient and well reproducible. These cultured cells had ideal purity and stable nature. This provided experimental material for further research.
     ExperimentⅡ:Effect of Ipriflavone on the Proliferation and Differentiation of Chicken Embryonic Intestinal Epithelial Cells In Vitro
     Objective:Based upon the culture method of intestinal epithelial cells established from chicken embryos in vitro, we studied the proliferation, differentiation and metabolic function effect of ipriflavone on chicken embryonic intestinal epithelial cells. Methods: The good second generation of the intestinal epithelial cells were inoculated in 96-well plates. After adding the different concentrations of ipriflavone to the plates, and adding DMEM with 1% FBS instate of ipriflavone in control group. The MTT and the PNPP methods were used for the determination of the proliferation rate and alkaline phosphatase (ALP) activity of the intestinal epithelial cells. Results:(1) Compared with the control group,10-6 mol·L-1,10-7 mol·L-1 and 10-8mol·L-1 of ipriflavone significantly promoted the proliferation of intestinal epithelial cells (P<0.01).10-5 mol·L-1 of ipriflavone significantly inhibited the proliferation of intestinal epithelial cells (P<0.01). (2) Compared with the control group,10-9 mol·L-1 of ipriflavone significantly promoted the ALP activity of the intestinal epithelial cells (P<0.05),10-6 mol·L-1,10-7 mol·L-1 and 10-8 mol·L-1 of were more significantly (P<0.01).10-5 mol·L-1 of ipriflavone were significantly inhibited ALP activity of the intestinal epithelial cells (P<0.01). Conclusion: Ipriflavone can significantly promote the proliferation of the intestinal epithelial cells; but at the high concentration, it shows inhibition.
     ExperimentⅢ:Influence of Ipriflavone on the Calcium Channel Gene Expression of Chicken Embryonic Small Intestinal Epithelial Cells
     Objective:Based upon the culture method of intestinal epithelial cells established from chicken embryos in vitro, we studied the location of TRPV6 and influence of Ipriflavone on TRPV6 mRNA, CaBP-D28k mRNA and PMCAlb mRNA expression. Methods:The location of TRPV6 was detected based on immunohistochemical method; The expression of TRPV6 mRNA, CaBP-D28k mRNA and PMCAlb mRNA were detected using RT-PCR on the second generation of the intestinal epithelial cells which were treated in different concentrations of ipriflavone(10-6 mol·L-1,10-7mol·L-1,10-8 mol·L-1,10-9 mol·L-1 and 10-10 mol·L-1) and DMEM with 1% FBS in control group for 72 h. Results:(1) TRPV6 was located in the membrane of small intestinal epithelial cells; (2) Compared with control group,10-6 mol·L-1,10-7 mol·L-1 and 10-8 mol·L-1 Ipriflavone significantly higher CaBP-D28k mRNA and PMCAlb mRNA expression(P<0.01),10-9 mol·L-1 higher TRPV6 mRNA expression(P<0.05),10-6 mol·L-1,10-7 mol·L-1 and 10-8 mol·L-1 significantly higher TRPV6 mRNA expression(P<0.01). Conclusion:TRPV6 was expressed in the membrane of small intestinal epithelial cells; Ipriflavone could significantly higher TRPV6 mRNA, CaBP-D28k mRNA and PMCAlb mRNA expression.
引文
[1]刘志皋.食品营养学[M].北京:中国轻工业出版社,1991:217
    [2]Bronner F, Pansu D, Stein W D. Ananalysis of intestinal calcium transport across rat instestine [J]. J Nutr,1995,125:1971-1979
    [3]Bronner F, Pansu D, Stein W D. Current calcium absorption:Mechanisms and Applications [J]. J Nutr,1987,117:1347-1352
    [4]Bronner F. Current concepts of calcium absorption:An overview [J]. Am J Nutr,1992,122:641-643
    [5]Hoenderop J G, van der Kemp A W, Hartog A, et al. Molecular identification of the apical Ca2+ channel in 1,25-dihydroxyvitamin D3-responsive epithelia [J]. J Biol Chem,1999,274(13):8375-8378
    [6]Cai Q, Chandler J S, van Abel, et al. Vitamin D and adaptation to dietary calcium and phosphate deficiencies increase intestinal plasma membrane calcium pump gene expression [J]. Proc Natl Acad Sci U S A,1993,90(4):1345-1349
    [7]Wasserman R H, Fullmer C S. Vitamin D and intestinal calcium transport:Facts, speculations and hypotheses [J]. J Nutr,1995,125:1971-1979
    [8]Hoenderop J G, Nilius B, Bindels R J. Calcium absorption across epithelia physiol [J]. Rev,2005,85: 373-422
    [9]Bernd N, Joris V, Jean P. TRPV4 calcium entry channel:a paradigm for gating diversity [J]. Am J Physiol Cell Physiol,2004,286:C195-205
    [10]Hoenderop J G, van der Kemp A W, Hartog A, et al. The epithelial calcium channel, ECaC, is activated by hyperpolarization and regulated by cytosolic calcium [J]. Biochem Biophys Res Commun,1999,261(2):488-492
    [11]Hoenderop J G, Hartog A, Stuiver M, et al. Localization of the epithelial Ca(2+) channel in rabbit kidney and intestine [J]. J Am Soc Nephrol,2000,11(7):1171-1178
    [12]Crino L, Novello S, Marinis D F, et al. Gemcitabin-ox-aliplatin (GEMOX) chemotherapy as first-line treatment in advanced non-small cell lung cancer:preliminary results of a multicenter phase Ⅱ study [C]. ASCO,2003,10(5):765-771
    [13]Faivre S, Le Chevalier T, Monnerat C, et al. Phase Ⅰ-Ⅱ and pharmacokinetic study of gemcitabine combined with oxaliplatin in patients with advanced non-small-cell lung cancer and ovarian carcinoma [J]. Ann Oncol,2002,13(9):1479-1489
    [14]Montell C, Birnbaumer L, Flockerzi V, et al. A unified nomenclature for the superfamily of TRP cation channels [J]. Mol Cell,2002,9(2):229-231
    [15]Hoenderop J G, Nilius B, Bindels R J. ECaC:the gate-keeper of transepithelial Ca2+ transport [J]. Biochim Biophys Ac-ta,2002,1600:6-11
    [16]Hoenderop J G, Nilius B, Bindels R J. Molecular mechanisms of active Ca2+reabsorption in the distal nephron [J]. Annu Rev Physiol,2002,64:529-549
    [17]Hoenderop J G, Voets T, Hoefs S, et al. Homo-and heterotetrameric architecture of the epithelial Ca2+ channels, TRPV5 and TRPV6 [J]. EMBOJ,2003,22:776-785
    [18]Hellwig N, Albrecht N, Harteneck C, et al. Homp—and heteromeric assembly of TRPV channel subunits [J]. J Cell Sci,2005,118(Pt 5):917-928
    [19]Hoenderop J G, Muller D, van der Kemp A W, et al. Calcitriol controls the epithelial calcium channel in kidney [J]. J Am Soc Nephrol,2001,12:1342-1349
    [20]Muller D, Hoenderop J G, Meij I C, et al. Molecular cloning, tissue distribution, and chromosomal mapping of the human epithelial Ca2+ channel(ECaC1) [J]. Genomics,2000,67:48-53
    [21]Weber K, Erben R G, Rump A, et al. Gene structure and regulation of the murine epithelial calcium channels ECaC1 and 2 [J]. Biochem Biophys Res Commun,2001,289:1287-1294
    [22]Bram C J, van der Eerden, Hoenderop J G, et al. The epithelial Ca2+ channel TRPV5 is essential for proper osteoclastic bone resorption [J]. PNAS,2005,102(48):17507-17512
    [23]Zhuang L, Peng JB, Tou L, et al. Calcium-selective ion channel, CaTl, is apically localized in gastrointestinal tract epithelia and is aberrantly expressed in human malignancies [J]. Lab Invest, 2002,82(12):1755-1764
    [24]Peng J B, Brown E M, Hediger M A. Apical entry channels in calcium—transporting epithelia [J]. News Physiol Sci,2003,18:158-163
    [25]Hoenderop J G, Dardenne O, Van Abel M, et al. Modulation of renal Ca2+ transport protein genes by dietary Ca2+ and 1,25-dihydroxyvitamin D3 in 25-hydroxyvitamin D3-1 alpha-hydroxylase knockout mice [J]. FASEB J,2002,16(11):1398-1406
    [26]Yeh B I, Sun T J, Lee J Z, et al. Mechanism and molecular determinant for regulation of rabbit transient receptor potential type5(TRPV5) channel by extracellular pH [J]. J Biol Chem,2003, 278 (51):51044-51052
    [27]Nijenhuis T, Hoenderop J G, Bindels R J. TRPV5 and TRPV6 in Ca(2+) (re)absorption:regulating Ca(2+) entry at the gate [J]. P flugers Arch,2005,451(1):181-192
    [28]Fleet J C, Eksir F, Hance K W, et al. Vitamin D-inducible calcium transport and gene expression in three Caco-2 cell lines [J]. Am J Physiol Gastrointest Liver Physiol,2002,283(3):G618-G625
    [29]van de Graaf S F, Boullart I, Hoenderop J G, et al. Regulation of the epithelial Ca2+ channels TRPV5 and TRPV6 by 1 alpha,25-dihydroxy Vitamin D3 and dietary Ca2+[J]. J Steroid Biochem Mol Biol,2004,89-90(1-5):303-308
    [30]康红,郑维,杨进福.上皮钙通道基因在维生素D受体和ICaBP-D28k双基因敲除鼠中的变化[J].实用预防医学,2007,14(3):674-677
    [31]Van C, Dewerchin M, Hoenderop J G, et al. Duodenal calcium absorption in vitamin D receptor-knockout mice:functional and molecular aspects [J]. Proc Natl Acad Sci USA,2001,98: 13324-13329
    [32]Cromphaut S J, Rummens K, Stockmans I, et al. Intestinal calcium transporter genes are upregulated by estrogens and the reproductive cycle through vitamin D receptor-independent mechanisms [J]. J Bone Miner Res,2003,18(10):1725-1736
    [33]Peng J B, Zhuang L, Berger U V, et al. CaTl expression correlates with tumor grade in prostate cancer [J]. Biochem Biophys Res Commun,2001,282(3):729-734
    [34]Joost G J, Hoenderop J, Van L, et al. Renal Ca2+ wasting, hyper-absorption, and reduced bone thickness in mice lacking TRPV5 [J]. Clin Invest,2003,112(12):1906-1914
    [35]胡东亮,王少刚,叶章群.TRPV5与特发性高钙尿症的研究进展.现代泌尿外科杂志[J].2008,13(4):922—925
    [36]Stan F J, Hoenderop J G, Gkika D, et al. Functional expression of the epithelial Ca(2+) channels (TRPV5 and TRPV6) requires association of the S100A10-annexin 2 complex [J]. EMBO J,2003, 22(7):1478-1487
    [37]Menaa C, Devlin R D, Reddy S V, et al. Annexin Ⅱ increases osteoclast formation by stimulating the proliferation of osteoclast precursors in human marrow cultures [J]. J Clin Invest,1999, 103(11):1605-1613
    [38]Fortin M, Parent A. Distribution of calretinin Calbindin—D28k and parvalbumin in the hypothalamus of the squirrel monkey [J]. J Chem Neuroanat,1997,14(1):51-61
    [39]Defelipe J. Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28k parvalbumin and calretinin in theneocortex [J]. J Chem Neuroanat,1997,14(1):1-19
    [40]Wasserman R H, Taylor A N. Vitamin D3-induced calcium-binding protein in chick intestinal tissue [J]. Science,1966,15:791-793
    [41]Armbrecht H J, Boltz M, Strong R, Richardson A, Bruns M E, Christakos S. Expression of calbindin-D decreases with age in intestine and kidney [J]. Endocrinology,1989,125:2950-2956
    [42]Mathieu C L, Burnett S H, Mills S E, et al. Gestational changes in calbindin-D9k in rat uterus, yolk sac, and placenta:implications for maternal-fetal calcium transport and uterine muscle function [J]. Proc Natl Acad Sci U S A,1989,86:3433-3437
    [43]Mathieu C L, Mills S E, Burnett S H, et al. The presence and estrogen control of immunoreactive calbindin-D9k in the fallopian tube of the rat [J]. Endocrinology,1989,125:2745-2750
    [44]Seifert M F, Gray R W, Bruns M E. Elevated levels of vitamin D-dependent Calcium-binding protein (calbindin-D9k) in the osteosclerotic(oc)mouse [J]. Endocrinology,1988,122:1067-1073
    [45]Sans A, Etchecoper B, Brehier A, et al. Immunocytochemical detection of vitamin D-dependent caleium-binding protein(CaBP-28K) investibular sensory hair cells and vestibular ganglion neurone of the cat [J]. Brain Res,1986,364:190-194
    [46]Li YC, Bolt M J, Cao L P, et al. Effects of vitamin D receptor in activation on the expression of calbindins and calcium metabolism [J]. Am J Physiol Endoerinol Metab,2001,281(3):558-564
    [47]Shamley D R, Opperman L A, Buffenstein R, et al. Ontogeny of calbindin-D28K and calbindin-D9K in the mouse kidney, duodenum, cerebellum and placenta [J]. Development,1992, 116(2):491-496
    [48]Baimbridge K G, Celio M R, Rogers J H. Trends Neurosei,1992,15:303-308
    [49]Sonnetherg J, Pansini A R, Christakos S. Vitamin D-dependent rat renal calcium binding protein: development of a radioimmunoassay, tissue distribution, and immunologic identification [J]. Endocrinol,1984,115:640-648
    [50]Wilson P W, Rogers J, Harding M, et al. Structure of chick chromosal genes for calbindin and calretinin [J]. J Mol Biol,1988,200:615-625
    [51]Varghese S, Deaven L L, Huang Y C, et al. Transcriptional regulation and chromosomal assignment of the mammalian Calbindin-D28k gene [J]. Mol Endoerinol,1989,3:495-502
    [52]Christakos S, Gabrielides C, Rhoten W B. Vitamin D- dependent calcium binding proteins: chemistry, distribution, functional considerations, and molecular biology [J]. Endocr Rev,1989, 10:3-26
    [53]Jeung E B, Leung P C, Krisinger J. The human calbindin- D9k gene:Complete structure and implications on steroid hormone regulation [J]. J Mol Biol,1994,235:1231-1238
    [54]Roche C, Bellaton C, Pansu D, Miller A,3rd, Bronner F. Localization of vitamin D- dependent active Ca2+ transport in rat duodenum and relation to CaBP [J]. Am J Physiol,1986,251:G314-G320
    [55]Walters J R, Howard A, Lowery L J, et al. Expression of genes involved in calcium absorption in human duodenum [J]. Eur J Clin Invest,1999,29:214-219
    [56]Kwiecinksi G G, Petrie G I, DeLuca H F.1,25-Dihydroxyvitamin D3 restores fertility of vitamin D-deficient female rats [J]. Am J Physiol,1989,256:E483-E487
    [57]Delorme A C, Danan J L, Acker M G, et al. In rat uterus 17 beta-estradiol stimulates a calcium-binding protein similar to the duodenal vitamin D-dependent calcium- binding protein [J]. Endocrinology,1983,113:1340-1347
    [58]Krisinger J, Dann J L, Currie W D, et al. Calbindin-D9k mRNA is tightly regulated during the estrous cycle in the rat uterus [J]. Mol Cell Endocrinol,1992,86:119-123
    [59]Inpanbutr N, Miller E K, Petroff B K, et al. CaBP-9K levels during the luteal and follicular phases of the estrous cycle in the bovine uterus [J]. Biol Reprod,1994,50:561-571
    [60]Yun S M, Choi K C, Kim I H,et al. Dominant expression of porcine Calbindin-D9k in the uterus during a luteal phase [J]. Mol Reprod Dev,2004,67:251-256
    [61]Wasserman R H, Fullmer C S. Calcium transport proteins, calcium absorption, and vitamin D [J]. Annu Rev Physiol,1983,45:375-390
    [62]Clemens T L, McGlade S A. Tissue-sepcific regulation of avian vitamin D-dependent calcium-binding protein 28k-Da mRNA by 1,25-dihydroxyvitaminD3 [J]. J Biol Chem,1988, 263(26):13112-13116
    [63]Wasserman RH, Fullmer CS. On the molecular mechanism of intestinal calcium transport [J]. Adv Exp. Med Biol,1989,249:45-65
    [64]Silva A, Montague J R, Lopez T F, et al. Growth factor effects on survival and development of calbindin immunopositive cultured septal neurons[J]. Brain Res Bull,2000,51(1):35-42
    [65]Hemmingsen C. Regulation of renal calbindin-D28K [J]. Pharmaeol Toxicol,2000,87(Suppl 3):5-30。
    [66]Moller J, Olesen C, Jensen A M, et al. The Structural Basis for Coupling of Ca2+ Transport to ATP Hydrolysis by the Sarcoplasmic Reticulum Ca2+ —ATPase [J]. J Bioenerg Biomembr,2005,37: 359-364
    [67]Toyoshima C, Inesi G. Structural Basis of Ion Pumping by Ca2+-ATPase of the Sarcoplasmic Reticulum [J]. Annu Rev Biochem,2004,73:269-292
    [68]Moller J V. Structural Organization, Ion Transport, and Energy Transduction of P-type ATPase [J]. Biochim. Biophys. Acta,1996,1286:1-51
    [69]Lee A G, East J M. What the structure of a calcium pump tells us about its mechanism [J]. Biochem J,2001,356:665-683
    [70]Borke J L, Whitford G M. Chronic fluoride ingestion decreases Ca2+ uptake by rat kidney membranes [J]. J Nutr,1999,129:1209-1213
    [71]Gonzalez Flecha F L, Castello P R, Caride A J, et al. Decreased Ca2+—ATPase activity after glycosylation of erythrocytemembranes in vivo and in vitro [J]. Diabetes,1990,39:707-711
    [72]Kourie J I. Interaction of reactive oxygen species with ion transport mechanisms [J]. Am J Physiol, 1998,275:c1-c24
    [73]Karen M, Lounsbury H Q, Ziegelstein R C,et al. Calcium signaling and oxidant stress in the vasculature [J]. Free Radical Biology & Medicine,2000,28(9):1362-1369
    [74]Bielefeldt K, Whiteis C A, Sharma R V, et al. Reactive oxygen species and calcium homeostasis in cultured human intestinal smooth muscle cells [J]. American J Physiology,1997,272:G1439-G1450
    [75]Qiang C, John S, Robert H, et al. Vitamin D and adaptation to dietary calcium and phosphate deficiencies increase intestinal plasma membrane calcium pump gene expression [J]. Proc Nati Acad Sci,1993,90:1345-1349
    [76]Van Abel M, Hoenderop J G, Dardenne O, et al.1,25-Dihydroxyvitamin D3-independent stimulatory effect of estrogen on the expression of ECaC1 in the kidney [J]. J Am Soc Nephrol, 2002,13:2102-2109
    [77]Van Abel M, Hoenderop J G, Annemiete W C M, et al. Regulation of the epithelial Ca2+ channels in small intestine as studied by quantitative mRNA detection [J]. Am J Physiol Gastrointest Liver Physiol,2003,285:G78-G85
    [1]Neutra M R, Pringault E, Kraehenbuhl J P. Antigen sampling across epithelial barriers and induction of mucosal immune responses [J]. Annu Rev Immunol,1996,14:275-300
    [2]Perreault N, Beaulieu J F. Primary cultures of fully differentiated and pure human intestinal epithelial cells [J]. Exp Cell Res,1998,24(5):34-42
    [3]Neutra M R, Pringault E, Kraehenbuhl J P. Antigen sampling across epithelial barriers and induction of mucosal immune responses [J]. Annu Rev Immunol,1996,14:275-300
    [4]de Santa Barbara P, van den Brink GR, Roberts DJ. Development and differentiation of the intestinal epithelium [J]. Cell Mol Life Sci.,2003,60(7):1322-1332
    [5]Moore K A, Lemischka I R. Stem cells and their niches [J]. Science,2006,311:1880-1885
    [6]Marshman E, Booth C, Potten C S. The intestinal epithelial stem cell [J]. Bioessays,2002,24:91-98
    [7]Potten C S. Radiation, the ideal cytotoxic agent for studying the cell biology of tissues such as the small intestine [J]. Radiat Res,2004,161:123-136
    [8]Nanthakumar N N, Fusunyan R D, Sanderson I, et al. Inflammation in the developing human intestine:a possible pathophysiologic contribution to necrotizing enterocolitis [J]. Proc Natl Acad Sci USA,2000,97:6043-6048
    [9]Danes B S, Sutanto E. Epithelial line from normal human colon mucosa [J]. J Natl Cancer Inst,1982, 69(6):1271-1276
    [10]Wildrick DM, Lointier P, Nichols DH, et al. Isolation of normal human colonic mucosa:comparison of methods [J]. In Vitro Cell Dev Biol Anim,1997,33(1):18-27
    [11]Whitehead RH, DemmLer K, Rockman SP, et al. Clonogenic growth of epithelial cells from normal colonic mucosa from both mice and humans [J]. Gastroenterology,1999,117:856-865
    [12]Evans G. S, Flint N, Somers A S, et al. The development of a method for the preparation of rat intestinal epithelial cell primary cultures [J]. Journal of Cell Science,1992,101:219-220
    [13]Deveney C W, Luby L R, Rutten M J, et al. Establishment of human colonic epithelial cells in long term culture [J]. J Surg Res,1996,64(2):161-169
    [14]Follmann W, Weber S, Birkner S. Primary cell cultures of bovine colon epithelium:isolation and cell culture of colonocytes [J]. Toxicol In Vitro,2000,14(5):435-445
    [15]Evans G.S, Flint N, Somers A S, et al. The development of a method for the preparation of rat intestinal epithelial cell primary cultures [J]. Journal of Cell Science,1992,101:219-231
    [16]Frazier M E, Hadley J G, Andrews T K, et al. Use of thermolysin for the dissociation of lung tissue into cellular components [J]. Lab Invest,1975,33(3):231-238
    [17]Walzer C, Benathan M, Frenk E. Thermolysin treatment:a new method for dermo-epidermal separation [J]. J Invest Dermatol,1989,92(1):78-81
    [18]Perreault N, Jean Francois B. Use of the dissociating enzyme thermolysin to generate viable human normal intestinal epithelial cell cultures [J]. Experimental Cell esearch,1996,224(2):354-364
    [19]张道杰,蒋建新,陈永华,等.用嗜热菌蛋白酶进行人肠上皮细胞分离培养[J].第三军医大学学报,2004,26(11):1016-1018
    [20]Homaidan F R, Zhao L, Donovan V, et al. Separation of pure populations of epithelial cells from rabbit distal colon [J]. Anal Biochem,1995,224(1):134-139
    [21]Slack J M W. Stem cells in epithelial tissues [J]. Science,2000,287:1431-1438
    [22]Strater J, Wedding U, Barth TF, et al. Rapid onset of apoptosis in vitro follows disruption of beta 1-integrin/matrix interactions in human colonic crypt cells [J]. Gastroenterology,1996,110(6): 1776-1784
    [23]刘兴茂,刘红,熊福银,等.以胶原膜为支架的心肌细胞体外三维培养[J].生物工程学报,2003,19(4):484-488
    [24]R Ian Freshney, Mary G Freshney. Culture of Epithelial Cells, Second Edition [M].2002:308-309
    [25]周莹,胡学庆,周广东,等.大鼠小肠上皮类器官单位的分离培养鉴定[J].组织工程与重建外科杂志,2005,1(4):214-216
    [26]周莹,施诚仁,姚晓虹,等.改良法分离大鼠IOUs构建小肠的初步研究[J].上海交通大学学报(医学版),2006,26(4):393-396
    [27]Jonathan M Q, Yu W Y, Mark A H, et al. In vitroculture of embryonic mouse intestinal epithelium: cell differentiation and introduction of reporter genes [J/OL]. BMC Developmental Biology,2006, 6:24. http://www.biomedcentral.com/1471-213X/6/24
    [28]R Ian Freshney, Mary G Freshney. Culture of Epithelial Cells, Second Edition [M].2002:311-314
    [29]Evans G.S, Flint N, Somers A S, et al. The development of a method for the preparation of rat intestinal epithelial cell primary cultures [J]. Journal of Cell Science,1992,101:219-220
    [30]Petra M B, Marco M, Kai S, Steven R, et al. Organotypical tissue cultures from adult murine colon as an in vitro model of intestinal mucosa [J]. Histochem Cell Biol,2008,129:795-804
    [31]Jonas C R, Gu L H, Nkabyo Y S, et al. Glutamine and KGF each regulate extracellular thiol/disulfide redox and enhance proliferation in Caco-2 cells [J]. Am J Physiol,2003,285:1421-1429
    [32]崔巍,闻颖,董亚珞,等.谷氨酰胺对体外培养肠上皮细胞屏障通透性的影响[J].世界华人消化杂,2008,16(33):3729-3733
    [33]Helen E A, Nadine W, Joan K H. Growth of intestinal epithelium in organ culture is dependent on EGF signaling [J]. Experimental Cell Research,2005,303:252-262
    [34]Laurie D, Thomson B R. Intestinal hormones and growth factors:Effects on the small intestine [J]. World J Gastroenterol,2009,15(4):385-406
    [35]Naira B, Jun S. IGF-1 protects intestinal epithelial cells from oxidative stress induced apoptosis [J]. J Surg Res,2006,136(1):31-37
    [36]Freshney R I, Freshney M G. Culture of Epithelial Cells, Second Edition [M].2002:313-316
    [37]Kimmich G A. Isolation of intestinal epithelial cells and evaluation of transport functions [J]. Methods Enzymol,1990,192:324-340
    [38]Horvath K, Hill I D, Devarajan P, et al. Short—term effect of epidermal growth factor (EGF) on sodium and glucose cotransport of isolated jejunal epithelial cells [J]. Biochim Biophys Acta,1994, 1222(2):215-222
    [39]Angelo S, Rojas AM, Ramirez H, et al. Epithelial cells isolated from chicken jejunum:an experimental model for the study of the functional properties of amino acid transport system b(0,+) [J]. Comp Biochem Physiol A Mol Integr Physiol,2002,132(3):637-644
    [40]Ramesh C K, Tremaine M, Nathan M, et al. Membrane Receptor-Initiated Signaling in 1, 25(OH)2D3—Stimulated Calcium Uptake in Intestinal Epithelial Cells [J]. Journal of Cellular Biochemistry,2008,105:1109-1116
    [41]Ohtsuka Y, Lee J, Stamm D S, et al. MIP-2 secreted by epithelial cells increases neutrophil and lymphocyte recruitment in the mouse intestine [J]. Gut,2001,49:526
    [42 Mayer L. Mucosal immunity and gastrointestinal antigen processing [J]. J Pediatr Gastroenterol Nutr, 2000,30:S4-S12
    [43]Eckmann L, Stenson W F, Savidge T C, et al. Role of intestinal epithelial cells in the host secretory response to infection by invasive bacteria. Bacterial entry induces epithelial prostaglandin H synthase-2 expression and prostaglandin E2 and F2 production [J]. J Clin Invest,1997,100:296-309
    [44]Ysmada K, Shimoka M, Nagasama KH. Bacterial invasion induces interleukine-7 receptor expression in colonic epithelial cell line,T84 [J]. Eur J Immunol,1997,27:3456-3460
    [1]Quaroni A. Development of fetal rat intestine in organ and monolayer culture [J]. J Cell Biol,1985, 100(5):1611-1622
    [2]Panja A. A novel method for the establishment of a pure population of nontransformed human intestinal primary epithelial cell(HIPEC) lines in long term culture [J]. Lab Invest,2000,80(9): 1473-1475
    [3]Macartney K K, Baumgart D C, Carding S R, et al. Primary murine small intestinal epithelial cells, maintained in long term culture, are susceptible to rotavirus infection [J]. J Virol,2000,74(12): 5597-5603
    [4]Kaushik R S, Begg A A, Wilson H L, et al. Establishment of fetal bovine intestinal epithelial cell cultures susceptible to bovine rotavirus infection [J]. Virol Methods,2008,148(1-2):182-196
    [5]Delie F, Rubas W. A human colonic cell line sharing similarities with enterocytes as a model to examine oral absorption:advantages and limitation of the Caco-2 model [J]. Crit Rev. Ther. Drug Carrier Syst,1997,14(3):221-286
    [6]Yee S. In vivo permeability across Caco-2 cells (colonic) can predict in vivo (small intestinal) absorption in man factormyth [J]. Pharmaceutical Research,1997,14(6):763-766
    [7]Freshney R I, Freshney M G. Culture of Epithelial Cells, Second Edition [M].2002:308-309
    [8]Freshney R I, Freshney M G. Culture of Epithelial Cells, Second Edition [M].2002:311-314
    [9]Negrel R, Rampal P, Nano J P, et al. Establishment and characterization of an epithelial intestinal cell line from rat fetus [J]. Exp Cell Res,1983,143:427-437
    [10]Quaroni A, May D J. Establishment and characterization of intestinal epithelial cell cultures [J]. Meth Cell Biol,1980,21B:403-427
    [11]Kondo Y, Rose I, Graeme P Y, et al. Growth and differentiation of fetal rat small intestinal epithelium in tissue culture Relationship to fetal age [J]. Exp Cell Res,1984,153(1):121-134
    [12]Grey, R. D.. Scanning electron microscopy of the duodenal epithelium of the developing chick embryo [J]. Morphol,1972,137:193-213
    [13]Uni Z, Tako E, Gal-Garber O, Morphological, molecular, and functional changes in the chicken small intestine of the late term embryo [J]. Poult Sci,2003,82:1747-1754
    [14]Karcher DM, Applegate T. Survey of Enterocyte Morphology and Tight Junction Formation in the Small Intestine of Avian Embryos [J]. Poultry Science,2008,87:339-350
    [15]Danes B S, Sutanto E. Epithelial line from normal human colon mucosa [J]. J Natl Cancer Inst, 1982,69(6):1271-1276
    [16]Evans G. S, Flint N, Somers A S, et al.The development of a method for the preparation of rat intestinal epithelial cell primary cultures [J]. Journal of Cell Science,1992,101:219-220
    [17]Deveney C W, Luby L R, Rutten M J, et al. Establishment of human colonic epithelial cells in long term culture [J]. J Surg Res,1996,64(2):161-169
    [18]Follmann W, Weber S, Birkner S. Primary cell cultures of bovine colon epithelium:isolation and cell culture of colonocytes [J]. Toxicol In Vitro,2000,14(5):435-445
    [19]Frazier M E, Hadley J G, Andrews T K, et al. Use of thermolysin for the dissociation of lung tissue into cellular components [J]. Lab Invest,1975,33(3):231-238
    [20]Walzer C, Benathan M, Frenk E. Thermolysin treatment:a new method for dermo—epidermal separation [J]. J Invest Dermatol,1989,92(1):78-81
    [21]Perreault N, Jean Francois Beaulieu. Use of the dissociating enzyme thermolysin to generate viable human normal intestinal epithelial cell cultures [J]. Experimental Cell research,1996,224(2):354-364
    [22]张道杰,蒋建新,陈永华,等.用嗜热菌蛋白酶进行人肠上皮细胞分离培养[J].第三军医大学学报,2004,26(11):1016-1018
    [23]Homaidan FR, Zhao L, Donovan V, et al. Separation of pure populations of epithelial cells from rabbit distal colon [J]. Anal Biochem,1995,224(1):134-139.
    [24]Slack J M W. Stem cells in epithelial tissues [J]. Science,2000,287:1431-1438.
    [25]刘兴茂,刘红,熊福银,等.以胶原膜为支架的心肌细胞体外三维培养[J].生物工程学报,2003,19(4):484-488
    [26]Quinlan J M, Yu W Y, Hornsey M A. et al. In vitroculture of embryonic mouse intestinal epithelium: cell differentiation and introduction of reporter genes [J]. BMC Dev Biol,2006,25(6):24.
    [27]Bareiss P M, Metzger M, Sohn K, et al. Organotypical tissue cultures from adult murine colon as an in vitro model of intestinal mucosa [J]. Histochem Cell Biol,2008,129:795-804
    [28]Jonas C R, Gu L H, Nkabyo Y S, et al. Glutamine and KGF each regulate extracellular thiol/disulfide redox and enhance proliferation in Caco-2 cells [J]. Am J Physiol.2003,285:1421-1429
    [29]Abud H E, Watson N, Heath J K.. Growth of intestinal epithelium in organ culture is dependent on EGF signaling [J]. Exp Cell Res,2005,303:252-262
    [30]Drozdowski L, Thomson A B. Intestinal hormones and growth factors:Effects on the small intestine [J]. World J Gastroenterol,2009,15(4):385-406
    [31]Baregamian N, Song J, Jeschke M G, et al. IGF-1 Protects intestinal epithelial cells from oxidative stress induced apoptosis [J]. J Surg Res,2006,136(1):31-37
    [1]Brandi M L. Ipriflavone in vitro and in vivo effects on bone motabolism. Osteoporosis [J]. Academic Press. Inc.,1996.1335-1342
    [2]裴春改,赵燕玲,刘忠厚.依普拉芬治疗骨质疏松的基础研究[J]. Chinese Journal of osteoporosis,1997, Vol.3, No.4:86-98
    [3]Benvenuti S, Tanini A, Frediani U, et al. Effects of ipriflavone and its metabolites on clonal osteoblastic cell line [J]. J. Bone Min Res.1991,6:987-996
    [4]朱晓英,侯加法.低磷及依普拉芬对产蛋笼样蛋鸡骨代谢、内分泌及生产的影响[D].硕士学位论文,南京:南京农业大学,2000
    [5]张皎,侯加法.笼养蛋鸡骨质疏松的IP98防治机理及骨质疏松与IGF-1的RFLP关系研究[D].博士论文,南京:南京农业大学,2004
    [6]Fukamachi H. Proliferation and differentiation of fetal rat intestinal epithelial cells in primary serum-free culture [J]. J Cell Sci,1992,103:511-519
    [7]Schuurman B, Beelen R H, Heuff G, et al. Fresh colorectal tumor cells isolated from individual patients differ in their susceptibility to monocyte mediated cytotoxicity [J]. J Surg Oncol.,1995, 60(1):18-23
    [8]韩祖斌,林华,邓思清.异黄酮类植物雌激素依普拉芬对骨代谢的作用[J].中国骨质疏松杂志,1999,5(3):47-50.
    [9]张荣庆,韩正康,陈杰,等.大豆黄酮促进妊娠大鼠乳腺发育和泌乳的实验研究[J].动物学报,1995,41(4):414-419
    [10]Payne R L, Bidner T D, Southern L L, et al. Dietary Effects of Soy Isoflavones on Growth and Carcass Traits of Commercial Broilers [J]. Poulty Science,2001,80:1201-1207
    [11]郭慧君,韩正康,王国杰.日粮中添加大豆黄酮对大鼠生长性能和有关内分泌的影响[J].南京农业大学学报,2001,24(4):59-61
    [12]陶胜宏.日粮中添加伊普异黄酮对大鼠和肉鸡生长性能的影响及其内分泌机制的研究[D].硕士学位论文,南京:南京农业大学,2006
    [13]张皎,候加法.依普拉芬对鸡胚成骨细胞的增殖和分化的影响[J].中国骨质疏松杂志,2004,10(2):236
    [14]Uauy R, Stringel Q Thomas R, et al. Effect of dietary nucleotides on growth and maturation of the developing gut in the rat [J]. J Pediatr Gastroenterol Nutr,1990,104:497-503
    [15]Sanderson, L R., and He, Y P. Nucleotide uptake and metabolism by intestinal epithelial cells [J].
    Journal.Nutrition,1994,124:131-137
    [1]Hoenderop J Q van der Kemp A W, Hartog A, et al. Molecular identification of the apical Ca2+ channel in 1,25-dihydroxyvitamin D3-responsive epithelia [J]. J Biol Chem,1999,274:8375-8378
    [2]O'Donnell J M, Smith M W. Uptake of calcium and magnesium by rat duodenal mucosa analysed by means of competing metals [J]. J Physiol,1973,229:733-749.
    [3]Hoenderop J G, Muller D, van der Kemp A W, et al. Calcitriol controls the epithelial calcium channel in kidney [J]. J Am Soc Nephrol,2001,12:1342-1349
    [4]Muller D, Hoenderop J G, Meij I C, et al. Molecular cloning, tissue distribution, and chromosomal mapping of the human epithelial Ca2+ channel(ECaC1) [J]. Genomics,2000,67:48-53
    [5]Weber K, Erben R G, Rump A, et al. Gene structure and regulation of the murine epithelial calcium channels ECaC1 and 2 [J]. Biochem Biophys Res Commun,2001,289:1287-1294
    [6]Peng J B, Chen X Z, Berger U V, et al. Molecular cloning and characterization of a channel-like transporter mediating intestinal calcium absorption [J]. J Biol Chem,1999,274:22739-22746
    [7]Bouillon R, van Cromphaut S, Carmeliet G. Intestinal calcium absorption:molecular vitamin D mediated mechanisms [J]. J Cell Biochem,2003,88:332-339
    [8]Hoenderop J G, Vennekens R, Muller D, et al. Function and expression of the epithelial Ca2+channel family:comparison of mammalian ECaC1 and 2 [J]. J Physiol,2001,537:747-761
    [9]Nijenhuis T, Hoenderop J G, van der Kemp A W, et al. Localization and regulation of the epithelial Ca2+ channel TRPV6 in the kidney [J]. J Am Soc Nephrol,2003,14:2731-2740
    [10]Wissenbach U, Niemeyer B A, Fixemer T, et al. Expression of CaT—like, anovel calcium-selective channel, correlateswith themalignancy of prostate cancer [J]. J Biol Chem,2001,276:19461-19468
    [11]Hirnet D, Olausson J, Fecher-Trost C, et al. The TRPV6 gene, cDNA and protein [J]. Cell Calcium, 2003,33:509-518
    [12]Hoenderop J G, Nilius B, and Bindels R J. Molecular mechanism of active Ca+ reabsorption in the distal nephron [J]. Annu Rev Physiol,2002,64:529-549
    [13]Montell C, Birnbaumer L, Flockerzi V, et al. A unified nomenclature for the superfamily of TRP cation channels [J]. Mol Cell,2002,9:229-231
    [14]李福春,谷贵山,孙大辉,等.新型钙离子通道TRPV5和TRPV6与成骨细胞信号传递的关系[J].吉林大学学报,2007,33(3):600-603
    [15]Bronner F, Pansu D, Stein W D. Ananalysis of intestinal calcium transport across rat instestine [J]. J Nutr,1995,125:1971-1979
    [16]Clemens T L, MeGlade S A, Garrett K R, et. al. Tissue-specific regulation of avian vitamin D-dependent caicium-binding protein 28-kDa mRNA by 1,25(OH)2D3 [J]. J Biol Chem,1988, 263(26):1311-13116
    [17]Gill R K, Christakos S. Regulation by estrogen through the 5'-flanking region of the mouse calbindin-D28k gene [J]. MolEndoerinol,1995,9(3):319-326
    [18]Wasserman R H, Smith C A, Brindak M E, et. al. Vitamin D and mineral deficiencies increase the plasma membrane calcium pump of chicken intestine [J]. Gastroenterology,1992,102(3):886-894
    [19]Qiang C, John S, Robert H, et al. Vitamin D and adaptation to dietary calcium and phosphate deficiencies increase intestinal plasma membrane calcium pump gene expression [J]. Proc. Nati. Acad. Sci.,1993,90:1345-1349.
    [20]Dardenne O, Prud' homme J, Arabian A, et al. Targeted inactivation of the 25-hydroxyvitamin D3-1 α-hydroxylase gene (CYP27B1) creates an animal model of pseudovitamin D-deficiency rickets [J]. Endocrinology,2001,142:3135-3141
    [21]Thomas M L, Xu X, Norfleet A M, et al. The presence of functional estrogen receptors in intestinal epithelial cells [J]. Endocrinology,1993,132:426-430
    [22]Arjmandi B H, Salih M A, Herbert D C, et al. Evidence for estrogen receptor-linked calcium transport in the intestine [J]. Bone Miner,1993,21:63-74
    [23]Van Abel M, Hoenderop JGJ, Dardenne O, et al.1,25-Dihydroxyvitamin D3-independent stimulatory effect of estrogen on the expression of ECaC1 in the kidney [J]. J Am Soc Nephrol, 2002,13:2102-2109
    [24]Monique van Abel, Joost G. J. Hoenderop, Annemiete W. C. M. van der Kemp, et al. Regulation of the epithelial Ca2+ channels in small intestine as studied by quantitative mRNA detection [J]. Am J Physiol Gastrointest Liver Physiol,2003,285:G78-G85
    [25]聂晶,卢良华.预防和治疗骨质疏松症的有效药物依普黄酮[J].中国现代应用药学,2002,19(1):7-9
    [26]Civitelli R. In vitro and in vivo effects of ipriflavone on bone formation and bone biomechanics [J]. Calcif Tissue Int,1997,61(Suppl):s12
    [27]张皎,侯加法.依普拉芬对鸡胚成骨细胞的增殖和分化的影响[J].中国骨质疏松杂志,2004,10(2):236-238

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700