土体液化诱发的侧向扩展对桩基的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自20世纪60年代始,特别是在1964年日本新泻大地震、美国阿拉斯加大地震造成广泛的饱和砂土地基液化失效、大规模结构破坏后,人们对地震破坏的严重性给予了更广泛的重视,对土体因地震而失稳破坏的原因、机理、土体的动力特性、饱和砂土液化等问题展开了广泛的研究。混凝土桩由于能较好地适应各种地质条件和各种荷载情况,并具有承载力大、稳定性好、沉降小等特点被广泛应用于高层建筑、重型厂房、桥梁、港口码头等深基础中。随着我国国民经济的快速发展,大规模基础设施的兴建,有关地震以及由此引发的土体液化诱发的侧向扩展对桩基础影响的研究,自然便成为现阶段岩土工程领域的一个重要研究方向。
     论文通过收集前人资料、理论分析以及计算机程序模拟,首先对土体液化诱发的侧向扩展对桩基影响的研究现状作了归纳和总结;并根据单桩或群桩对土体液化诱发的侧向扩展的响应主要取决于桩自身的特性、土体液化后的性能、桩土间的相互作用以及液化层内土的变形模式等因素,对砂土的液化及不排水抗剪特性、液化土体水平位移导致桩体变形的力学分析模型、桩的弯曲性能、单桩或群桩对土体液化诱发的侧向扩展的响应等方面进行了深入系统的研究,得出了一些有益的结论。
     以非线性旋转弹簧来模拟桩体弯曲时的非线性材料响应,以弹簧滑块单元来模拟桩土间的非线性相互作用,包括表面摩擦力和侧向压力,建立了一个数学分析模型以评价桩体因土体水平位移而产生的应力和应变。
     相关试验结果表明,砂土在单调荷载及循环荷载作用下将出现应变软化特性,表现为液化或有限液化。在砂土液化后施加循环荷载或静荷载,其变形特性是不一样的。砂土液化再固结体体变主要取决于循环荷载过程中试样结构的破坏程度,而其中的绝大部分发生在有效应力接近于零的阶段。
     通过对混凝土、钢筋的力学分析和钢筋混凝土的抗震性能分析,建立了一个模拟钢筋混凝土桩和预应力混凝土桩的抗弯强度和弯曲变形的模型,并对作用在桩上的侧向力特征、桩体的破坏机理加以阐述。
     通过分析桩体材料、桩径、轴向荷载、土体位移大小、桩土相对刚度对桩体响应的影响,对混凝土桩在侧向力作用下的破坏机理和响应特征进行了研究,并对造成桩体破坏所需的最大土体位移进行了量化确定。在给定桩的轴向荷载、桩土系统的特性长度、液化土层厚度的条件下,根据文中建立的分析模型,由程序模拟计算得出桩体破坏后的形状。模拟结果比较真实地的反映了地震过程中因土体液化侧向扩展而导致破坏的桩基特性,说明文中相关的分析、假设及模型的选择是合适的。
     对群桩在土体液化诱发的侧向扩展下的响应进行了初步分析讨论。根据一定的假设条件,建立了一个简化分析模型,对群桩间的土体剪切刚度变化对桩的影响进行阐述,对群桩桩帽连接对群桩的影响进行分析,并对群桩与单桩的性能进行了比较。对2×2、3×3、4×4群桩的分析结果表明,当群桩受到液化土体的侧向扩展作用时,桩间土体的刚度起着重要的作用,群桩内土体的剪切刚度的大小会影响到土体流动条件的形成。
Much attention has been paid to the severe damages caused byearthquake, and then extensive researches have been carried out onfailure mechanism, soil dynamic characteristic, saturated sandliquefaction. For its proper accommodation to various deposit and loadcondition, characterized as large bearing capacity, high stability, lowsedimentation, reinforced concrete piles have been widely used in thedeep foundation of high building, heavy-loaded workshop, bridge, wharf,etc. With the rapid development of our national economy, studies on theeffect of liquefaction-induced lateral spreading on pile foundation willnaturally make it become an important research aspect in the fields ofpresent geotechnical engineering.
     By means of collecting previous information, theoretical analyzing,computer modeling, a summary was made on the research status ofliquefaction induced lateral spreading. Based on the fact that single pileor pile group's response to lateral spreading mainly depends on its owncharacteristics, soil's liquefied characteristics, soil-pile interaction, soil'sdeflection mode, systemic researches were carried out on soil'sliquefaction and undrained characteristics, mechanics analysis mode onpile deflection, pile's bending performance, single pile and pile group'sresponse to lateral spreading. Some useful conclusions were reached afterthat.
     Using nonlinear rotational spring to model pile material's nonlinearbending response, spring slider element to model nonlinear interactionbetween soil and pile, including superficial fraction and lateral pressure, amodel was established to evaluate the strain and stress caused byhorizontal displacement.
     Related experiments show that sand will exhibit its softeningcharacteristics under the monotonic load and cyclic load by liquefactionor limit liquefaction. Different properties will be obtained for liquefiedsoil under cyclic load and static load. Volume change due to thereconsolidation of liquefied soil will mainly depend on the structuraldamage degree, most was completed when effective stress is approaching zero.
     By analyzing concrete and steel mechanics, reinforced concreteaseismatic properties, a model was established to simulate reinforcedconcrete pile and prestressed pile's bending capacity and deflection. Andthen lateral load's characteristics acting on the pile failure mechanismwere specified.
     By analyzing the effect of pile's material, diameter, axial load,magnitude of soil displacement, relative stiffness of soil-pile, the failuremechanism and response of pile to lateral force acting on the pile wereillustrated, the maximum soil displacement required to caused pile failurewas quantified. Under the given axial load, characteristic length of soilpile system, depth of liquefiable layer, pile's damaged shape can bemodeled with the established model. The proper reflection of modelingresult to pile's actual failure condition proved that the carried analysis,related assumption and the chosen model are correct.
     Primary study were carried out on the pile group's response toliquefaction induced lateral spreading. Upon a simplified assumption, amodel was established, mainly to explain the effect of shear stiffness ofsoil, which lies within the piles, on pile group. Analysis were also carriedout on the effect of pile group's cap connection. Results from analyzing 2×2, 3×3, 4×4 pile group indicate that stiffness of soil plays a veryimportant role when the pile group are subjected to the lateral spreading,its magnitude will affect the formation of soil flow condition.
引文
[1] 刘惠珊,乔太平.可液化土中桩基设计计算方法的探讨[J].工业建筑,1983(4):19-24
    [2] 谢定义.土动力学[M].西安:西安交通大学出版社,1988,102-110
    [3] Reese LC, Cox WR, Analysis of Laterally Loaded Piles in Sand [J]. Proc. OTC 2080, 1974, 473-483
    [4] 孟上九.地震载荷下土体残余应变及孔压研究综述[J].世界地震工程,2001,17(3):49-53
    [5] 林志刚.地震液化侧向变形对桩基受力影响及其防治措施[J].福建地质,1997,23(1):213-217
    [6] Yasuda, S., Nagase, H. The Mechanism and a Simplified Procedure for the Analysis of Permanent Ground Displacement Due to Liquefaction. Soils And Foundation[J]. Japanese Society of Soil Mechanics and Foundation Engineering, 1995, Vol. 32, No. 1, 149-160
    [7] Zahn F. A., Park, R., and Priestley. M.J.N., Flexural Strength and ductility of Circular Hollow Reinforced Concrete Columns without Confinement on Inside Face [J]. ACI Structural Journal, American Concrete Institute, 1990, Vol. 87, 156-166
    [8] Vidic, S., Kulhawy, F. H.. Experimental Study of Drained Behavior of Drilled Shafts During Static Inclined Loading [M]. Report TR-101131, EPRI, CA., Dec. 1991
    [9] Rambergm W. and Osgood, W.. Description of Stress-Strain Curves by Three Parameters, National Advisory Committee for Aeronautics [J]. Technical Note, No. 902, July, 1943
    [10] Examples of Non-linear Analysis of Reinforced Concrete Structures with DIANA. HERON [J], Delft University of Technology, Delft, Netherlands, Vol. 22, No. 3, 1987
    [11] 刘汉龙.土动力学与岩土地震工程研究进展[M].河海大学学报,1999,27(1):6-15
    [12] 赵成刚,尤昌龙.饱和砂土液化与稳态强度[J].土木工程学报,2001,34(3):90-96
    [13] Seed H. B., Lee K L. Liquefaction of saturation during cycling loading. Journal of the Soil Mechanics and Foundation Division, ASCE, 1966, 92(SM6): 105-134
    [14] Ishihara, K., Tatsuoka, F, & Yasuda, S. Undrained deformation and liquefaction of sand under cyclic stress [J], Soil and Foundation, 1975, 15(7): 29-44
    [15] 黄文熙.砂基和砂坡的液化研究.水工建设中的结构力学与岩土力学问题[M].北京:水力电力出版社,1984
    [16] 吴世明.土动力学现状与展望[J].岩土工程学报,1998,120(3):125-131
    [17] 林建华,黄群贤.地震液化诱发地面大位移的计算分析[J].华侨大学学报,1994,25(2):156-160
    [18] 任金刚,王玉芳.饱和砂土地震液化研究方法概述[J].海河水利,2006(3),51-53
    [19] 高广运,张晓哲.地基土地震液化数学分析的新思路[J].上海地质,2003(4):25-29
    [20] 苏栋,李相菘.可液化土中单桩地震响应的离心机试验研究[J].岩土工程学报,1999,28(4):423-427
    [21] 滕凯.地震液化后砂土应力应变关系的预测研究模型[J].岩土工程界.2000,6(1),53-55
    [22] Seed, H. B.. A simplified Procedure for Evaluating Soil Liquefaction Potential [J]. Proc, ASCE, 1971, 93(SM9)
    [23] 韩英才.水平载荷作用下单桩的动力分析[J].地震工程与工程振动.1989(6),97-106
    [24] 韩英才.水平载荷作用下群桩动力特性的研究[J].土木工程学报,1992(10):24-33
    [25] 徐莜在,阎兴华.桩基水平振动的特性.地基与工业建筑抗震[M].北京:地震出版社,1984,109-118
    [26] Brown. D., Reese. L.. Cyclic lateral Loading of a Large Scale Pile Group [J]. J Geotech. Eng. ASCE, 1988, 114(11): 1261-1276
    [27] Liu. L. and Dobry. R.Effect of liquefaction on lateral response of piles by centrifuge model texts, National Center for Earthquake Engineering Research Bulletin[J], 1995, 9(1): 7-11
    [28] 王志良,王余庆.不规则循环剪切荷载作用下土的粘塑性模型[J].岩土工程学报,1980,2(3):66-72
    [29] Bouwkamp, J. G. and Stephen, R. M.. Large Diameter Pipe Under Combined Loading. Transportation Engineering Journal [J], ASCE, 1973, Vol. 99, 512-537
    [30] Chow.Y.K.. Axial and Lateral Response of Pile Group Embeded in Nonhomogeneous Soils. International Journal for Numerical and Analytical Methods in Geomechanics [J], 1986, 11 (6): 621-638
    [31] Donnell, L. H., and Wan, C. C.. Effect of Imperfection on Buckling of Thin Cylinders and Columns Under Axial Compression [J], Journal of Applied Mechanics, 1950(17): 73-78
    [32]Duncan J. M.. and Chang, C-Y. . Nonlinear Analysis of Stress and Strain in Soils [J] Journal of the Soil and Foundations Division, ASCE, 1970, Vol. 96, 1629-1653
    [33]Fafitis, A. and Shah, S. P.. Prediction of Ultimate Behavior of Confined Concrete Columns Subjected to Large Deformations [J]. ACI Structural Journal, 1985, Vol. 82-4,423-433
    [34]Gilbert, R. I. and Warner, R. F. .Tensile Stiffening in Reinforced Concrete Slabs [J] Journal of Structural Division, ASCE, 1971,Vol. 104, 1885-1890
    [35]Hamada, M., Yasuda, S., Isoyama, R. .Study on Liquefaction-induced Permanent Ground Displacements [J] .Association for the Development of Earthquake Prediction, Toyko, Japan, 1986
    [36]Jamiolkowski. M. and Garassino.A. .Soil Modulus for Laterally Loaded Piles, Proceedings. 9th International Conference of Soil Mechanics and Foundation engineering [J], Specialty Session 10, Toyko, 1977,43-58
    [37]Kim, J. B. and Brungraber. R. J. .Full-scale Lateral Load Tests of Pile Groups [J] Journal of the Geotechnical Enginering Division, ASCE, 1976, Vol. 102, 87-105
    [38]Lin. C. S. and Scordelis.A. C, Nonlinear Analysis of R. C. Shells of General Form [J] Journal of the Structure Division, ASCE. Vol. 101, 1975, 523-538
    [39]Marzouk. H. M. and Hussein.A. . Experimental Investigation on the Behavior of High Strength Concrete Slabs [J] .ACI Structure Journal 1991, Vol. 88-6, 701-713
    [40]Meyersohn, W. D. and Miura, F. . Lateral Spread Effects on Reinforced Concrete Pile Foundations [J]. Proceedings, 5th U.S.-Japan Workshop on Earthquake Disaster Prevention for Lifeline Systems, 1992,173-196
    [41]Miura. F. and O'Rourke.T.D. . Nonlinear analysis of Pile Subjected to Liquefaction-induced Large Ground Deformation [J]. 3rd Japan-U.S. Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures for Soil Liquefaction, Technical Report NCEER 91-0001, 1991, 497-512
    [42]Nogami.T. and Paulson.S. K. .Winkler Soil Model for Axial Response Analysis of Pile Groups [J] .Proceedings, Symposium on Analysis and Design of Pile Foundations, San Francisco, 1984, 287-309
    [43]Ochoa. M. and O'Neill. M. W. . Lateral Pile Interaction Factors in Submerged Sands [J]. Journal of Geotechnical Engineering, ASCE, Vol. 115, 1989, 359-378
    [44] Pam Hoat Joen. and Park. R.. Simulated Seismic Load Tests on Prestressed Concrete Piles and Pile-pile cap Connections [J], PCI Journal 1990, 42-61
    [45] Prakash, S. Buckling Loads of fully Embeded Piles [J]. Computers and Geotecnics 1987, Vol. 4-2, 61-83
    [46] Prakhya. G.K.V. and Morley.C.T.. Tension-Stiffening and Moment-Curvature Relations of Reinforced concrete Elements [J]. ACI Structural Journal, Vol. 87-5, 1990, 597-605
    [47] Schilling.C. G.. Buckling Strength of Circular Tubes. Journal of the Structural Division[J], 1965 Vol. 91, 325-348
    [48] Scott, B.D.. and Park, R. Stress-strain Behavior of Concrete Confined by Overlapping Hoops at Low and High Strain Rates [J]. ACI Structural Journal, 1982 Vol. 79, 13-27
    [49] 王明洋,国胜兵.饱和砂土动力液化研究进展[J].解放军理工大学学报,2002,3(1):13-18
    [50] 吕西林,陈跃庆.结构-地基动力相互作用体系振动台模型试验研究[J].地震工程与工程振动,2000,20(4):20-29
    [51] Ting.J. and Scott R.. Static and Dynamic Lateral Group Action[J], Proc. 8th World Conf. Earthquake Eng., San Francisco, Vol. 3, 1984, 641-648
    [52] Chacko. M.. Analysis of Dynamic Soil-pile-Structure Interaction, M.S. Thesis [J], Univ. of California, Davis, 1995
    [53] 伍小平,孙利民,胡世德.振动台试验用层状剪切变形土箱的研制[J].同济大学学报,2002,30(7):781-785
    [54] Kubo.K.. Experimental Study of the Behavior of Laterally Loaded Piles [J]. Proc. 6th Intl. Conf. Soil Fdn. Eng., Montreal, Vol 2, 1965, 275-279
    [55] 张建民.地震液化后地基侧向变形对桩基础德影响[J].第八届土力学及岩土工程学术会议论文集,北京:万国学术出版社,1999,577-580
    [56] 汪闻韶.土的动力强度和液化特性[J].北京:北京:中国电力出版社,1997,1-169
    [57] 高玉锋,刘汉龙.残余强度对地震液化区地面大位移的影响[J].岩石力学与工程学报,2001,20(suppl),1162-1167
    [58] 王洪瑾,马奇国,周景星.土在复杂应力状态下的动力特性研究[J].水利学报,1996(4):57-72
    [59] Ishigara. K. Liquefaction and Flow Failure during Earthquake [J]. Geotechnique, 1993, 43(3): 351-415
    [60] Negussey D. and Islam M. S..Uniquess of Steady State and Liquefaction Potential [J]. Canadian Geotechnique Journal, 1994 31 (1): 132-139
    [61] Hadush.S.. Yashima. A.. Importance of Viscous Fluid Characteristic in Liquefaction-induced Lateral Spreading Analysis [J], Computer and Geotechnics, 2000, 27(3): 199-224
    [62] Shamoto. Y.. Zhang. J. and Tokimatus.K.. A New Approach to Evaluate the Post-liquefaction Permanent Deformation in Saturated Sand. Proceeding[J], Elevnth World Conference on Earthquake Engineering, Acapulco, Mexico, 1996
    [63] Bartlett. S. F. and Youd.T.L.. Empirical Analysis of Horizontal Ground Displacement Generated by Liquefaction Induced Lateral Spread.Tech[J]. Rep. NCEER92-0021, National Center for Earthquake Engineering Research, State University of New York, 1992
    [64] 张建明,时松孝次,田屋裕司.饱和砂土液化后的剪切吸收效应[J].岩土工程学报,1999,21(4):398-402
    [65] 刘小生,汪闻韶.饱和原状砂土的静动强度特性试验研究[J].水利学报,1991(11):41-46
    [66] 余湘娟,姜朴,魏松.砂土的稳态强度试验研究[J].河海大学学报.2001,29(1):50-54
    [67] 周云东,刘汉龙,高玉锋.砂土地震液化后大位移室内研究探讨[J].地震工程与工程振动,2002,22(1),152-157
    [68] 常亚屏.振动作用下砂土抗剪强度的试验研究[J].水利水电科学研究院论文集,水利电力出版社,1984,9-21
    [70] Shamoto. Y.. Zhang. J. and Goto.S. Mechanism of Large post-liquefaction Deformation in Saturated Sand [J], Soil and Foundation, 1997, 37(2): 71-80
    [71] 徐于成.饱和砂土应力应变控制试验动力特性的比较[J].同济大学学报,1999,27(1):38-42
    [72] Sheikh S.A. and Uzumeri. S.M., Analytical Model for Concrete confmement in Tied Columns [J]. Journal of the Structural Division, ASCE, 1982 Vol. 108, 2703-2722
    [73] Sheikh S.A. and Yhe C.C.. Analytical Moment-Curvature Relations for Tied Concrete Columns [J]. Journal of Structural engineering, ASCE, 1992 Vol. 118, 529-544
    [74] Trochanis A. M., and Christiano P.. Three-Dimensional Nonlinear Study on Piles [J]. Journal of Geotechnical Engineering, ASCE, 1991 Vol. 117-3, 429-447
    [75] 张建民.砂土的可逆性和不可逆性剪胀规律[J].岩土工程学报,2000,22(1):12-17
    [76] 刘汉龙,周云东.砂土地震液化后大变形特性试验研究[J].岩土工程学报,2002,24(2):142-146
    [77] 李广信,郭瑞平.土的卸载体缩与可恢复剪胀[J].岩土工程学报,2000,22(2):158-161
    [78] 汪闻韶.往返载荷下饱和砂土的强度、液化和破坏问题[J].水利学报,1980(1):14-27
    [79] 石兆吉,丰万玲.饱和砂土振后再固结体应变的试验研究[J].岩土工程学报,1989,11(13):43-51
    [80] 么印凡,谢定义.饱和砂土振后再固结变形规律的试验研究[J].工程抗震,1995,No.4,32-34
    [81] Bartlett S. F. and Youd T.L.. Case History of Lateral Spreads Caused by the 1964 Alaska Earthquake [J]. Case Studies of Liquefaction and Lifeline Performance During Past Earthquakes, Vol. 2, United States Case Histories, Tech. Report NCEER92-0002
    [82] Bolton M. D.. The Strength and Dilatancy of Sands [J]. Geotechnique, 1986, Vol. 36-1, 65-78
    [83] Guo Z. H. and Zhang X. Q.. Investigation of Complete Stress-Strain Deformation Curves for Concrete in Tension [J]. ACI Material Journal, 1987, Vol. 84-4, 278-285
    [84] 过镇海.混凝土的强度与变形[M].北京:清华大学出版社,1997
    [85] 张奇,过镇海.混凝土抗剪强度和剪切变形的研究[J].建筑结构学报,1992(5):17-24
    [86] 过镇海,张秀琴.反复载荷作用下混凝土的应力.应变全曲线的试验研究.清华大学论文集(钢筋混凝土结构的抗震性能)[M],北京:清华大学出版社,1981,38-53
    [87] 王传志,过镇海.二轴和三轴受压混凝土的强度试验[J].土木工程学报,1987,20(1):15-26
    [88] 揽瑞生,过镇海.定侧压下混凝土二轴受压变形特性的试验研究[J].土木工程学报,1996,29(2):28-36
    [89] 揽瑞生,过镇海.不同应力途径下混凝土多轴受压强度的试验研究.[J]清华大学论文集(混凝土力学性能的试验研究).北京:清华大学出版社,1996,52-64
    [90] 李伟政,过镇海.二轴拉压应力状态下混凝土的强度和变形试验研究[J].水利 学报,1991(8):51-56
    [91] 成文山.配置无明显屈服点钢筋的混凝土受弯构件截面弯矩及曲率分析[J].土木工程学报,1982,15(4):1-10
    [92] 林大炎,王传志.矩形箍筋约束的混凝土应力-应变全曲线研究[J].清华大学论文集(钢筋混凝土结构的抗震性能).北京:清华大学出版社,1981,19-37
    [93] 马宝民.具有不同箍筋形式的钢筋混凝土柱抗震性能的研究[D].清华大学硕士论文,1983
    [94] 张秀琴,过镇海.反复载荷下箍筋约束混凝土的应力-应变全曲线方程[J].工业建筑,1985(12):16-20
    [95] 鲍质孙.钢筋混凝土双向偏心受压构件的强度计算.建筑科学研究院主编.钢筋混凝土结构研究报告选集[M].北京:建筑工业出版社,1977,201-215
    [96] 抗剪强度计算研究组.钢筋混凝土的抗剪强度计算.建筑科学研究院主编.钢筋混凝土结构研究报告选集[M].北京:建筑工业出版社,1977,125-152
    [97] Bazant Z P等著,周氐等译.钢筋混凝土有限元分析[M].上海:河海大学出版社,1988
    [98] 沈聚敏,翁义军.钢筋混凝土构件的刚度和延性.清华大学论文集(钢筋混凝土结构的抗震性能)[M].北京:清华大学出版社,1981,54-71
    [99] 沈聚敏,翁义军.周期反复载荷下钢筋混凝土压弯构件的性能.清华大学论文集(钢筋混凝土结构的抗震性能)[M].北京:清华大学出版社,1981,72-95
    [100] 过镇海.混凝土受拉应力-变形全曲线的试验研究[J].建筑结构学报,1988(4):45-53

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700