体被热物性参数测试平台构建及测试应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
体被作为动物体与外界环境进行热量传递的重要有机部分之一,对动物体的散热—保温平衡调节具有重要作用,其结构和功能的多样性在动物适应复杂环境过程中不可或缺。体被热物性参数是探索哺乳动物体被保温、适应、进化机制以及毛皮加工工艺等的基本数据,然而从国内相关文献的报道情况看,有关研究似乎并没有被纳入到相关研究的主流中,或未能引起相关学者的足够关注。基于此,进行体被热物性参数基础研究、积累测试经验和相关数据对相应设备的开发和应用意义深远。体被是特殊的生物传热材料,在借鉴国外相关研究方法和技术的基础上,与哈尔滨工业大学合作构建了动物体被稳态过程热物性参数测试平台。采集分布于小兴安岭通河林区黄鼬东北亚种(Mustela sibirica manchurica Brass)夏季与冬季的雌性、雄性成体各10张毛皮,共计40张毛皮为研究对象。对体被传热样本的制备方法、测试方法进行探索,初步确立了7项试验操作方法。在夏季与冬季体被传热系数测试中,黄鼬东北亚种夏季与冬季体被的传热系数存在极显著差异(P<0.01),且夏季体被传热系数高于冬季体被。
     为探索人为改变毛向与体被层厚度对传热系数测定产生的影响,以不同摆放方式实现样本毛向变化,通过25 kg重物压体被样本,实现体被层厚度的改变。测试结果显示:无风条件下,摆放方式对传热系数测定不产生显著影响(P>0.05),压扁体被对传热系数测定产生显著影响(P<0.05)。低风速条件下,摆放方式和压扁与否对传热系数测定产生影响,摆放方式对未压扁冬季体被和压扁夏季体被的测试影响显著(P<0.05);压扁与否对所有传热系数测定组别皆产生显著影响(all P<0.05),且对夏季体被测试产生的影响较冬季显著。所有人为组合处理条件下的传热系数测定试验中,压扁与否对体被传热系数测定的影响较摆放方显著。
     在体被样本冷、热面温度和热流密度三项物理量测定方面,相同热源温度条件下,压扁与否较摆放方式对无风条件下体被样本的冷、热面温度和热流密度的测定影响显著;压扁与否较摆放方式对低风速条件下体被样本的冷、热面温度和热流密度的测定影响显著;低风速和无风条件下,夏季体被样本的冷、热面温度和热流密度的测定值高于冬季体被样本。
     同一季节组别中,5个体被样本的传热系数测定值存在组内差异。为探索产生差异的原因,对测试中处于稳态换热状态下体被样本的含水率和体被厚度进行测定和比较。相关关系分析显示:传热系数测定值与样本含水率和体被厚度呈负相关关系。体被厚度增加将导致体被样本含水率上升,但上升幅度较体被厚度百分比小。体被厚度增加的保温效果较含水率升高所导致的蒸发冷却效果显著,造成传热系数测定值组内差异的主要因素是各体被样本间的体被厚度差异。
     将夏季与冬季体被传热系数测定结果与前人关于黄鼬东北亚种夏季与冬季毛的形态学研究相结合发现:皮板厚度对体被保温性能产生的影响较被毛小。毛的长度、细度、密度、髓质指数、无髓段比例、鳞片类型以及各鳞片类型在毛干上的分布比例与体被保温性能密切相关。
     利用SPSS17.0统计软件,对夏季与冬季和全部认为组合处理中体被传热系数的测定数据分别进行独立样本t检验与配对样本t检验。检验结果显示:该平台在动物体被季节、毛向和体被层厚度差异研究的应用中具有可行性。最后,就该平台的使用方法,对易于引起测定误差的两个注意事项,指出正确操作方法。针对现阶段取得的研究成果,提出该平台的局限性以及有待于拓展的功能。本研究积累了一定的体被传热系数测定经验和具有参考价值的资料,这些研究成果将为今后相关研究提供基础数据和有益参考。
As one of the important part of the heat transfer between mammal body and environment, pelage has significant in mammals energy balance. The variety of its structure and function are important for animal adapt to the complex environment. The heat transfer property is a base date for explore the mechanism of insulation, ecological adaptation, evolutionism and the processing technique of pelage. In the domestic, there is not a complete research model for the heat transfer of pelage quantitative study. For the reason, carry on the systematic quantitative study of heat transfer property of pelage, accumulate test experience and data is significant for the corresponding equipment research, development and application. Pelage is a specific biological heat transfer materials. This study draws on the methods and techniques from foreign. In cooperation with the Harbin Institute of Technology, we design a test platform for of thermothysical parameters for integument during steady process. We take samples of summer and winter 10 female and male siberian weasel integuments (Mustela sibirica manchurica Brass) respectively, and investigated the methods of sample preparation and test. In the test of summer and winter pelage, there is significant difference between summer integument and winter integument in heat transfer properyt, and the insulation of summer integument is lower than winters significantly.
     In order to explore the influencing of hair direction and thickness of fur layer deal with experimenter artificially, we place test sample in different ways to achieve change in hair direction and squash the integument sample by 25 kg weight to achieve the thickness change of the fur layer. The results show:in no wind conditions, laying mode does not produce significant effects to the test, squashed treatment have a significant impact to the test, in low wind speed conditions, laying mode and squashed treatment are both factors; squashed treatment produce a greater impact than laying mode. Furthermore, laying mode produces impact to the winter non-squashed and summer squashed integument significantly. Squashed treatment produces impact both in summer and winter integument, especially to the summer integument. In all conditions, squashed treatment produces a greater impact than laying mode.
     With the same heatsource, in no wind condition:squashed streatment effect the measuremen of hot, cold surface temperature and heat flux significant than laying mode; squashed treatment and laying mode both effect the mentsurement of hot、cold surface temperature and heat flux tested value in low wind speed condition, and squashed treatment produces a greater affect than laying mode.
     It was found, the heat transfer coefficient of pelage in the same season groups are differences. In order to explore which reason cause discrepancy in same grope, compared the water ratio and thickness of each sample in same group. The results show:the heat transfer coefficient is negative correlated with water ratio and thickness. The hoist of thickness of integument can raise the water ratio of integument, bur water ratio is not the real factor, the thickness change of integument has higher influence than evaporative cooling. In contrast to water ratio, thickness change in fur layer is one of the main factors to cause discrepancy in same grope.
     To link with our study with the researches on the morphology of summer and winter integument previously, it suggests:compared to the hair, thickness of fur has less impact on insulation of integument. On the other hand, the length, diameter, density, medulla diameter, absent medulla proportion, scale type, the number of scale of unit length and proportion of each scale type of hair have significant influence to the insulation of integument.
     SPSS statistic software is applied to analyze the test date. It suggest that the test platform has feasibility on the study of compared the discrepancy of insulation quantitatively in season, hair direction and thickness of integument. Finally, concerning the operation easy to cause the error of measurement, we propose the general testing practices. In connection with the result of this study, we propose the limitations of platform and the function to be expanded. This study has accumulated certain amount of operational experience and reference information of thermal parameters of test. The results of this study will provide the basic data and useful reference for future study.
引文
[1]景松岩,张伟.毛皮学(第二版).哈尔滨:东北林业大学出版社,1993:5~24,40~56
    [2]Shitzer A, Eberhart R C. Heat transfer in medicine and biology:Analysis and applications. New York:Plenum Press,1985:12~37
    [3]工存诚,陈槐卿主编.生物医学中的热物理探索.北京:科学出版社,1994:1~4
    [4]王辉,吴建国.生物传热学及其医学应用.同济大学学报,2004,25(2):29~32
    [5]杨景山,何钟琪.低温生物学的现状与展望.生物科学进展,1985,16(4):296~301
    [6]刘静,工存诚.生物传热学.北京:科学出版社,1993:50~65
    [7]Pennes H H. Analysis of tissue and arterial blood temperatures in the resting human forearm. Journal of Applied Physiology,1948,3(1):93~122
    [8]Wang B X, Wang Y M. Study on the basic equations of biomedical heat transfer. Transport phenomena science and technology. Beijing:Higher Education Press,1992:773~776
    [9]Wisssler E H. Steady-state temperature distribution in man. Journal of Applied Physiology, 1961,16(4):734~740
    [10]Stohuijk J A, Hardy J D. Temperature regulation in man—A theoretical study. Pflugers Archive European Journal of Physiology,1966,291(2):129~162
    [11]王良海.突变热环境下人体热反应的研究.清华大学博士论文,1992:3~9
    [12]Wissler E H. Mathematical simulation of human thermal behavior using whole-body models. In:A shilzer, R Eberhart(Eds), Heat and mass transfer in medicine and biology, New York:Plenum Press,1985:325~373
    [13]Coleman T G, Randall J E. Human, A comprehensive physiological model. The physiologist,1983,26(12):15~21
    [14]Hwang C L, Stephan A K. Engineering models of the human thermoregrlation system-areview. Engineering in Medicine and Biology Society,1977,24(4):309~325.
    [15]Weibaum S, Jiji L M, Lemons D E. Theory and experiment for the effect of vascular microstructure on surface tissue heat transfer-part1:Anatomical foundation and model conceptualization. Journal of Biomechanical Engineering,1984,106(5):321~330
    [16]Jiji L M, Weinbaum S, Lemons D E. Theory and experiment for the effect of vascular microstructure on surface tissue heat transfer-part2:Model formulation and solution. Journal of Biomechanical Engineering,1984,106(11):331~341
    [17]Dagan Z, Weinbaum S, Jiji L M. Parametric study on the three layer microcirculatory model for surface tissue energy exchange. Journal of Biomechanical Engineering,1986, 108(1):89~96
    [18]Song W J, Weinbaum S, Jiji L M. A theoretical model for peripheral tissue heat transfer using the bioheat equation of Weinbaum and Jiji. Journal of Biomechanical Engineering, 1987,109(1):72~78
    [19]Zhu M, Weinbaum S, Jiji L M. On the generation of the Weinbaum-Jiji bioheat equation to microvessels of unequal size:The relation between the near field and lacal average tissue temperatures. Journal of Biomechanical Engineering,1988, (110):74~81
    [20]Song W J, Weinbaum S, Jiji L M, Lemons D. A combined macro-and micro-vascular model for whole limb heat transfer. Journal of Biomechanical Engineering,1988,110(11): 259~268
    [21]Zhu M, Weinbaum S, Jiji L M. Heat exchange between unequal countercurrent vessels asymmetrically embedded in a cylinder with surface convection. Journal of Heat Mass Transfer,1990,33(10):2275~2283
    [22]Baish J W, Ayyaswamy P S, Foster K R. Heat transport mechanism in vascular tissues:A model comparison. Journal of Biomechanical Engineering,1986,108(4):324~332
    [23]唐元升,张秀珍,韩殿存.人体医学参数与概念.济南:济南出版社,1996:4~25
    [24]袁修干.人体热调节系统的数学模型.北京:北京航空航天大学出版社,2005:23~44
    [25]Yang W J. Biothermal-fluid sciences:Principles and applications. New York:Hemisphere Publishing Corporation,1989:69~77
    [26]Mcarthur A J, Monteith J L F R S. Air movement and heat loss from sheep. I. Boundary layer insulation of a model sheep, with and without fleece. Biological Sciences,1980, 209(1175):187~208
    [27]Incropera F P, Dewitt D P. Fundamentals of heat and mass transfer (4th). New York:John Wiley and Sons,1966:73~134.
    [28]Fletcher L S. Recent developments in contact heat transfer. Journal of Heat Transfer,1988, 110(2):1059~1070
    [29]Irvine T F J. Contact resistance in:Schlunder, E U, editor-in-chief. Heat Exchanger Design Handbook. Vol 2:Fluid mechanics and heat transfer. New York:Hemisphere Publishing Corporation,1983:23~40
    [30]王辉,吴建国,苏佳灿.基于有限元方法的人体温度场无损重构初探.中国临床康复,2005,9(6):64~66
    [31]霍彦明,陈亚珠,组织温度分布的传热模型.中国医学物理学杂志,2000,17(1):29~31
    [32]张海峰.热敏电阻测量生物热物性的理论和与试验研究.国科学技术大学硕士论文,2002:15~18
    [33]Tompkins D T, Vanderby R, Klein S A, et al. Effects of interseed spacing, tissue thermoseed temperatures and catheters in ferromagnetic hyperthermia:ressimulations using finite element models of thermoseeds and catheters. Biomedical Engineering,1994, 41:975~985
    [34]Diederich C J, Burdette E C. Transurethral ultrasound array for prostate themainitial studies. IEEE Transactions on ultrasonics ferroelectrics and frequency control Society, 1996,43(6):1011~1022
    [35]夏全龙,夏雅琴,南群等.深部组织热物理参数的测量及其结果分析.北京生物医学工程,2003,22(1):37~39
    [36]刘静,任泽霈,王存诚.生物医学传热学的研究进展.力学进展,1996,26(2):198~213
    [37]Jarny Y, Ozisik M N, Bardon J P. A general optimization method using adjoint equation for solving multidimensional inverse heat conduction. International Journal of Heat and Mass Transfer,1991,34(11):2911~2919
    [38]夏全龙.肝癌组织热物性及血液灌注率测量系统的研究.北京工业大学硕士论文,2003:5~11
    [39]Chato J C. A method for measurement of the thermal properties of biological material. American Society of Mechanical Engineers,1968:16~25
    [40]Bowman H F. Estimation of tissue blood flow. Heat transfer in medicine and biology: Aanalysis and Aapplication. New York:Plenum Press,1985:193~230
    [41]Valvano J W, Allen J T, Bowman H F. The simultaneous measurement of thermal conductivity, thermal diffusivity, and perfusion in small volumes of tissue. Journal of Biomechanical Engineering,1984,106(3):192~197
    [42]Chen M M, Holmes K R, Rupinskas V. Pulse-decay method for measuring the thermal conductivity of living tissue. Journal of Biomechanical Engineering,1981,103(4):253~ 260
    [43]Arkin H, Holmes K R, Chen M M. Thermal pulse decay method for simultaneous analysis. Journal of Biomechanical Engineering,1986,108(3):208~214
    [44]Arkin H, Holmes K R, Chen M M. A sensitivity analysis of the thermal pulse decay method for measurement of tissue blood perfusion. Journal of Biomedical Engineering 1986,108(1):54~58
    [45]Arkin H, Holmes K R, Chen M M. Computer-based system for continuous on-line measurements of tissue blood perfusion. Journal of Biomedical Engineering,1987,9(1): 38-45
    [46]Diederich C J, Clegg S, Roemer R B. A spherical source model for the thermal pulse decay method of measuring blood perfusion:a sensitivity analysis. Journal of Biomechanical Engineering,1989,111(1):55~61
    [47]Bowman H F, Ernest G C, Monty W. Theory measurement and application of thermal properties of biomaterials. Annual Review of Biophysics and Bioengineering,1975,4(6): 43~74
    [48]Chato J C. Measurement of thermal properties of biological materials.Heat transfer in medicine and biology:analysis and application. New York:Plemun Press,1985:67~91
    [49]Anderson G T, Burnside G. A noninvasive technique to measure perfusion using a focused ultrasound heating source and a tissue surface temperature measurement. Proc Advance in Measuring and Computing Temperatures in Biomedicaine,1990,147:31~35
    [50]Reilly T B, Gonzales T L, Diller T E. Development of a noninvasive blood perfusionprobe. American Society of Mechanical Engineers,1997,355(4):67~73
    [51]Michener M D, Hager J M, Terrell J P, et al. Noninvasive blood perfusion measurement with a flux microsensor. Biological Heat and Mass Transfer,1991,14(1):53~60
    [52]Fouquet Y, Hager J, Terrel J, et al. Blood perfusion estimation from noninvasive heat flux measurements. Biological Heat and Mass Transfer,1993,35(1):53~60
    [53]刘静,任泽霈,王存诚.利用体表瞬变温度无损检测生物体温度依赖性热物性.北京生物医学工程,1994,13(4):197~202
    [54]Liu J, Xu L X. Estimation of blood perfusion using phase shift in temperature response to sinusoidal heateing at the skin surface. Journal of Biomedical Engineering,1999,46(9): 1037-1043
    [55]刘静,张学学,卢文强,工存诚.无损测取活体组织血液灌注率的热波相位移方法.自然科学进展,1999,9(2):179~184
    [56]李和杰,张学学,伊耀繁.体表常热流法无损检测血液灌注率试验研究.中国生物医学工程学报,2003,22(5):393~398
    [57]范毅,戴景民.脉冲加热瞬态热物性测量装置的研制.高技术通讯,2004,2(13):59~62
    [58]杨昆,刘伟,朱光明等.用阶跃温升法测量生物组织热物理参数.工程热物理学报,2001,22(6):733~736
    [59]杨昆,刘伟,朱光明.生物组织血液灌注率的无损测量研究.工程热物理学报,2003,24(1):69~72
    [60]陈廷航.生物医学测量.北京:人民卫生出版社,1983:41~49
    [61]孙渝生.激光多普勒技术及应用.上海:上海科学技术出版社,1995:23~33
    [62]Yang S M. Heat Transfer Theory. Beijing:Higher Education Press,1987:7~32
    [63]Scholander P F, Walters V, Hock R, Irving L. Body insulation of some arctic and tropical mammals and birds. Biol Bull,1950, (99):225~236
    [64]Vadsheim P H K, Folkow L P, Blix A S. A new device for measurement of the thermal conductivity of fur and bulbber. Journal of Thermal Biology,1994,19(6):431~435
    [65]Carolyn J G, Caroline M, Onischak, Jeffrey R A. Acute, early thermal experience alters weaning onset in rats. Physiology &Behavior,1998,64(4):463~474
    [66]Mariana B. Seasonal changes in heat transfer in the small mammal Calomys musculinus (Rodentia muridae), The role of the skin. Journal of Thermal Biology,2003,14 (28):141~ 147
    [67]Justin G B, George S B. Seasonal changes and wind dependence of thermal conductance in dorsal fur from two small mammal species (Peromyscus leucopus and Microtus pennsylvanicus). Journal of Thermal Biology,2007,32 (7):383~387
    [68]Robyn S H, Brenda A D, Linda G F, Andrea F, Graham I H K, Leith C R M, Duncan M, Shane K M. Body temperature, thermoregulatory behavior and pelt characteristics of three colour morphs of springbok. Comparative Biochemistry and Physiology-Part A:Molecular & Integrative Physiology,2009,152(3):379~388
    [69]Translate:Xu Y S, ed in:Chato J C. Foundation of heat transfer. Beijing:Science Press, 1991:5-30
    [70]Craig A. S, James O, Polley A. McClure. Air flow and convective heat los from small mammals in laboratory metabolism chambers. Journal of Thermal Biology,1990,15(3): 313~316
    [71]Mark A C, Douglas S H. Effects of wind on thermoregulation and energy balance in deer mouse (Peromyscus maniculatus). Journal of Comparative Physiology,1984,154(6): 619-625
    [72]Mcarthur A J, Monteith J L. Air movement and heat loss from sheep.Ⅱ. Thermal insulation of fleece in wind. Biological Sciences,1979,209(1175):209~217
    [73]Kifle G G. Effect of animal orientation with respect to wind direction on convective heat loss. Agricultural and Forest Meteorology,1987,40(2):199~206
    [74]George S B. Blockage errors in studies of the effect of wind on thermoregulatory responses. Journal of Thermal Biology,1990,15(4):207~210
    [75]Jiang M, Gebremedhin K G, Alright L D. Simulation of skin temperature and sensible and latent heat losses through fur layers. Transactions of the ASABE,2005,48(2):767~775
    [76]Radim S, Jitka Z, Petr K, Ivana K, Hynek B. Patterns of surface temperatures in two mole-rats (Bathyergidae) with different social systems as revealed by IR-thermography. Physiology & Behavior,2007,92(3):526~532
    [77]Turnpenny J R, Mcarthur A J, Clark J A, Wathes C M. Thermal balance of livestock Ⅰ.A parsimonious model. Agricultural and Forest Meteorology,2000,101(1):15~27
    [78]Turnpenny J R, Wathes C M, Clark J A, Mcarthur A J. Thermal balance of livestock Ⅱ. Applications of a parsimonious model. Agricultural and Forest Meteorology,2000,101(1): 29-52
    [79]Carolyn J G, Caroline M, Onischak, Jeffrey R A. Acute, early thermal experience alters weaning onset in rats. Physiology &Behavior,1998,64(4):463~474
    [80]Gerken M. Relationships between integumental characteristics and thermoregulation in South American camelids. Animal,2010,4(9):1451~1459
    [81]Nadine K J. Differences of thermal properties of white-tailed deer pelage between seasons and body regions. Journal of Thermal Biology,1980,5(3):151~158
    [82]Radim S, Jitka Z, Petr K, Ivana K, Hynek B. Patterns of surface temperatures in two mole-rats (Bathyergidae) with different social systems as revealed by IR-thermography. Physiology & Behavior,2007, (92):526~532
    [83]Karin M. Thermal insulance of peripheral tissue and coat in sport horses. Journal of Thermal Biology,1997,22(3):169~175
    [84]杨世铭.传热学.北京:高等教育出版社,1987:17~32
    [85]Klifle G G, Wu B X. Simulation of sensible and latent heat losses from wet-skin surface and fur layer. Journal of Thermal Biology,2002,27 (4):291~197
    [86]Webb D R, King J R. Effects of wetting of insulation of bird and mammal coat. Journal of Thermal Biology,1984,9(3):189~191
    [87]Frank E F, Jennifer S, Russel V B, Penny S R. Fur does not fly, it floats:buoyancy of pelage in semi-aquatic mammals. Aquatic mammals,2002,28(2):103~112
    [88]Mcarthur A J, Ousey J C. The effect of moisture on the thermal insulation provided by the coat of a thoroughbred foal. Journal of Thermal Biology,1996,21(1):43~48
    [89]Mcarthur A J, Ousey J C. Heat loss from a wet animal:Changes with time in the heat balance of a physical model representing a new born homeotherm. Journal of Thermal Biology,1994,19(2):81~89
    [90]Joshi B C, Mcdowell R E, Sadhu D P. Body surface evaporation rates at low and high temperatures in Murrah buffalo. Journal of Dairy Science,1968,51(10):1689~1692
    [91]Das S K, Upadhyay R C, Madan M L. Heat stress in Murrah buffalo calves. Livestock Production Science,1999,61 (1):71~78
    [92]Mullick D N. Review of the investigations on the physiology of Indian buffaloes. Inidan Journal of Dairy Science,1964, (17):45~50
    [93]Rife D C. The Water buffalo of India and Pakistan. Washington D.C:International Cooperation Administration,1959:23~29
    [94]Hafez E S E, Baderldin A L, Sha M M. Skin structure of Egyptian buffaloes and cattle with particular reference to sweat gland. Journal of Agricultural Science,1955,46 (1):19~30
    [95]Daniel A D, Daniel 1, James E H. Sweating in the guanaco(Lama guanicoe). Journal of Thermal Biology,2001,26 (2):77~83
    [96]Sun R Y. Principles of Animal Ecology (3rd). Beijing:Beijing Normal University Press, 2001:21~40
    [97]Robyn S H, Brenda A D, Linda G F, Andrea F, Graham I H K, Leith C R M, Duncan M, Shane K M. Body temperature, thermoregulatory behavior and pelt characteristics of three colour morphs of springbok. Comparative Biochemistry and Physiology-Part A:Molecular & Integrative Physiology,2009,152(3):379~388
    [98]Cooper C E, Walsberg G E, Withers P C. Biophysical properties of the pelt of a diurnal marsupial, the Numbat (Myrmecobius fasciatus waterhouse), and its role in thermoregulation. Journal of Experimental Biology,2003,20(6):2771~2777
    [99]Walsberg G E, Campbell G S, King J R. Animal coat color and radiative heat gain:A Re-Evaluation. Journal of Comparative Physiology,1978,126(11):211~222
    [100]Glenn E. Walsberg. Thermal effects of seasonal coat change in three subarctic mammals. Journal of Thermal Biology,1991,16(5):291~296
    [101]Glenn E W, Catherine A S. Seasonal adjustment of solar heat gain in a desert mammal by altering coat properties independently of surface coloration. Journal of Experimental Biology,1989,142:387-400
    [102]Gebremedhin K G, Ni H, Hillman P E. Modeling temperature profile and heat flux through irradiated fur layer. Transactions of the ASAE,1997,40(5):1441~1447
    [103]汪玺.赛加羚羊被毛及毛纤维特征对其环境适应性的研究.草业学报,1998,7(1):54~59
    [104]Gordon L R, James A G Influence of air temperature, wind and irradiance on metabolism of white-tailed jackrabbits. Journal of Thermal Biology,1990,15(2):125~131
    [105]Terence J D, Graham D B. A comparison of the insulative and reflective properties of the fur of desert kangaroos. Comparative Biochemistry and Physiology,1970,37(1):23~38
    [106](?)ritsland N A, Ronald K. Effects of solar radiation and wind chill on skin temperature of the harp seal, Pagophilus groenlandicus (Erxleben, 1777). Comparative Biochemistry and Physiology,1973,44(2):519~525
    [107]Marcuse W, Wesleyw W. Effect of wind and air temperature on metabolic rate in Verdins (Auriparus flaviceps). Physiology Zoology,1988,61(6):543~554
    [108]Ainley D G, Schlatter R P. Chick raising ability in Adelie penguins. The Auk,1972, (89): 559~566
    [109]George S B, Joseph B. W, Robert E R. Metabolic response to wind of downy chicks of Arctic-breeding shorebirds (Scolopacidae). The Journal of Experimental Biology,2002, 205(21):3435~3443
    [110]Stonehouse B. The general biology and thermal balances of penguins. Advances in Ecological Research,1967,4(9):131~196.
    [111]Stahel C D, Nicol S C, Walker G J. Heat production and thermal resistance in the Little Penguin(Eudyptula minor) in relation to wind speed. Physiological Zoology,1987,60(4): 413-423
    [112]Marilyn R B, Aaron J L, Matthew J V, George S B. Partitioning heat loss from mallard ducklings swimming on the air-water Interface. Journal of Experimental Biology,2004, 207(26):4551~4557
    [113]Flip S. The ugly duckling:a thermal viewpoint. Journal of Thermal Biology,2002,27(5): 413~422
    [114]Mccafferty D J, Moncrieff J B, Taylor I R. The effect of wind speed and wetting on thermal resistance of the Barn owl (Tyto alba). I:Total heat loss, boundary layer and total resistance. Journal of thermal Biology,1997,22(5):253~264
    [115]Mccafferty D J. The effect of wind speed and wetting on thermal resistance of the barn owl Ⅱ. Coat resistance. Journal of thermal Biology,1997,415 (22):265~273
    [116]工泽长.哺乳动物被毛的比较形态.吉林医科大学学报,1963,(3):491~514
    [117]朱小曼等.54种动物毛的扫描电子显微镜观察.中国法医学杂志,1987,(2):20~27
    [118]张伟等.刍议哺乳动物研究中毛的作用.野生动物,1993(增):26~31.
    [119]张伟等.刍议毛的鳞片类型与哺乳动物识别的关系.东北林业大学学报,1994,22(3):121~123
    [120]张伟,刘龙生等.狍被毛髓质指数在保温和保护功能上的适应性变化.东北林业大学学报,1997,25(3):45~47
    [121]张伟,徐艳春,杨淑惠,刘伟石.毛发杂波型鳞片磨损机制研究.东北林业大学学报,1998,26(6):44~48
    [122]杨晓东,任露泉.动物毛发的形态结构及其功能特性研究.农业工程学报,2002,18(2):21~24
    [123]张伟,徐艳春.毛发微观结构研究的回顾与展望.兽类学报,2003,23(4):339~345
    [124]金辛,张伟.马鹿东北亚种被毛形态结构的季节性差异.兽类学报,2005,25(4):414~416
    [125]高耀亭等.中国动物志:兽纲,食肉类.北京:科学出版社,1987:89~90
    [126]盛和林.黄鼬(Mustela sibirica)体型大小的性二型及地理变异.兽类学报,1987,7(2):92~95
    [127]Poole K G. Environmental contaminants in wild mink in the northwest territoryies, Canada. The science of total environment,1995,160(10):473~486
    [128]Roger A P. Variation in body size, sexual dimorphism and age-specific survival in stoats, Mustela erminea (Mammalia:Carnivora), with fluctuating food Supplies. Biological Journal of the Linnean Society,1997,62(2):165~194
    [129]Kirsti R W, Mikko H. Observations on thermoregulatory ontogeny of mink(Mustela vison). Journal of Thermal Biology,2001, (26):9~14
    [130]Adriano M. Diet of stoats(Mustela errhinea) in an Alpine habitat:the importance of fruit consumption in summer. Acta Oecologica,2001, (22):45~53.
    [131]Michaeld T. Female American mink, (Mustela vison), mate multiply in a free-choice environment. Animal Behaviour,2004,67 (5):975~984
    [132]周宏力.龙江路、辽宁路元皮的质量差异.东北林业大学学报,2004,32(3):55~58
    [133]景松岩.中国裘皮名录.哈尔滨:东北林业大学出版社,1988:23
    [134]朱靖,工家义.黄鼬换毛序.动物学杂志,1960,43(7):293~295
    [135]张伟,景松岩.山地深林生态系统与平原草甸生态系统对黄融东北亚种毛皮性状产生不同影响的原因分析.野生动物,1992(增):67~71.
    [136]张伟,景松岩.两种生境中黄融东北亚种皮张质量的比较研究.野生动物,1992(增):50~66
    [137]Porter W P, Gates D M. Thermodynamic equilibrium of animals with environment. Ecological Monographs,1969,39(3):227~244
    [138]Webb D R, Porter W P, McClure P A. Development of insulation in juvenile rodents: functional compromise in insulation. Functional Ecology.1990,4(2):251~256
    [139]McNab B K. Energetics, body size, and the limits to endothermy. Journal of Zoology, 1983,199(1):1~29
    [140]Kleiber M. The Fire of Life:and Introduction to Animal Energetics. Wiley, New York, USA,1961:411~435.
    [141]Hart J S. Physiological responses to cold in nonhibernating homeotherms. In:Hetzfeld C M (Ed), Temperature, its Measurement and Control in Science and Industry. New York: Reinhold Publishing Corporation,1963:373~406
    [142]Morrison P R, Tietz W J. Cooling and thermal conductivity in three small Alaskan mammals. Journal of Mammalogy,1957,38(1):78~86
    [143]Chappell M A. Insulation, radiation and convection in small arctic mammals. Journal of Mammalogy,1980,61(2):268~277
    [144]Reynolds P S. Effects of body size and fur on heat loss of collared lemmings, dicrostonyx groenlandicus. Journal of Mammalogy,1993,74(2):291~303
    [145]Harris G D, Huppi H D, Gessaman J A. The thermal conductance of winter and summer pelage of Lepus californicus. Journal of Thermal Biology,1985,10(2):79~81
    [146]Hart J S, Heroux O. A comparison of some seasonal and temperature induced changes in Peromyscus:cold resistance, metabolism and pelage insulation. Canadian Journal of Zoology,1953,31(5):528~534.
    [147]郑光美,杨安峰.动物形态学发展趋势及我国近期的发展战略.动物学杂志,1992,27(4):53~57
    [148]Hart J S. Seasonal changes in insulation of the fur. Canadian Journal of Zoology,1956, 34(1):53~57.
    [149]邱建军.温湿保温覆盖材料传热系数的测定.北京:中国农业大学硕士论文,1995: 13~19
    [150]周新群,董仁杰,张淑敏等.日光温湿外保暖蜂窝结构覆盖材料的研究.农业工程学报,1998,(12):159~163
    [151]覃密道.覆盖材料传热系数测试技术和设备的研究.北京:中国农业大学硕士论文,2004:12~17
    [152]诸爱士,徐晓楠,吴盛林.测定对流传热系数的试验装置设计及测定条件选择.试验室研究与探索,2003,22(3):83~86.
    [153]俞镇慌,丁国沪.非织造纤维多孔材料的传质传热系数的测定.上海交通大学学报,2004,22(3):251~255.
    [154]傅门添,杨岳,陈传燕.综合传热系数K值试验装置的研制与应用.企业技术开发,2007,26(1):18~21
    [155]戴锅生.传热学(第6版).北京:高等教育出版社,1999:45~72
    [156]GB10223-88.空气调节器标准汇编.北京:中国标准出版社,1997:15
    [157]裴清清.暖通多功能试验台微机多点数据采集系统.湖南大学学报,1995,22(4):60~64
    [158]华彦,张伟,徐艳春.黑龙江小兴安岭地区黄鼬夏冬季毛皮性状比较.兽类学报,2010,30(1):110~114
    [159]林加涵,魏文铃,彭宣宪.现代生物学试验(上册).北京:高等教育出版社,2000:70~87

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700