熔铸法制备TiC/Ti-6Al-4V复合材料组织与力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用熔铸法制备了TiC/Ti-6Al-4V复合材料,TiC体积含量分别为5%、10%和15%。分析研究了复合材料中TiC的形态形成及生长机理,探讨了TiC形态的控制和改善手段,分析了热处理对复合材料组织和性能的影响,并对感应凝壳熔炼制备的TiC/Ti-6Al-4V复合材料的组织及室温和高温拉伸性能进行了分析,讨论了熔铸法制备TiC/Ti-6Al-4V复合材料的强化和断裂机理。
     热力学和XRD分析表明,TiC相在熔铸法制备TiC/Ti-6Al-4V复合材料中可以稳定存在,当TiC含量较少时,复合材料中凝固析出的TiC主要为共晶TiC,随TiC含量的增加,复合材料中共晶TiC含量减少,初生枝晶状TiC所占比例明显增加。对TiC的成分分析表明,熔铸法制备TiC/Ti-6Al-4V复合材料中TiC内C/Ti原子比接近0.5,处于明显的C缺乏状态,导致凝固析出的TiC密度比原始TiC粉末有所减小。
     对熔铸法制备TiC/Ti-6Al-4V复合材料中的TiC生长形态研究表明,TiC凝固时其固液界面为过渡性界面,因此TiC既有小平面生长形态又有非小平面生长形态。由于熔体中存在较大尺度的TiC团簇,凝固时TiC团簇向固液界面沉积促进了TiC的二维晶核侧向扩展长大,使有些TiC枝晶存在明显层状生长形貌。
     通过对TiC粉、石墨粉和炭黑粉三种不同尺寸和形态的C源对TiC形态影响的研究表明,以细小的炭黑粉为原料时,熔铸制备过程中熔体内形成的TiC团簇尺寸较小且较分散,析出的TiC尺寸相对较小,初生TiC不易在复合材料中形成发达的枝晶状形态。
     对熔铸法制备TiC/Ti-6Al-4V复合材料的热处理研究表明,高温热处理可使共晶和初生TiC都有一定程度的粒化,热处理后TiC内C含量有所增加,且TiC的层状生长形貌明显减弱。研究发现在β-Ti+TiC相区热处理,由于C扩散系数较高,TiC粒化效果较好。在不同温度热处理后TiC内部都存在Ti析出相,析出相呈长片状形貌且内部存在层状结构,Ti析出相与TiC相在某些界面存在如下取向关系:[112_0]Ti//[01_1]TiC,(0001_)Ti//(111)TiC。
     对TiC/Ti-6Al-4V复合材料硬度测试表明,热处理后TiC相硬度有所降低,同时TiC颗粒脆性也有所降低,不易产生裂纹。压缩实验表明,由于热处理后TiC的粒化,以及热处理对TiC层状形貌的弱化作用和Ti析出对TiC的增韧作用,使热处理后复合材料的压缩强度和压缩率相比铸态时都有所增加。
     采用感应熔炼制备了TiC尺寸较细小的TiC/Ti-6Al-4V复合材料,对其室温和高温拉伸研究表明,由于TiC颗粒的引入,不同TiC含量的TiC/Ti-6Al-4V复合材料的拉伸强度相比基体合金有了明显提高,但延伸率有所下降。高温时由于TiC颗粒具有更大的载荷传递效应,因此复合材料强度提高幅度较大,500oC时TiC体积含量为5%、10%和15%的复合材料相比基体合金,抗拉强度分别提高了20.4%、27.0%和33.9%,而且高温下TiC含量越高复合材料强度也越高。对感应熔炼TiC/Ti-6Al-4V复合材料1050oC/8h空冷热处理后,复合材料强度略有增加,而延伸率相比铸态时有显著提高,TiC体积含量5%、10%和15%的复合材料其延伸率提高幅度分别为16.3%、19.7%和38.9%。
     对感应熔炼TiC/Ti-6Al-4V复合材料的拉伸断裂研究表明,复合材料的室温拉伸断口为准解理断口,由颗粒的脆性解理断面与基体的韧窝或撕裂棱组成。拉伸加载时复合材料中裂纹的产生与TiC颗粒有很大关系,在TiC相以共晶TiC为主的复合材料中,由于共晶TiC尺寸细小,裂纹主要产生于小颗粒聚集区内部;而在TiC相以初生TiC为主的复合材料中,由于初生TiC尺寸较大,材料中多由TiC自身缺陷导致断裂形成裂纹,或是TiC表面应力集中导致孔洞萌生最后发展成裂纹。
TiC/Ti-6Al-4V composites were prepared by melting-casting process in this study. TiC/Ti-6Al-4V composites are reinforced with 5%, 10% and 15% volume fraction of TiC respectively. The morphology formation and growth mechanisms of TiC in the composites were investigated. The control and improving methods for TiC morphology were studied and discussed. The effect of heat treatment on microstructure and properties of the composites was analyzed. The tensile properties at both room and elevated temperature were investigated on the TiC/Ti-6Al-4V composites fabricated by induction melting, and then the strengthening and fracture mechanisms of TiC/Ti-6Al-4V composites were studied.
     Thermodynamic analyses and XRD results showed that TiC phase is stable in melted TiC/Ti-6Al-4V composites. The solidified TiC is mainly eutectic TiC in the composites when the fraction of TiC is small, while the proportion of primary dendritic TiC increases obviously with the fraction of TiC increasing. The composition for TiC showed that the solidified TiC is of carbon deficiency, of which the atomic ratio of C/Ti is close to 0.5. This leads to a decrease for the density of solidified TiC.
     The research on the growth morphology of TiC indicated that the solid-liquid interface of TiC on solidification is a kind of transition interface in melting-casting TiC/Ti-6Al-4V composites. Thus, the solidified TiC presents both faceted and non-faceted growth morphologies. There are TiC crystal nucleuses with large size in the melt, which could promote the two-dimensional nucleation growth by depositing on the solid-liquid interface of TiC on solidification. Therefore, some TiC dendrites exhibit the layer growth morphology due to the two-dimensional nucleation growth of TiC.
     TiC powder, graphite powder and carbon black powder with different size and status were used as the C sources of TiC in the TiC/Ti-6Al-4V composites. The studies of the effect of C sources on TiC morphology showed that the TiC crystal nucleus is smaller and more dispersed in the melt when fine carbon black powder was used as the C source. Moreover, the size of solidified TiC is comparatively smaller and the primary TiC is not easy to growth to developed dendrite with the C source of carbon black.
     The melting-casting TiC/Ti-6Al-4V composites were heat treated at different temperature, and the results showed that the eutectic and primary TiC could be of granulation by heat treatment. The C content in TiC increases and the layer growth morphology of TiC becomes unobvious after heat treatment. The granulation effect of TiC was found better when heat treating atβ-Ti+TiC phase region as the diffusion coefficient of C element is comparatively higher. There are Ti precipitations within TiC after different heat treatments, and the Ti precipitations exhibit long strip morphology with inner lamellar structure. The orientation relationship betweenα-Ti precipitation and TiC goes to [112_0]Ti//[01_1]TiC,(0001_)Ti//(111)TiC.
     The hardness tests for TiC/Ti-6Al-4V composites showed that the hardness and brittleness of TiC particles decrease after heat treatment. Meanwhile, the cracks are not easy to be generated in heat treated TiC particles. The compression results indicated that the compression strength and compression ratio of composites have been improved because of the weakening of TiC growth layer, Ti precipitation toughening on TiC and granulation of TiC after heat treatment.
     TiC/Ti-6Al-4V composites with small size of TiC were prepared by induction melting process. The investigation of room and elevated temperature tensile tests showed the strengths of TiC/Ti-6Al-4V composites reinforced different fraction of TiC are higher than the matrix alloy, but the elongations of the composites decrease as the additions of TiC. The tensile strengths of the composites at elevated temperature were increased obviously compared the matrix alloy because of the promotion of load transfer strengthening. The ultimate tensile strengths at 500oC of TiC/Ti-6Al-4V composites with 5%, 10% and 15% volume fraction of TiC were increased by 20.4%, 27.0% and 33.9%,respectively. The TiC/Ti-6Al-4V composites prepared by induction melting were heat treated for 8 hours at 1050oC and then air cooled. The tensile results of the heat treated composites showed that the strengths were increased slightly and the elongations were improved obviously. The elongations of TiC/Ti-6Al-4V composites with 5%, 10% and 15% volume fraction of TiC were increased by 16.3%, 19.7% and 38.9% respectively compared with the as-cast composites.
     The tensile facture surfaces at room temperature of induction melting TiC/Ti-6Al-4V composites are quasi-cleavage fracture surfaces which are composed of brittle cleavage surfaces of TiC and dimples of matrix. The generation of cracks in the composites during tensile deformation is closely related to the TiC particles. When eutectic TiC is the most of TiC phase in the composites, the cracks are mostly generated inside the fine particles gathering region because eutectic TiC particles are usually fine. When primary TiC is the most of TiC phase in the composites, the cracks are caused either by fracture of defective TiC particles, or by the voids at the interface between TiC particle and matrix.
引文
1 J.M. Kunze, C.C. Bampton. Challenges to Developing and Producing MMCs for Space Applications. JOM. 2001, 53(4):22~25
    2 T. Saito, T. Furuta, and T. Yamaguchi. Recent Advances in Titanium Matrix Composites. F.H. Froes and J. Storer. Eds. TMS, Warrendale, PA, 1995:33~38
    3 S. Browna. Metal Matrix Composites-the Next Generation. Aerospace America. 1998, 36(6):26~27
    4郝斌,段先进,崔华,杨滨,张济山.金属基复合材料的发展现状及展望.材料导报. 2005, 19(7): 64~68
    5罗国珍.钛基复合材料的研究与发展.稀有金属材料与工程. 1997, 26(2): 1~7
    6 K. Morsi, V.V. Patel. Processing and Properties of Titanium-titanium Boride(TiBw) Matrix Composites-A Review. Journal of Materials Science. 2007, 42:2037~2047
    7 S. Ranganath. A Review on Particulate-Reinforced Titanium Matrix Composites. Journal of Materials Science. 1997, 32(1):1~16
    8 D.R. Pank, D.J. Jackson. Metal-Matrix Composite Processing Technologies for Aircraft Engine Applications. Journal of Materials Engineering and Performance. 1993, 2(3):341~346
    9邱惠中,吴志红.国外航天材料的新发展.宇航材料工艺. 1997, (4):5~13
    10陆盘金,周盛年.国外连续纤维增强钛基复合材料的研究与发展,航空制造工程, 1994, (6):35~37
    11 W.H. Kao, D.J. Chang. Development of SiC Reinforced Titanium Corrugated Structures. Journal of Composites Technology and Research. 1988, 10(2):47~53
    12 S.J. Veeck, G.W. Wolter, C.R. Wojciechowski. Selective Reinforcement of Titanium Investment Casting. Advanced Materials and Processes. 1994, 145(4): 37~39
    13 W.D. Brewer, R.K. Bird, T.A. Wallace. Titanium Alloys and Processing for High Speed Aircraft. Materials Science and Engineering A. 1998,243:299~304
    14 S.C. Tjong, Yiu-Wing Mai. Processing-Structure-Property Aspects of Particulate- and Whisker-Reinforced Titanium Matrix Composites. Composites Science and Technology. 2008, 68: 583~601
    15 Y. Lin, R.H. Zee, B.A. Chin. In Situ Formation of 3-Dimensional TiCReinforcements in Ti-TiC Composites. Metallurgical Transaction A. 1991, 22: 859~865
    16 V. de Castro, T. Leguey, M.A. Monge. Discontinuously Reinforced Titanium Matrix Composites for Fusion Applications. Journal Nuclear Materials. 2002, 307-311: 691~695
    17 W.J. Lu, D. Zhang, X.N. Zhang, R.J. Wu, T. Sakata, H. Mori. Microstructure and Tensile Properties of in Situ (TiB+TiC)/Ti6242(TiB:TiC=1:1) Composites Prepared by Common Casting Technique. Materials Science and Engineering A. 2001, 311:142~150
    18张喜燕,赵永庆,白晨光.钛合金及应用.化学工业出版社, 2005:67~77
    19 C. Poletti, H.P. Degischer, S. Kremmerb, W. Marketz. Processing Maps of Ti662 Unreinforced and Reinforced with TiC Particles According to Dynamic Models. Materials Science and Engineering A. 2008, 486:127~137
    20 O.O. Bilous, L.V. Artyukh, A. A Bondar, T.Y. Velikanova, M.P. Burka, M.P. Brodnikovskyi, O.S. Fomichov, N.I. Tsyganenko, S.O. Firstov. Effect of Boron on the Structure and Mechanical Properties of Ti-6Al and Ti-6Al-4V. Materials Science and Engineering A. 2005, 402(1-2):76~83
    21 Z.Y. Ma, R.S. Mishra, S.C. Tjong. High-Temperature Creep Behavior of TiC Particulate Reinforced Ti-6Al-4V Alloy Composite. Acta Materialla. 2002, 50: 4293~4302
    22 M. Kobayashi, K. Funami, S. Suzuki. Manufacturing Processes and Mechanical Properties of Fine TiB Dispersed Ti-6Al-4V Alloy Composites Obtained by Reaction Sintering. Materials Science and Engineering A. 1998, 243:279~284
    23 S. Zhang, W.T. Wu, M.C. Wang. In-Situ Synthesized and Wear Performance of TiC Particle Reinforced Composite Coating on Alloy Ti6Al4V. Surface and Coatings Technology. 2001, 138(1):95 ~ 100
    24 W.O. Soboyejo, W. Shen, T.S. Srivatsan. An Investigation of Fatigue Crack Nucleation and Growth in a Ti6Al4V/TiB in Situ Composite. Mechanics of Materials. 2004, 36:141 ~ 159
    25 J.J. Rausch, F.A. Crossley, H.D. Kessler. Titanium-Rich Corner of the Ti-Al-V System. Journal of Metals. 1956, 8:211~214
    26 F.H. Froes, D. Eylon. Powder Metallurgy of Titanium Alloys. International Materials Reviews. 1990, 35(3):162~182
    27张二林,朱兆军,曾松岩.自生颗粒增强钛基复合材料的研究进展.稀有金属材料与工程. 1999, 23(6):436~442
    28 I.A. Ibrahim, F.A. Mohamed, E.J. Lavernia. Particulate Reinforced Metal Matrix Composites-a Review. Journal of Materials Science. 1991, 26(5):1137~1156
    29 R. Mitra, Y.R. Mahajan. Interfaces in Discontinuously Reinforced Metal Matrix Composites: An Overview. Bulletin of Materials Science. 1995, 18(4):405~434
    30 T.S. Srivasan, I.A. Ibrahim, F.A. Mohamed. Processing Techniques for Particulate-Reinforced Metal Aluminum Matrix Composites. Journal of Materials Science. 1991, 26:5965~5978
    31 P. Wanjara. Characterization of Ti-6%Al-4%V-TiC Particulate Reinforced Metal Matrix Composites Consolidated by Sintering and Thermomechanical Processing. Ph.D Thesis, McGill University. 1999:10~11
    32 M.H. Loretto, D.G. Konitizer. The Effect of Matrix Reinforcement Reaction on Fracture in Ti-6Al-4V Base Composites. Metallurgical Transactions A. 1990, 21(6): 1579~1587
    33 T. Saito. A Cost-effective P/M Titanium Matrix Composite for Automobile Use. Advanced Performance Materials. 1995, 2(2):121~144
    34 H. Mabuchi, H. Tsuda, Y. Nakayama. Combustion Synthesis of TiAl-Matrix Composites in the Ti-Al-BN System. Scripta Metallurgica et Materialia. 1995, 132(2): 253~257
    35 A.W. Urquhart. Novel Reinforced Ceramics and Metals: A Review of Lancide’s Composite Technologies. Materials Science and Engineering A. 1991, 144(1): 75~82
    36严有为,魏伯康,林汉同.金属基原位(in-Situ)复合材料的研究现状及发展趋势(上).特种铸造及有色合金. 1998, (1):47~49
    37张二林,金云学,曾松岩.原位自生TiCp/Ti复合材料组织与铝含量的影响.材料研究学报. 2000, (3):25~29
    38吕维洁,张荻,张小农.原位合成TiB和TiC增强钛基复合材料.金属学报. 1999, 35(s1):354~358
    39 R. Zee, C.Yang, Y.X. Lin. Effects of Boron and Heat-Treatment on Structure of Dual-Phase Ti-TiC. Journal of Materials Science. 1991, 26:3853~3861
    40曾泉浦,王彰默,毛小南,武本德,陆锋.颗粒强化钛基复合材料的研究.稀有金属材料科学与工程. 1991, 20(6):33~38
    41毛小南,周廉,周义刚, A. Vassel,张鹏省,于兰兰. TP-650颗粒增强钛基复合材料的性能与组织特征.稀有金属材料与工程. 2004, 33(6):620~623
    42吕维洁,张荻,张小农.原位合成TiC和TiB增强钛基复合材料热力学.中国有色金属学报. 1999, 9(2):220~224
    43 J. Subrahmanyam, M. Vijayakumar. Self-propagating High-temperature Synthesis. Journal of Materials Science. 1992, 27(23):6249~6273
    44 J.C. Rawers, W.R. Wrzesinski, E.K. Roub, R.R. Brown. TiAl-SiC Composites Prepared by High Temperature Synthesis. Materials Science and Technology. 1990, 6(2):187~191
    45曲选辉,黄伯云,雷长明,陈仕奇. TiAl+TiB2复合材料制备过程及其热稳定性的研究.金属学报. 1993, 29(5):236~240
    46 S. Ranganath, M. Vijayakumar, J. Subrahmanyan. Combustion-assisted Synthesis of Ti-TiB-TiC Composite via the Casting Route. Materials Science and Engineering A. 1992, 149(2):253~257
    47汪兵,任伟.自蔓延高温合成(SHS)技术发展和应用.中国表面工程. 2000, 13(4):1~4
    48 P.H. Shingu, K.N. Ishihara. Pseudo-HIP Process Applicable for the Near-net-shape Synthesis of Inter-metallic Compounds. Journal of the Japan Society of Powder and Powder Metallurgy. 1990, 37(5):670~673
    49 A.R. Westwood. New Materials for Aerospace Industry. Materials Science and Technology. 1990, 6:958~961
    50 C.A. Caracostas, W.A. Chiou, M. E. Fine, H.S. Cheng. Wear Mechanisms during Lubricated Sliding of XD 2024-Al/TiB2 Metal Matrix Composites against Steel. Scripta Metallurgica et Materialia. 1992, 27(2):167~172
    51 D.E. Larsen, M.L. Adams, S.L. Kampe, L. Christodoulou, J.D. Bryant. Influence of Matrix Phase Morphology on Fracture Toughness in a Discontinuously Reinforced XDTM Titanium Aluminide Composite. Scripta Metallurgica et Materialia. 1990, 24(5): 851~856
    52 M.L.Vanmeter, S.L. Kampe, L. Christodoulou. Mechanical Properties of near-Titanium Aluminides Reinforced with High Volume Percentages of TiB2. Scripta Materialia. 1996, 34(8):1251~1256
    53 P. Wanjara, S. Yue. Titanium-Based Compotes Produced by Powder Metallurgy. Key Engineering Materials. 1997, 127-131:415~422
    54 R. Asthana. Low Cost Metal-Matrix Composites Fabrication Techniques. Journal of Materials Synthesis and Processing. 1997, 5(4):251~278
    55 S. Abkowitz, S.M. Abkowitz, H. Fisher, P.J. Schwartz. CermeTi Discontinuously Reinforced Ti-Matrix Composites Manufacturing, Properties, and Applications. JOM. 2004, 56(5):37~41
    56 J.Q. Jiang, T.S. Lim, Y.J. Kim. In-Situ Formation of TiC/Ti-6Al-4V Composites. Materials Science and Technology. 1996, 12(4):362~365
    57新家光雄,高橋志郎,荻原益夫. TiB粒子強化Ti-6Al-2Sn-4Zr-2Mo合金复合材料の破壞韧性とミクロ組織.鉄と鋼. 1998, 84(6):452~457
    58 H.Z. Liu, L.H. Wang, A.M. Wang, T.P. Lou, B.Z. Ding, Z.Q. Hu. Preparation of Nanometer Size TiC Particulate Reinforcements in Ti matrix Composites under High Pressure. Nanostructured Materials. 1997, 9:177~180
    59 S. Abkowitz, P. Weihrauch. Trimming the Cost of MMCs. Advanced Materials and Processes. 1989, 136(1):31~34
    60 T. Takahashi. In Situ Synthesis of TiB Whisker-Reinforced Titanium by Mechanical Alloying. Journal of the Japan Institute of Metals. 1995, 59(3):244~250
    61 Z. Fan, L. Chandrasekaran, C.M. Ward-close. The Effect of Pre-Consolidation Heat Treatment on TiB Morphology and Mechanical Properties of Rapidly Solidified Ti-6A1-4V-xB Alloys. Scripta Materialia. 1995, 32(6):833~838
    62 P. S. Goodwin, C. M. Ward-close. Mechanical Alloying of Titanium Based Materials. Mater. Sci. Forum. 1997, 235~238:53~58
    63 S. Rangarajan, P. H. Aswath, W. O. Sohoyejo. Microstructure Development and Fracture of in Situ Reinforced Ti-8.5Al-1B-1Si. Scripta Materialia. 1997, 35(2): 239~245
    64 S. Dubey, R.J. Lederich, W.O. Soboyejo. Fatigue and Fracture of Damage-Tolerant in Situ Titanium Matrix Composites. Metallurgical and Materials Transactions A. 1997, 28 (10):2037~2047
    65 H.Z. Liu, B. Yao, L. Wang. In Situ Formation of Nanometer Size TiC Reinforcements in Ti Matrix Composites. Materials Letter. 1996, 27(7):183~186
    66 B.G. Velasco, P.B. Aswath. Microstructural Stability, Microhardness and Oxidation Behaviour of in Situ Reinforced Ti-8.5Al-1B-1Si. Journal of Materials Science. 1998, 33(10):2203~2214
    67 D. Hu, M. H. Loretta. Microstructnral Characterisation of a Gas Atomised Ti6Al4V-TiC Composite. Scripta Metallurgica et Materialia. 1994, 31(5):543~548
    68 W. Tong, G. Ravichandrani, T. Christman. Processing SiC-Particulate Reinforced Titanium Based Metal Matrix Composites by Shock Wave Consolidation. Acta Metallurgica et Materialia. 1995, 43(1):235~250
    69 Y.J. Kim, H. Chung, S.J.L. Kang. Processing and Mechanical Properties of Ti-6Al-4V/TiC in Situ Composite Fabricated by Gas-Solid Reaction. Materials Science and Engineering A. 2002, 333:343~350
    70 R. Banerjee, P.C. Collins, H.L. Fraser. Laser Deposition of In Situ Ti-TiB Composites. Advanced Engineering Materials. 2002, 4:847~851
    71 R Banerjee, A. Genc, D. Hill, P.C. Collins, H.L. Fraser. Nanoscale TiB Precipitates in Laser-deposited Ti-matrix Composites. Scripta Materialia. 2005, 53:1433~1437
    72 D. Handtrack, F. Despang, C. Sauer, B. Kieback, N. Reinfried, Y. Grin. Fabrication of Ultra-Fined Grained and Dispersion-Strengthened Titanium Materials by Spark Plasma Sintering. Materials Science and Engineering A. 2006, 437:423~429
    73 H. Feng, Y. Zhou, D. Jia, Q. Meng. Microstructure and Mechanical Properties of in situ TiB Reinforced Titanium Matrix Composites Based on Ti-Fe-Mo-B Prepared by Spark Plasma Sintering. Composites Science and Technology. 2004, 64:2495~2500.
    74 T.P. Johnson, J.W. Brooks, M.H. Loretto. Mechanical Properties of a Ti-Based Metal Matrix Composite Produced by a Casting Route. Scripta Metallurgica et Materialia. 1991, 25:785~789
    75 S. Abkowitz. ASM Handbook, vol.7, Powder Metal Technologies and Applications, 9th edition. ASM Handbook Committee eds. ASM International, 1996:2209-2211
    76 J. Chen, Z. Geng, B.A. Chin. High Temperature Ordered Intermetallic Alloys III. Materials Research Society Symposia Proceedings. 1989, 133:447~452
    77 J.K Shang, R.O. Ritchie. Manotonic and Cyclic Crack Growth in a TiC-Particulate-Reinforced Ti-6Al-4V Metal-Matrix Composites. Scripta Metallurgica et Materialia. 1990, 24:1691~1694
    78 A.J.W. Johnson. Deformation and Failure Mechanisms in Ti-6Al-4V/TiC Particulate and Layered Composites. Ph.D Thesis, Brown University. 2002:47~62
    79 J.H. Zhu, P.K. Liaw, J.M. Corum, H.E. McCoy, Jr. High-Temperature Mechanical Behavior of Ti-6Al-4V Alloy and TiCp/Ti-6Al-4V Composite. Metallurgical and Materials Transactions A. 1999, 30:1569~1578
    80 S.J. Zhu, Y.X. Lu, Z.G. Wang, J. Bi. Creep Behaviour of TiB2-Whisker and TiC-Particulate Reinforced Ti-6Al-4V Composite at Elevated Temperatures. In: A. Miravate, editor. Proceedings of the Ninth International Conference Composite Materials (ICCM/9), Madrid, Spain, vol.1. Woodhead Publishing Ltd., 1993:594~556
    81 S.J. Zhu, D. Mukherji, W. Chen. Steady State Creep Behaviour of TiC Particulate Reinforced Ti–6Al–4V Composite. Materials Science and Engineering A. 1998, 256:301~307
    82 Z.Y. Ma, S.C. Tjong, S.X. Li. Creep behavior of TiBw/Ti in Situ Composite Fabricated by Reactive Hot Pressing. Metallurgical and Materials Transactions A. 2001, 32:1019~1022
    83 Z.Y. Ma, R.S. Mishra, S.C. Tjong. High-temperature Creep Behavior of TiC Particulate Reinforced Ti–6Al–4V Alloy Composite. Acta. Materialia. 2002, 50:4293~4302
    84 S. Ranganath, R.S. Mishra. Steady State Creep Behaviour of Particulate-Reinforced Titanium Matrix Composites. Acta Materialia. 1996, 44(3):927~935
    85 W.J. Lu. Creep Rupture Life of in-Situ Synthesized (TiB+TiC)/Ti Matrix Composites. Scripta Materialia. 2001, 44:2449~2455
    86 C.J. Boehlert, C.J. Cowen, S. Tamirisakandala, D.J. McEldowney, D.B. Miracle. In Situ Scanning Electron Microscopy Observations of Tensile Deformation in a Boron-modified Ti-6Al-4V Alloy. Scripta Materialia. 2006, 55:465~468
    87 R.W. Evans, B. Wilshire. Creep of Metals and Alloys. The Institute of Metals, 1985.
    88 G. Liu, D. Zhu, J.K. Shang. Enhanced Fatigue Crack Growth Resistance at Elevated Temperature in TiC/Ti-6Al-4V Composite: Microcrack-induced Crack Closure. Metallurgical and Materials Transactions A. 1995,26:159~166
    89 T. Saito, H. Takamiya, T. Furuta. Thermomechanical Properties of P/MβTitanium Metal Matrix Composite. Materials Science and Engineering A. 1998, 243: 273~278
    90 W.O. Soboyejo, W. Shen, T.S. Srivatsan. An Investigation of Fatigue Crack Nucleation and Growth in a Ti-6Al-4V/TiB in Situ Composite. Mechanics of Materials. 2004, 36:141~159
    91 S. Dubey, Y. Li, K. Reece, W.O. Soboyejo, R.J. Lederich. Fatigue Crack Growth in an In-situ Titanium Matrix Composite. Materials Science and Engineering A. 1999, 266:303~309
    92 P.Q. La, J.Q. Ma, Y.T. Zhu, J. Yang, W.M. Liu, Q.J. Xue, R.Z. Valiev. Dry-Sliding Tribological Properties of Ultrafine-Grained Ti Prepared by Severe Plastic Deformation. Acta Materialia. 2005, 53:5167~5173
    93 M. Long, H.J. Rack. Friction and Surface Behavior of Selected Titanium Alloys during Reciprocating-Sliding Motion. Wear. 2001, 249:158~168
    94 K.G. Budinski. Tribological Properties of Titanium Alloys. Wear. 1991, 151:203~217
    95 W. Takahashi, M. Okada. Properties of Carbide Dispersed Titanium Alloy Prepared by VAR Melting. Metallurgy and Technology of Practical Titanium Alloys. Chiba, Japan. 1993:371~376
    96 J.A. Philliber, F.C. Dary, F.W. Zok, C.G. Levi. Flow and Creep Behavior of Ti/TiB In-situ Composites. In: P.A. Blenkinsop, W.J. Evans, H.M. Flower, eds. Titanium'95 Science and Technology, vol. 3, Proceedings of the Eighth World Conference on titanium. The Institute of Metals, London,. 1996:2714~2721
    97 A.I.H. Committee. ASM Handbook, Vol.3, Alloy Phase Diagrams. ASM International, Materials Park, 1992
    98山口正治,马越佑吉.金属间化合物.丁树深译.科学出版社, 1991:77~79
    99张二林,金云学,曾松岩.碳含量对自生TiC增强钛基复合材料组织的影响.材料工程. 2000, (6): 7~12
    100 S. Riaz, H.M. Flower. Changes inδ-TiC Stoichiometry During Heat Treatment of TiC Reinforced Ti Composites. Materials Science and Technology. 1999, 15(12):1341~1348
    101 S. Riaz, H.M. Flower, D.R.F. West. Characteristics of TiC Dendrites in as Solidified Ti–Al–C Alloys. Materials Science and Technology. 2000, 18(8): 941~943
    102 S. Riaz, H.M. Flower, D.R.F. West. Phase Relationships Involving TiC and Ti3AlC(P Phase) in Ti-Al-C System. Materials Science and Technology. 2000, 16(9):984~992
    103 D. Hu, T.P. Johnson, M.H. Loretto. Titanium Precipitation in Substoichometric TiC Particles. Scripta Metallurgica et Materialia. 1994, 30(8):1015~1020
    104 D. Hu, M.H. Loretto. Coarsening of TiC Particles in a Rapidly Solidified Ti6Al4V-TiC Composite. Journal of Alloys and Compounds. 1994, 209(1):167~ 173
    105 W.L. Wu, Y. Liu, D.Z. Yang. Microstructure of TiC Dendrites Reinforced Titanium Matrix Composite Layer by Laser Cladding. Journal of Materials Science Letters.2003, 22:1169~1171
    106 S. Abkowitzi, P. Weihrauch. Advanced Powder Metal Titanium Alloy Matrix Composite Reinforced with Ceramic and Intermetallic Particles. In: H. Froes, I. Caplan, eds. Titanium'92 Science and Technology. TMS, Warrendale, P.A. 1992, 3:2511~2520
    107 T. Saito, T. Furuta, T. Yamaguchi. A Low Cost Titanium Alloy Matrix Composite. Proceedings of the Symposium on Recent Advances in Titanium Metal Matrix Composites, Rosemont, IL, US, 1994. TMS, Warrendale, P.A. 1995: 33~44
    108 T. Saito. The Automotive Application of Discontinuously Reinforced TiB-Ti Composites. JOM. 2004, 56(5):33~36
    109郝士明.材料热力学.化学工业出版社, 2003:34~36
    110梁英教,车荫昌.无机物热力学数据手册.东北大学出版社, 1993:16~425
    111 T. Nukami, M.C. Flemings. In-situ Synthesis of TiC Particulate-Reinforced Aluminnum-Matrix Composites. Metallurgical and Materials Transactions A. 1995, 26(7):1877~1884
    112 C. Tong, H.S. Fang. Al-TiC Composites in situ Processed by Ingot Metallurgy and Rapid Solidification Technology: Part I. Microstructural Evolution. Metallurgical and Materials Transactions A. 1998, 29(3):875~891
    113谭敦强,黎文献.石墨与Al-Ti合金反应生成TiC粒子的机理.铸造. 2002, 51(5):280~282
    114 D. Miracle, H. Lipsitt. Mechanical Properties of Fine-Grained Substoichiometric TiC. Journal of the American Ceramic Society. 1983, 66(8):592~596
    115 E.K. Storms. Refractory Materials: vol. 2, The refractory carbides. Academic Press, New York, 1971:6~9
    116 D. Miracle, H. Lipsitt. Mechanical Properties of Fine-Grained Substoichiometric TiC. Journal of the American Ceramic Society. 1983, 66(5):92~96
    117 D. Brodkin, Processing-Structure-Properties Relations in Titanium Carbide-Titanium Boride Composites Fabricated by Transient Plastic Phase Processing. PhD thesis, Drexel University. 1996:239~241
    118 C. Badini, G. Ubertalli, D. Puppo, P. Fino. High Temperature Behaviour of a Ti-6Al-4V/TiCp Composite Processed by BE-CIP-HIP Method. Journal of Materials Science. 2000, 35:3903~3912
    119 J. Bursik and G.C. Weatherly. Ordering of Substoichiometricδ-TiCx Phase in Ti-V-C Alloys. Physica Status Solidi A. 1999,174:327~335
    120 L. Cao, H.W. Wang, C.M. Zou, Z.J Wei. Microstructural Characterization and Micromechanical Properties of Dual-phase Carbide in Arc-melted Titanium Aluminide Base Alloy with Carbon Addition. Journal of Alloys and Compounds. 2009, 484:816-821
    121 D.G. Konitzer, M.H. Loretto. Microstructural Assessment of Ti6Al4V-TiC Metal-Matrix Composite. Acta Metallurgica. 1989, 37(2):397~406
    122 P. Wanjara, R.A.L. Drew, J. Root. Evidence for Stable Stoichiometeric Ti2C at the Interface in TiC Particulate Reinforced Ti Alloy Composites. Acta Materialla. 2000, 48:1443~1450
    123 M.Y. Gu, W.J. Jiang, G.D. Zhang. Quantitative Analysis of Interfacial Chemistry in TiC/Ti Composite Using Electron-Energy-Loss Spectroscopy. Metallurgical Transactions A. 1995, 26(2):1595~1597
    124 W.J. Lu, D. Zhang, X.N. Zhang, R.J. Wu, T. Sakata, H. Mori. Microstructural Characterization of TiC in In Situ Synthesized Titanium Matrix Composites Prepared by Common Casting Technique. Journal of Alloys and Compounds. 2001, 327: 248~252
    125胡汉起.金属凝固原理.第二版.机械工业出版社, 2000:52~57
    126刘林,傅恒志. Ni基高温合金中MC碳化物生长的理论形貌.材料科学进展. 1989, 3(5):396~400
    127孙建荣.熔体原位合成法制备TiC颗粒增强钢基复合材料显微组织及性能研究.东南大学博士学位论文. 2001:24~37
    128 H.Y. Wang, Q.C. Jiang, X.L. Li, J.G. Wang. In Situ Synthesis of TiC/Mg Composites in Molten Magnesium. Scripta Materialia. 2003, 48:1349~1354
    129 Y. Choi, S.W. Rhee. Journal of Materials and Science. 1993, 28: 66~69.
    130闵乃本.晶体生长的物理基础.上海科学技术出版社, 1982:419~420, 134~137
    131金云学,李庆芬,曾松岩. TiC/Ti-6Al复合材料中TiC的微观形态及其形成机制.铸造技术. 2004, 25(1): 47~49
    132陈瑶,王华明. MC碳化物非平衡凝固液/固界面结构及生长机制.金属学报. 2003, 39(3):254~258
    133王维夫,王茂才,孙凤久.激光熔覆钛基复合涂层中原位自生TiC的形态特征与生长机制.金属热处理. 2009, 34(12):65~69
    134 W.P. Liu, J.N. DuPont. Fabrication of Functionally Graded TiC/Ti Composites byLaser Engineered Net Shaping. Scripta Materialia. 2003, 48:1337~1342
    135 R.L. Sun, D.Z. Yang, L.X. Guo, S.L. Dong. Laser Cladding of Ti-6Al-4V Alloy with TiC and TiC+NiCrBSi Powders. Surface and Coatings Technology. 2001, 135:307~312
    136姚连增.晶体生长基础.中国科学技术大学出版社, 1995:360~361
    137 P. Hartman, Crystal Growth: An Introduction. Amsterdam, North-Holland, 1973:367~369
    138仲维卓,华素坤.晶体生长形态学.科学出版社, 1999:205~206
    139刘林.高温合金中MC碳化物晶体生长特性及难熔元素的作用机制研究.西北工业大学博士学位论文. 1985:72~75
    140 Y. Choi, S. Rhee. Effect of Carbon Sources on the Combustion Synthesis of TiC. Journal of Materials Science. 1995, 30:4637~4644
    141 C. Benoit, H. Ellen, K. Nikhil, V. Dominique, D. Sylvan. TiC Nucleation/Growth Processes during SHS Reactions. Powder Technology. 2005, 157:92~99
    142 D.R. Ni, L. Geng, J. Zhang, Z.Z. Zheng. Effect of B4C Particle Size on Microstructure of In Situ Titanium Matrix Composites Prepared by Reactive Processing of Ti-B4C System. Scripta Materialia. 2006, 55:429~432
    143 B.P. Bewlay, M.F.X. Gigliotti. Dissolution Rate Measurements of TiN in Ti-6242. Acta Materialia. 1997, 45:357~370
    144В.Д.萨多夫斯基.钢的组织遗传性.冶金工业出版社, 1980:3~14
    145刘相法,边秀房,刘玉先.铝合金中Fe相的形态的遗传性及球化机制的研究.金属学报, 1997, 10:1063~1068
    146张作贵,刘相法,边秀房. Al-Ti-B中间合金的遗传性研究与推广应用.铸造. 2000, 10:758~763
    147 R.J. Van Thyne, H.D. Kessler. Influence of Oxygen, Nitrogen, and Carbon on the Phase Relationships of the Ti-Al System. Journal of Metals. 1954, 2:193~199
    148 O.O. Bilous, L.V. Artyukh, A.A. Bondar, T.Ya. Velikanova, M.P. Burka. Effect of Boron on the Structure and Mechanical Properties of Ti–6Al and Ti–6Al–4V. Materials Science and Engineering A. 2005, 402:76~83
    149 H.R. Ogden, R.I. Jaffee. The Effect of Carbon, Oxygen and Nitrogen on the Mechanical Properties of Titanium and Titanium alloy. TML(Titanium Metallurgical Laboratory) Report, No. 20, Battelle Memorial Institute, Columbus, Ohio, 1955:17~18
    150 J.W. Martin, R.D. Doherty. Stability of Microstructure in Metallic Systems. Cambridge University Press, Cambridge(UK), 1976:1~5
    151潘金生,材料科学基础.清华大学出版社, 584~585
    152 V.I. Ivchenko, M.I. Lesnaya, V.F. Nemchenko, T.Ya. Kosolapova. Some Physical Properties of Ternary Compounds in the System Ti-Al-C. Powder Metallurgy and Metal Ceramics. 1976, 15:367~369
    153周彦邦.钛合金铸造概论.航空工业出版社, 2000:5~6, 61~63
    154 N. Nomura, K. Yoshimi, T. Konno, S. Hanada. Fracture Toughness Improvement of TiC by Nb and Mo Precipitates. Journal of Materials Science Letters. 2000, 19:1879~1881
    155 V.V. Kristic, P.S. Nicholson, R.G. Hoagland. Toughening of Glasses by Metallic Particles. Journal of the American Ceramic Society. 1981, 64(9):499~504
    156李荣久.陶瓷-金属复合材料,冶金工业出版社, 1995:119~121
    157 A.A.M. da Silva, J.F. dos Santos, T.R. Strohaecker, Microstructural and Mechanical Characterisation of a Ti6Al4V/TiC/10p Composite Processed by the BE-CHIP Method, Composites Science and Technology. 2005, 65:1749~1755
    158 S. Abkowitz. P/M Titanium Composite Casting. U.S. Patent. 1999, No.5, 897, 830
    159 K.U. Kainer. Metal Matrix Composites. Wiley-VCH, 2003:20~24
    160 T.W.克莱因, P.J.威瑟斯.金属基复合材料导论.余永宁,房志刚译.冶金工业出版社. 1996:67~82, 61~65
    161王金友,葛志明,周彦邦.航空用钛合金.上海科学技术出版社. 1985: 218~219, 315~316
    162 H.L. Cox. The Elasticitu and Strength of Paper and other Fibous Materials. British Journal of Applied Physics. 1952, 3:73~79
    163 V.C. Nardone, K.M. Prewo. On the Strength of Discontinuous Silicon Carbide Reinforced Aluminum Composites. Scripta Metallurgica. 1986, 20:43~48
    164 V.C. Nardone. Assessment of Models Used to Predict the Strength of Discontinous Silicon Carbide Reinforced Aluminum Alloys. Scripta Metallurgica. 1987, 21:1313~1318
    165赵玉涛,戴起勋,陈刚.金属基复合材料.机械工业出版社, 2007: 193~195
    166 R. Kolhe, C.Y. Hui, E. Ustundag, S.L. Sass. Residual Thermal Stresses and Calculation of the Critical Metal Particle Size for Interfacial Crack Extension in Metal-Ceramic Matrix Composites. Acta Materialia. 1996, 44(1):279~287
    167秦蜀懿,张国定,王文龙.颗粒形状及基体热处理对SiCp/LD2断裂韧性的影响.稀有金属. 1999, 23(3):181~184
    168秦蜀懿,刘澄,陈嘉颐,王文龙,张国定. SiCp/LD2复合材料的微区力学性能.中国有色金属学报. 1999, 9(4): 748-751
    169束德林.金属力学性能.机械工业出版社, 1999:199~200

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700