饱和砂砾料液化及液化后变形与强度特性试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
饱和土体在地震等动荷载作用下发生液化及液化后大变形会对液化区的各种结构产生灾难性的破坏。以往对液化及液化后变形的研究主要是针对饱和砂土和粉土进行的。由于砂砾料的颗粒较大,透水性较好,传统的观念认为砂砾料为非液化土。然而,现场震害调查表明:饱和砂砾料在地震荷载作用下也会发生液化,大多数发生液化的砾石土中同时包含砂砾和砂土。由于试验设备、技术等原因,有关砂砾土动力特性问题的研究尚不充分,尤其是饱和砂砾土的液化特性的研究更是少见。迄今,在研究砂砾土液化时,常规做法是剔除实际砂砾土中的大颗粒,用剩余的颗粒成分(本文称为模拟料)代替实际砂砾土进行试验。论文结合国家自然科学基金“饱和砂砾土的液化特性及变形、强度参数的相关性研究”(No.50578029)和大连理工大学海岸和近海工程国家重点实验室研究基金“饱和砂砾土的液化特性研究”(No.LP0505),采用高精度中型动三轴仪对饱和砂砾料液化、液化后变形与强度特性、再固结体变特性及动强度、动剪切模量和阻尼比特性进行了深入研究。主要工作内容如下:
     分别利用中型(直径200mm)和小型(直径61.8mm)动三轴仪,针对论文中选定的砂砾料和剔除砂砾料中大于5 mm粒径颗粒并采用相似级配法得到的模拟料,对比研究二者在液化过程中的孔隙水压力和轴向应变的发展规律。着重比较了砂砾料和模拟料在振动荷载作用下孔压、应变发展模式的区别。建议了饱和砂砾料在循环振动荷载作用下孔压发展的经验模型,并给出了模型参数的取值范围。
     采用中型三轴仪,设计了适合研究饱和砂砾料液化后静力再加载的变形特性的试验方法,考察了相对密度、初始有效固结压力、液化安全率和循环动应力比等因素对饱和砂砾料液化后静力再加载变形特性的影响。结果表明:饱和砂砾料液化后静力再加载时其应力~应变关系与未经振动荷载作用的试样明显不同,可分为三个阶段:模量恢复段、模量稳定段和塑性流动变形阶段。相对于饱和砂土而言,砂砾料液化后不存在很大应变范围内抗剪强度近乎为零的现象。提出了确定液化后静力再加载试验曲线特征物理量的方法,该方法避免了确定特征物理量的随意性带来的主观误差,保证了物理量之间关系分析的准确性。基于试验结果,建立了可综合考虑初始有效固结压力、液化安全率和抗液化应力比等影响因素的饱和砂砾料液化后静力再加载应力~应变关系的三直线模型,并给出了参数确定方法。将模型添加到有限元程序中,对理想砂砾料坝进行了液化后变形分析,验证了模型的数值分析可行性。
     对饱和砂砾料振后再固结体变特性进行了试验研究,结果表明:初始固结压力对砂砾料振后再固结体变有明显影响,但不同初始固结压力下孔压比与再固结体变归一性良好。动荷载特性对再固结体变影响不大,再固结体变与荷载引起的最大剪应变有较好的相关性。随试样相对密度增大,再固结体变呈减小趋势。根据砂砾料试验结果和Ishihara对砂土的试验结果,提出了饱和砂砾料和饱和砂土液化后再固结体变的经验关系以及应用该经验关系预测土体液化后沉降的方法。
     对饱和砂砾料液化前后的动强度特性、动模量和阻尼比特性进行了试验研究。对饱和砂砾料的动强度、最大剪切模量与围压和相对密度的关系,动剪切模量和阻尼比与动剪应变的依赖关系进行了综合分析,并给出了相应的取值范围。为便于应用,建议了归一化动剪切模量和阻尼比与动剪应变依赖关系的取值范围和平均值曲线,给出了拟合公式的参数取值,并将其与Seed等和Kyle等对饱和砂砾料动力特性的研究结果进行对比。
     对排水条件下经过预振荷载作用的砂砾料试样进行了动强度试验,研究了预振荷载作用对动强度的影响;对液化后的砂砾料试样进行模量阻尼试验,分析了不同动应力比和液化安全率条件下液化后再固结砂砾料动模量和阻尼比变化规律。对饱和砂砾料静动强度参数相关性进行了初步的探讨,根据试验结果建议了归一化最大等效动剪切模量G_(dmax)/[F(e)σ_0]与归一化静强度qf/σ_0的线性经验关系。
Damages of structures may be caused by liquefaction and post liequefation deformation of saturated soil due to seismic load. The former researches of liquefaction and post liquefaction mostly aimed at saturated sand or silt sand. Due to biggrain size and high hydraulic conductivity, gravels and gravelly soils were once thought to be unliquefiable. However, the results of field earthquake investigation have shown that saturated sand-gravel composites may occur liquefaction during earthquake, and most liquefied gravelly soils comprise both sand and gravel. However, the study of dynamic properties, especially the liquefaction characteristic of saturated sand-gravel composites is not sufficient partly for the reason of test apparatus and technology. The present research is supported by the National Science Foundation Project of Study on Liquefaction and Relationship Between Parameters of Deformation and Strength of Saturated Sand-gravel Composites (No. 50578029) and the State Key Lab of Coastal and Offshore Engineering Foundation Project of Study on Liquefaction Characteristics of Saturated Sand-gravel Composites (No. LP0505), the liquefaction, post-liquefaction deformation and strength, reconsolidation volumetric, modulus and damping behavior of saturated sand-gravel composites are thoroughly investigated. The main contents of the current research are as follows:
     The development of axial strain and pore water pressure in sand-gravel composites and substituted sand during liquefaction is studied contrastively, by using of medium-scale and small-sacal DS-2T dynamic triaxial apparatus respectively, and scalping the oversized gravel particles in sand-gravel composites and taking similar gradation method to get substituted sand. The development of shear strain and pore water pressure in sand-gravel composites and substituted sand specimens due to cyclic loading are compared principally. A pore pressure model of sand-gravel composites is suggested based on test results, and the range of parameters of the model is given.
     A static reloading on liquefied specimens test method is put forward and a series tests are processed. In this study, the effects of relative density, initial consolidated pressure, liquefaction safety and cyclic stress ratio are thoroughly investigated. The results show that liquefied sand-gravel specimens reloading behavior is distinctly different from those without dynamic loading. The reloading stress-strain curve is composed of three parts approximately, which is stiffness-recovering part, stiffness-stabilising part and plastic flow part. The phenomenon of zero stiffness in a relatively large strain range, which often occurs in liquefied sand, is not observed for sand-gravel specimens. A method is given to define the characteristic parameters, which avoids the uncertainty of the method by Yasuda and assures the accuracy of parameters analysis. A three-linear static stress-strain model of liquefied sand-gravel composites is established based on test results, in which initial consolidated pressure, liquefaction safety and cyclic stress ratio can be concerned synthetically. The method of defining model parameters is presented. This model is added into an FEM program and is used to analyze the deformation behavior of a simple sand-gravel dam after earthquake and liquifaction. The numerical results show that this model is competent.
     A series of tests are performed to illustrate the reconsolidation volumetric behavior of sand-gravel composites after dynamic loading. The results show that, there is a good correlativity between the reconsolidation volumetric strain, the pore water pressure ratio, and the maximal double amplitude shear strain induced by dynamic loading, though the initial effective consolidation pressure has a great effect on the reconsolidation volumetric strain. The reconsolidation volumetric strain is not affected by the characteristic of dynamic loading and reduces with the increase of specimen relative density. Based on the test results of sand-gravel and sand by Ishihara, an experiential relation of reconsolidation volumetric strain of sand-gravel and sand is suggested. The application method of the experiential relation is given for predicting the ground settlement.
     A number of tests are progressed to investigate the modulus and damping characteristics of saturated sand-gravel composites, and the effect factors such as relative density and initial consolidated pressure are studied. The varying ranges and average curves of the normalized dynamic shear modulus and damping ratio versus dynamic shear strain are proposed, which are compared with those of Seed and Kyle. The parameters range of formula for evaluating the dynamic shear modulus is proposed on the basis of experimental results.
     Undrained dynamic strength tests are performed on sand-gravel specimens after cyclic preloading under drained condition. The results show that the liquefaction resistance of sand-gravel increases with cyclic preloading. A number of tests are accomplished to investigate the modulus and damping characteristics of liquefied sand-gravel composites. The correlation of dynamic and static parameters of sand-gravel is discussed briefly. An experiential linear relationship between G_(dmax)/[F(e)σ_0] and q_f/σ_0 is suggested.
引文
[1] Seed H B, Lee K L. "Liquefaction of saturation during cyclic loading". Journal of the Soil Mechanics and Foundation Division, ASCE, 1966, 92(SM6):105-134.
    [2] Ishihara K, Tatsuoka, F. & Yasuda` S. "Undrained deformation and liquefaction of sand under cyclic stress". Soils and Foundations, 1975, 15(7):29-44.
    [3] Tatsuoka F, Ishihara K. "Yielding of sand in triaxial compression tests". Soils and Foundations, 1974, 14(2):63-76.
    [4] Oda M. "Deformation mechanism of sand in triaxial compression tests". Soils and Foundations, 1972, 12(4):4-63.
    [5] The committee on soil dynamics of the geotechnical engineering division. Definition of terms related to liquefaction. J. GED,ASCE, 1978,104(GT9): 1197-1200.
    [6] Ishihara K. Liquefaction and flow failure during earthquake. Geotechnique, 1993,43(3):351-415.
    [7] 汪闻韶.土的动力强度和液化特性.北京:中国电力出版社,1996.
    [8] 汪闻韶.土的液化机理.水利学报,1981,(5).22-34
    [9] Ping-Sien Lin, Chi-Wen Chang. Damage investigation and liquefaction potential analysis of gravelly soil. Journal of the Chinese Institute of Engineering, 2002,25(6):543-554.
    [10] 汪闻韶.士工抗震研究进展.岩土工程学报,1993,15(6):80-82.
    [11] Seed H B, ldriss I M, Arango I. Evaluation of liquefaction potential using field performance data, J. GED, ASCE, 1983(GT3):458-482.
    [12] Castro G, Poulos J. Factors affecting liquefaction and cyclic mobility. J. GED., Proc. ASCE, 1977,103(GT6):501-516
    [13] 谢定义.饱和砂土体液化的若干问题.岩土工程学报,1992,14(3):90-98.
    [14] Ishihara K, Sodekawa M, Tanaka Y. Effects of overconsolidation on liquefaction characteristics of sands containing fines. Dynamics Geotech. Testing, 1978(STP654):246-264.
    [15] 汪闻韶.土体液化与极限平衡和破坏的区别和关系.岩土工程学报.2005,27(1):1-10.
    [16] Seed H. B, Idriss I. M. Analysis of Soil Liquefaction Niigata Earthquake. Journal of The Soil Mechanic of Foundations Division, ASCE, 1967, 93(SM3): 83~108.
    [17] Wong R. T., Seed H. B., Chan C.K. Cyclic Loading Liquefaction of Ravelly Soils. Journal of The Soil Mechanics and Foundation Division, A SCE, 1975,101 (SM6):571~583.
    [18] Peacock W. H., Seed H. B. Sand Liquefaction Under Cyclic Loading Simple Shear Conditions. Journal of The Soil Mechanic and Foundations Division, ASCE, 1968.94(SM3):689~708.
    [19] H. Kishida, Characteristics of liquefied sands during Mino-Owari, Tohnankai and Fukui earthquakes. Soils and Foundations. 1969,75-92.
    [20] Ishihara K, and Koseki J. Discussion on cyclic shear strength of fines-containing sands. Earthquake Geotechnical Engineering, Proc., Ⅶ Int. Conf. on Soil Mechanics, A. A. Balkema, Amsterdam, 1989,101-106.
    [21] Chung Y C, Wong I H. Liquefaction Potential of Soils with Plastic Fines. Soil Dynamics and Earthquake Engineering Conference, Southampton, 1982:13-15
    [22] Liang R W,Bi X H,Wang J C.Effect of Clay Particle Content Liquefaction of Soil.Proceedings,12th World Conference On Earthquake Engineering,Auckland,New Zealand.2000,1560-1565.
    [23] 胡定,张立明.土工抗震试验与分析.成都:成都科技大学出版社,1991.
    [24] 汪闻韶.土液化中的几点发现.岩土工程学报,1980,2(9):1-10.
    [25] Seed R B, Cetin K O, Moss R E S, et al. Recent Advances in soil liquefaction engineering: A unified and consistent framework. White Paper for Keynote Presentation, 26th Annual ASCE Los Angeles Geoteehnical Spring Seminar, Long Beach, 2003,1-71.
    [26] 陈国兴,胡庆兴,刘雪珠.关于砂土液化判别的若干意见,土动力学与岩土地震工程,中国建筑工业出版社,刘汉龙,2002:119-133.
    [27] Seed H B, Idriss I M, Simplified procedure for evaluating soil liquefaction potential. Journal of the Soil Mechanics and Foundations Division, ASCE, 1971, 97(9): 1249-1273.
    [28] 中化人民共和国建设部.GB50011-2001,建筑抗震设计规范,北京:中国建筑工业出版社,2001
    [29] 黄文熙.砂基和砂坡的液化研究.水利水电技术,1962,(1):38-39.
    [30] 汪闻韶.饱和砂土振动孔隙水压力试验研究.水利学报,1962,(2):36-47.
    [31] Dmevich V P, Hardin B O, Shippy D J. Modulus and damping of soils by the resonant-column method. Dynamic Geotech. Testing, 1978(STP654):91-125.
    [32] X. S. Li, W. L. Yang. Effects of Vibration History on Modulus and Damping of Dry SandJ. Geotech. and Geoenvir. Engrg., 1998, 124(11):1071-1081.
    [33] Fakharian K, Evgin E. Cyclic Simple-Shear Behavior of Sand-Steel Interfaces under Constant Normal Stiffness Condition. J. Geotech. and Geoenvir. Engrg., 1997,123(12):1096-1105.
    [34] Saada A S. On Cyclic Testing with Thin Long Hollow Cylinders. Advances in the Art of Testing Soils Under Cyclic Conditions, ASCE,Michigan, 1985:1-28.
    [35] Dobry R, Hen'era A V, Mohamad R, et al. Liquefaction Flow Failure of Silty Sand by Torsional Cyclic Tests. Advances in the Art of Testing Soils Under Cyclic Conditions, ASCE,Michigan, 1985:29-50.
    [36] Bhatia S, Schwab J, Ishibashi I. Cyclic Simple Shear, Torsional Shear and Triaxial—A Comparative Study. Advances in the Art of Testing Soils Under Cyclic Conditions, ASCE,Michigan, 1985:232-254
    [37] MATSUDA T, GOTO Y. Studies on experimental technique of shaking table test for geotechnical problems. Proceeding of 9th World Conference on Earthquake Engineering, Tokyo, 1988: 837-842.
    [38] 黄春霞,张鸿儒,隋志龙等.饱和砂土地基液化特性振动台试验研究.岩土工程学报,2006.28(12):2098-2103.
    [39] Arulanandan K, Anandrajah A, Abghari A. Centrifuge modeling of soil liquefaction susceptibility. Proc of ASCE, GE,1983, 109(3): 281-300.
    [40] Seed H B, Tokimatsu K, Harder, L F, et al. Influence of SPT Procedures in soil liquefaction resistance evaluations. Journal ofGeotech. Engrg., ASCE, 1985, 111(12):1425-1445.
    [41] NCEER. Proceedings of the NCEER workshop on evaluation of liquefaction resistance of soils. Youd, TL, Idriss, IM, Newyork, 1997.
    [42] Schmertmann J H, Palacios A. Energy dynamics of SPT. J. Geotech. Eng. Div.,1979, 105(8): 909-926.
    [43] Skempton A W. Standard penetration test procedures and the effects in sands of overburden pressure, relative density, particle size, ageing and overconsolidation. Geotechnique, 1986,36(3): 425-447.
    [44] Abou-matar H, Goble G G. SPT dynamic analysis and measurements. J. Geotech. Geoenviron. Eng., 1997,123(10): 921-928.
    [45] Youd T L, et al. Liquefaction resistance of soils: Summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. J. Geotech. Geoenviron. Eng.,2001, 127(10): 817-833.
    [46] Robertson P K, Campanella R G. Liquefaction potential of sands using the CPT. J. Geotech. Eng., 1985, 111(3):384-403.
    [47] Seed H B, De Atba P M. Use of SPT and CPT tests for evaluating the liquefaction resistance of sands. Proc., In-Situ Test, ASCE, 1986, New York, 281-302.
    [48] Shibata T, Teparaksa W. Evaluation of liquefaction potentials of soil using cone penetration tests. Soils Found., 1988, 28(2): 49-60.
    [49] Stark Y D, Olson S M. Liquefaction resistance using CPT and field case histories. J. Geotech. Eng., 1995, 121(12), 856-869.
    [50] Juang C H, Chen C J, Tang W H, et al. CPT-based liquefaction analysis, Part 1: Determination of limit state function. Geotechnique, 2000, 50(5):583-592.
    [51] Sheng-Yao Lai, Wen-Jong Chang, Ping-Sien Lin. Logistic Regression Model for Evaluating Soil Liquefaction Probability Using CPT Data. J. Geotech. Geoenviron. Engrg., 2006, 132(2):694-704.
    [52] De Alba P, Baldwin K, Janoo V, Roe G, Celikkol B. Elastic wave velocity and liquefaction potential. Geotech. Test. J., 1984,7(2): 77-88.
    [53] Tokimatsu K, Uchida A. Correlation between liquefaction resistance and shear wave velocity. Soils Found., 1990,30(2):33-42.
    [54] Jian-Hua Wang, Kathryn Moran, Christopher D P. Correlation between Cyclic Resistance Ratios of Intact and Reconstituted Offshore Saturated Sands and Silts with the Same Shear Wave Velocity. J. Geotech. and Geoenviron. Engrg., 2006,132(12): 1574-1580.
    [55] Jennifer A, Lenz, Laurie G. Baise Spatial variability of liquefaction potential in regional mapping using CPT and SPT data. Soil Dynamics and Earthquake Engineering, 2007, 27(7):690-702.
    [56] Andrus R D, Stokoe K H. Liquefaction Resistance of Soils From Shear-Wave Velocity.J.. Geotechni..Geoenviron. Enginrg.,2000,126(11):1015-1025
    [57] 夏唐代,颜可珍.石中明等.地基剪切波速与抗剪强度的关系研究.岩石力学与工程学报.2004.23(s1):4435-4437.
    [58] 柯瀚,陈云敏,周燕国等.动态三轴试验确定砂土抗液化强度.土木工程学报,2004.37(9):48-54.
    [59] 柯瀚,陈云敏.改进的判别砂土液化势的剪切波速法.地震学报,2000,22(6):637-644.
    [60] 陈国兴,张克绪,谢君斐.以剪切波速为指标的液化判别方法及其适用性.哈尔滨建筑大学学报,1996,29(1):97-103.
    [61] Viggiani G, Atkinson J H. Interpretation of bender element tests. Geotechni, 1995,45(1): 149-154.
    [62] Nakagawa K, Soga K, Mitchell J K. Pulse transmission system for measuring wave propagation in soils. J. Geotech. and Geoenviron. Engrg.,1996, 122(4):302-308.
    [63] Jovicic V, Coop M R, Simic M. Objective criteria for determining Gmax from bender element. Geotechniqu, 1995,46(2):357-362.
    [64] 王建华,程国勇,张立.一种在三轴压力室内测试土样剪切波速的新装置.天津大学学报,2004,37(2):152-156.
    [65] 黄博,殷建华,陈云敏等.压电陶瓷弯曲元法测试土样弹性剪切模量.振动工程学报,2001,14(2):155-160.
    [66] Harder L F, Boulanger R. Application of the becker penetration test for evaluating the liquefaction potential of gravelly soils. Proc. NCEER workshop on evaluation of liquefaction resistance of soils, NEEER-97-0022.
    [67] Youd T L, Idriss M. quefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils. J. Geotech. Geoenvir. Engrg. 2001,127(4), 297-313.
    [68] 何广讷,朱范宇,张业民.场地砂土地震液化的模糊聚类分析.地震工程与工程振动,1989,9(4):83-91.
    [69] 何广讷,郭莹.粉土液化的模糊综合评判方法.地震工程与工程振动,1988,8(3);48-56.
    [70] 崔杰,门福录,沈世杰.以剪切波速为宗量的一种砂土地震液化的不确定性判别法.地震工程与工程振动,1997,17(3):91-99.
    [71] 陈国兴,李万明.基于径向基函数神经网络模型的砂土液化概率判别方法.岩土工程学报,2006,28(3):301-305.
    [72] Juang C H, Rosowsky D V, Tang W H. Reliability-based method for assessing liquefaction potential of soils. J. Geotech. Geoenviron. Engrg., ASCE,1999,125(8):684-689.
    [73] 汪明武,罗国煜.可靠性分析在砂土液化势评价中的应用.岩土工程学报,2000,22(9):29-31.
    [74] 洪登明,骆筱菊.用模糊数学判别地基土的液化.勘察科学技术,1994,(3):13-17.
    [75] 张小敏.模糊模式识别在砂土液化势评价中的应用.西部探矿工程,2003,8(9):17-20.
    [76] Y.R. Chen, S.C. Hsieh, J.W. Chert, C.C. Shih. Energy-based probabilistic evaluation of soil liquefaction. Soil Dynamics and Earthquake Engineering, 2005, 25(1):55-68.
    [77] M S Rahman, Jun Wang. Fuzzy neural network models for liquefaction prediction. Soil Dynamics and Earthquake Engineering, 2002, 22(8):685-694.
    [78] Gob A T C. Seismic liquefaction potential assessed by neural networks. J. Geotech.Engrg.,ASCE, 1994,120(9): 1467-1480.
    [79] 汪明武,金菊良,李丽.基于实码加速遗传算法的投影寻踪方法在砂土液化评价中的应用.岩石力学与工程学报,2004,(4):99-102.
    [80] 石兆吉,顾宝和,张荣祥.地震液化判别与评价的专家系统.工程勘察,1997,(5):5-8.
    [81] Adel M Hanna, Derin U, Gokhan Saygili. Neural network model for liquefaction potential in soil deposits using Turkey and Taiwan earthquake data. Soil Dynamics and Earthquake Engineering, 2007,27(6):521-540.
    [82] Hardin B O, Drnevich V P. Shear modulus and damping in soils: measurement and parameter effects. Journal of the Soil Mechanics and Foundation Engineering Division, 1972, 98(6):603-624.
    [83] 沈珠江.一个计算砂土液化变形的等价粘弹性模型.第四届全国土力学及基础工程学术会议论文集.北京:建筑工业出版社,1986.
    [84] 陈生水,沈珠江.钢筋混凝土面板堆石坝的地震永久变形分析.岩土工程学报,1990,12(3):66-72.
    [85] 黄文熙.水工建设中的结构力学与岩土力学问题.北京:水利电力出版社,1984.
    [86] Seed H B, Philippe D, Martin J L. Pressure changes during soil liquefaction. Journal of Geotechnical Engineering Division, ASCE, 1976, 102(GT4):323-346.
    [87] 徐志英,沈珠江.地震液化的有效应力二维动力分析方法.华东水利学院学报,1981,9(3):1—14
    [88] Finn W D L, Lee K W, Martin G R .An effective stress model for liquefaction .JGED, 1977, 103(6):517-534
    [89] 石桥.孔隙水压力上升机理与土的液化.见:地基基础译文集.第1集.北京:中国建筑工业出版社,1979.97—104
    [90] 王志良,王余庆,韩靖宇.不规则循环荷载作用下土的粘弹塑性模型.岩土工程学报,1980,2(3):10-20.
    [91] 何广呐.砂土振动孔隙水压力的研究.水利学报,1983(8):49-54.
    [92] Ishihara K. Undrained deformation and liquefaction of sand under cyclic stress. Soil and Foundation, 1975,15(1):13-28.
    [93] Mardin G R, Finn W D L, Seed H B. Fundamentals of liquefaction under cyclic loading. Journal of the Geotechnical Engineering Division, 1975,101 (5):423-438.
    [94] Youd T L. Densification and shear of sand during vibration. Proc ASCE, 1970,96(SM3):115-134.
    [95] 曹亚林,何广呐,林皋.土中振动孔隙水压力升长程度的能量分析法.大连工学院学报,1987,26(3):83-90.
    [96] 何广讷.土工的若干新理论研究与应用.北京:水利水电出版社,1994.
    [97] 谢定义,张建民.往返荷载下饱和砂土强度变形瞬态变化的机理.土木工程学报,1987,20(3):57-70.
    [98] 谢定义,张建民.周期荷载下饱和砂土瞬态孔隙水压力的变化机理与计算模型.土木工程学报,1990,23(2):51-60.
    [99] 于濂洪,王波.饱和粉土振动孔隙水压力的试验研究[J].大连大学学报,1999,20(4):59-62.
    [100] 于洪治.饱和粉土振动孔隙水压力发展规律[A].吴世明.第四届全国土动力学学术会议论文集.杭州:浙江大学出版社,1994,107-110.
    [101] 冯秀丽,叶银灿,马艳霞,等.动荷载作用下海底粉土的孔压响应及其动强度.青岛海洋大学学报,2002,32(3):429-433.
    [102] 曹宇春,王天龙.上海粉土液化特性及孔压模型的试验研究[J].上海地质,1998,67(3):60-64.
    [103] 陈国兴,刘雪珠.南京粉质黏土与粉砂互层土及粉细砂的振动孔压发展规律研究.岩土工程学报.2004.26(1):79-82
    [104] Seed H B, Idriss I M. Soil moduli and damping factors for dynamic response analysis, EERC, Report No.70-10, U. C. Berkeley, Calif., 1970.
    [105] Iwasaki T, Yatsuoka F, Takagi Y. Shear moduli of sands under cyclic torsional shear loading. Soils and foundations, 1978,20(1):45-59.
    [106] Hardin B O, Drnevich V P. Shear modulus and damping in soils: Measurement and parameter effects. Journal of soil mechanics and foundations, ASCE, 1972, 98(SM6):603-624.
    [107] Hardin B O, Drnevich V P. Shear modulus and damping in soils: Design equation and curves.Journal of soil mechanics and foundations, ASCE, 1972, 98(SM7):667-692.
    [108] Sun J I, et al. Soil moduli and damping ratios for cohesion soils, EERC, Report No.88-15, U. C. Berkeley, Calif., 1988.
    [109] Zen K, Higuchi Y. Prediction of vibratory shear modulus and damping ratios for cohesion soils. Proc. 8th WCEE, San Francisco, 1984, 3:23-30.
    [110] Seed H B, Wong R T, Idriss I M, et al. Moduli and damping factors for dynamic analyses of cohessionless soils. J. Geotechnical Engineering, ASCE, 1986,112(11): 1016-1032.
    [111] Vucetic M. Cyclic threshold shear strains in soils. Journal of Geotechnical Engineering, ASCE, 1994,120(12) :2208-2228.
    [112] Vucetic M, Dobry R. Effect of soil plasticity on cyclic response. Journal of Geotechnical Engineering, ASCE, 1991,117(1):89-107.
    [113] Kagawa T. Moduli and damping factors of soft marine clays. Journal of Geotechnical Engineering, ASCE, 1992,118(9): 1360-1375.
    [114] Yu, Peiji. Soil moduli and damping factors for dynamic analyses of cohesionless soils: discussion. Journal of Geotechnical Engineering, ASCF, 1988, 114(8):954-957.
    [115] 吴世明.非饱和无黏性土的动剪切模量.岩土工程学报,1985,7(6):33-41.
    [116] Sherif M A, lshihara I, Gaddah A H. Damping ratio for dry sands. Journal of the Geotechnical Engineering Division, ASCE, 1977,103(GT7):743-756.
    [117] Teachavorasinskun T. Stiffness and Damping of sands in Torsion Shear. Proc. 2nd. Int. Conf. on Recent Advances. Geotechnical Earthquake. Engineering & Soil Dynamics, 1991, 1(40): 101-105.
    [118] Seed, H B, Wong R T, Idriss I M, and Tokimatsu K. Moduli and damping factors for dynamic analyses of cohesionless soils. J. Geotech. Engrg., ASCE, 1986,112(11):1016-1032.
    [119] Kyle M Rollins, Evans M D, Nathan B, et al. Shear Modulus and Damping Relationships for Gravels. J. Geotech. and Geoenvir. Engrg., ASCE,1998,124(5):396-405.
    [120] 孔宪京,娄树莲,邹德高等.筑坝堆石料的等效动剪切模量与等效阻尼比.水利学报,2001,(8):20-25.
    [121] Seed H B, Lee K L, Idriss I M. Dynamic analysis of slide in the lower San Femando dam during the earthquake of Feb. 9, 1971 ,JGED, 1975,101 (9):889-912.
    [122] Mejia L H, Seed H B. Three dimensional dynamic response analysis of earth darris. Report EERC-81 -15,1987.34-46.
    [123] Finn W D L. State-of-the-art of geotechnical earthquake engineering practice. Soil dynamics and Earthquake Engineering,2000,20(s): 1-15.
    [124] Finn W D L, Lee K W, Martin G R. An effective stress model for liquefaction. J. Geotechnical Engineering Division, ASCE,1977,103(6):517-533.
    [125] Finn W D, Byrne P M, Martin G R. Seismic response and liquefaction of sands. Journal of the Geotechnical Engineering Division, ASCE, 1976, 102(8): 841-857.
    [126] 沈珠江.砂土动力液化变形的有效应力分析方法.水利水运科学研究,1982,4:22-32.
    [127] Biot M A Theory of propagation of elastic waves in a fluid-saturated porous solid, I, low frequency rang. J Acoust Soc Am, 1956, 28(2): 168-178.
    [128] 李向维,李相约.饱水孔隙介质的祸合波动问题.应用数学和力学,1989,10(4):309-714.
    [129] Zienkiewicz O C. Dynamic behavior of saturated porous media; the generalized biot formulation and its numerical solution. International Journal for Numerical and Analytical Methods in Geomechanics, 1984, 8:71-96.
    [130] Idriss I M, Lysmer J, Hwang R, Seed H B. QUAD-4: a computer program for evaluating the seismic response of soil structures by variable damping finite element procedures. Rep. No. EERC 73-16,Uni. of California, Berkeley, 1973.
    [131] Lysmer J, Udaka T, Tsai C. F, Seed H. B. FLUSH: a computer program for approximate 3-d analysis of soil-structure interaction problems. Rep. EERC 75-30, Earthquake Engineering Research Center, University of California, Berkeley, 1975.
    [132] 刘汉龙,陆兆臻,钱家欢.土石坝非线性随机反应及动力可靠性分析.河海大学学报,1996.24(3):105-109.
    [133] 刘汉龙,孟庆生,钱家欢.土石坝非线性非平稳随机地震反应分析.陈至达,现代数学和力学. 北京:中国矿业大学出版社,1994.57-62.
    [134] Finn W D L, Yogendrakumar M. TARA-3FL: a program for analysis of flow deformation in soil structures with liquefied zones. Soil dynamics group. Department of Civil Engineering, University of British Columbia, Vancouver, BC,1989.
    [135] Kawai T. Summary report on the development of the computer program DIANA-Dynamic interaction approach and nonlinear analysis. Science University of Tokyo,Tokyo, 1985.
    [136] Chan A H C. A unified finite element solution to static and cynamic geomechanics problem:(PhD dissertation). Wales: University college of Swansea,1988.
    [137] Chan A H C. User's manual for DIANA-SWANDYNE Ⅱ. Report of Department of Civil Engineering, Glasgow University, 1990.
    [138] Prevost J H. DYNEFLOW: a nonlinear transient finite element analysis program. Report of Civil Engineering, Princeton University, 1985.
    [139] Muraleetharan K K, Mish K D, Yogachandran C, et al. DYSAC2: Dynamic soil analysis code for 2-dimentsional problems. Department of Civil Engineering, University of California, Davis, California, 1988.
    [140] Anandarajah A. HOPDYNE-A finite element computer program for the analysis of static, dynamic and earthquake soil and soil-structure systems. The Johns Hopkins University, Baltimore, Maryland, 1990.
    [141] Oka F, Yashima A. User's manual of 2-dimensional liquefaction program, LIQCA. Department of Civil Engineering, Gifu University, Japan, 1990.
    [142] Li X S, Wang Z L, Shen C K. SUMDES: A nonlinear procedure for response analysis of horizontally-layered sites subjected to multidirectional earthquake loading. Department of Civil Engineering, University of California, Davis, 1992.
    [143] Ming H Y, Li X S. SUMDES2D: A two dimensional fully-coupled geotechnical earthquake analysis program. Report to the Department of Civil Engineering, the Hong Kong University of Science and Technology, Hong Kong, 2001.
    [144] Arulanandan K, Scott R F. VELACS-verification of numerical procedures for the analysis of soil liquefaction problems. Balkema, 1993.
    [145] 刘惠珊,翁鹿年,王承春.近年地震中的液化侧向扩展与岸坡滑塌.第三届全国土动力学学术会议论文集.上海:同济大学出版社,1990.429~434.
    [146] 中华人民共和国冶金工业部.构筑物抗震设计规范(GB 50191293).北京:中国计划出版社,1993.18
    [147] Hamada M, Yasuda, Isoysma R, et al. Observation of permanent displacements induced by soil liquefaction. Proc JSCE, 1986, 3(6): 211-220.
    [148] Bartlett S F,Youd T L. Empirical prediction of lipuefaction induced later spresd.J of Geotech Engrg,ASCE, 1995,121 (4):316-329.
    [149] TokimatsuK,YoshimiY.EmpiricalcorrelationofsoilliquefactionbasedonSPTN2valueandfinescontent[J].SoilsandFoundations,1983,23(4):56-74.
    [150] 张建民.地震液化后地基大变形的实用预测方法.第八届土力学及岩土工程学术会议论文集[C].北京:万国学术出版社,1999.573-577.
    [151] Dobry R, Taboada V, Liu L. Centrifuge modeling ofLiquefaction effects during earthquakes, Keynote lectureat In Tokyo 1995: 1st Int. Conf. Earthq. Geotech. Engrg., Tokyo: Balkema, 1995. 1291-1 324.
    [152] Towhata I, Sasaki Y, Tokida K et al. Prediction of per2manent displacement of liquefaction ground by means ofminimun energy principle. Soils and Foundations, 1992, 32 (3): 97-116.
    [153] 陈育民,刘汉龙,周云东.液化及液化后砂土的流动特性分析.岩土工程学报,2006,28(9):1139-1143
    [154] Finn W D L. Post-liquefaction flow deformation. Pak, Yamamura, eds. Soil Dynamics and Liquefaction 2000.ASCE, Geotechnical Special Publication, 2000. 108-122.
    [155] 顾宝和,张荣祥,石兆吉.地震液化效应的综合评价.工程地质学报,1995,(3):1-10.
    [156] Lee K L, Albaisa A. Earthquake induced settlements in saturated sands. Journal of the Geotechnical Engineering Division, ASCE, 1974,100(GT4);387-406.
    [157] Seed H B. Pore pressure development under offshore gravity structures. JGED, ASCE, 1977,103(12): 757-768.
    [158] 石兆吉,丰万玲,郁寿松.饱和砂土振后再固结体应变的变化规律.岩土工程学报,1989,(1):55-61.
    [159] Vaid Y P, Thomas J. Liquefaction and post liquefaction behavior of sand .Journal of Geotechnical Engineering,ASCE, 1995,121(2): 163-173.
    [160] 么印凡,谢定义,王士凤.饱和砂土振后再固结变形规律的试验研究工程抗震,1995,(4):32-34.
    [161] Nagase H, Ishihara K. liquefaction-induced compaction and settlement of sand during earthquake. Soils and Foundations, 1988, 28(1):66-76.
    [162] 周云东,刘汉龙,丁晓峰等.饱和砂土液化后再固结体变特性研究.河海大学学报,2003,31(4):403-406.
    [163] Tokimatsu K, Seed HB. Evaluation of settlements in sands due to earthquake shaking. Journal of Geotechnical Engineering, ASCE, 1987, 113(8):861-878.
    [164] Ishihara K, Yoshimine M. Evaluation of settlements in sand deposits following liquefaction during earthquake. Soils and Foundations, 1992, 32(1): 173-188.
    [165] Ishihara. Soil Behavior in Earthquake Geotechnic. New York: Oxford University Press Inc., 1996.
    [166] Kiku H, Tsujino S. Post liquefaction characteristic of sand. 11th World Conf. on Earthquake Engineering, 1996,Mexico.
    [167] 安田進,吉田望,安達健司等.液状化に伴う流动の简易評価法.土木学会論文集,NO.638/Ⅲ-49:71-89,1999.
    [168] 安田進,吉田望,安達健司等.液状化に伴う地盤の大变形の简易予测方法.土と基礎,1999,47(6):29-32.
    [169] 安田進,吉田望,规矩大羲等.液状化に伴う残留变形解析手法の河川堤防への適用.第25回地震工学研究発表会演概要集,81-384,1999.
    [170] Yasuda S, Yoshida N, Masuda T, et al. Stress-strain relationships of liquefied sands. Proc. Of 1st Int. Conf. on Earthquake Geotechnical Engineering, 811-816,1995.
    [171] #12
    [172] Yasuda S, Nagase H, Kiku H, Uchida Y. Countermeasures Against the Permanent Ground Displacement due to Liquefaction. Soil Dynamics and Earthquake Engineering, 1991,11:341-350.
    [173] Yasuda S, Nagase H, Kiku H, Uchida Y. The mechanism and a simplified prodedure for analysis of permanent ground displacement due to liquefaction, Soils and Foundations, 1992,32(1):149-160.
    [174] Shamoto Y, Sato M, Zhang J M. Simplified estimation of earthquake-induced settlements in saturated sand deposits [J]. Soils and Foundations, 1996, 36(1): 39-50.
    [175] Shamoto Y, Zhang J M. Evaluation of seismic settlement potential of saturated sandy ground based on concept of relative compression. Soils and Foundations, 1998, 38(S2):57-68.
    [176] Shamoto Y, Zhang J M, Goto S. Mechanism of large post-liquefaction deformation in saturated sands. Soils and Foundations, 1997, 37 (2): 71-80.
    [177] Sharnoto Y, Zhang J M, Tokimatsu K. New methods for evaluating large residual post-liquefaction ground settlement and horizontal displacement. Soils and Foundations, 1998, 38(S2): 69-84.
    [178] Shamoto Y, Zhang J M, Tokimatsu K. New charts for predicting large residual post-liquefaction ground deformation. Soil Dynamics and Earthquake Engineering, 1998 (17): 427-438.
    [179] 张建民.砂土的可逆性和不可逆性剪胀规律.岩土工程学报,2000,22(1):12-17.
    [180] 张建民,王刚.评价饱和砂土液化过程中小应变到大应变的本构模型.岩土工程学报,2004,26(4):546-552.
    [181] 王刚.砂土液化后大变形的物理机制和本构模型研究:(博士学位论文).北京:清华大学,2005.
    [182] 张建民,王刚.砂土液化后大变形的机理.岩土工程学报,2006,28(7):835-840.
    [183] 高玉峰,刘汉龙,朱伟.地震液化引起的地面大位移研究进展.岩土力学,2000,21(3):294-298.
    [184] 周云东,刘汉龙,高玉峰等.砂土地震液化后大位移室内实验研究探讨.地震工程与工程震动,2002,22(1):152-157.
    [185] 刘汉龙,周云东,高玉峰.砂土地震液化后大变形特性实验研究.岩土工程学报,2002,24(2):142-146.
    [186] 国胜兵,潘越峰.王明洋等.爆炸地震波荷载下饱和砂土液化有效应力法分析.岩石力学与工程学报,2005,24(S2):5705-5711.
    [187] Wong R T, Seed H B, Chan C K. Cyclic loading liquefaction of gravelly soils. Proc. ASCE, J. GED, 1975,101(GT6):571-583.
    [188] Banerjee N G, Seed H B, Chan C K. Cyclic behavior of dense coarse-grained materials in relation to dams. Rep. No. UCB/EERC-79/13, 1979.
    [189] 汪闻韶,常亚屏,左秀泓.饱和砂砾料在振动和往返加荷下的液化特性.水利水电科研究院科学研究论文集.第23集,北京:水利电力出版社,1986.195-203.
    [190] 刘令瑶,李桂芬,丙东屏.密云水库白河主坝保护层地震破坏及砂砾料振动液化特性.水利水电科研究院科学研究论文集.第8集,北京:水利电力出版社,1982.46-54.
    [191] Hynes M E. Pore water pressure generation characteristics of gravels under undrained cyclic loadings: ( PhD dissertation). Berkeley: University of California, Berkeley, 1988.
    [192] Evans M D, Seed H B, Seed R B. Membrane compliance and liquefaction of sluiced gravel specimens. Journal of Geotechnical Engineering, ASCE, 1995, 118(6): 856-872.
    [193] Evans M D, Zhou S P. Liquefaction behavior of sand-gravel composites..loumal of Geotechnical Engineering, ASCE, 1995, 121(3): 287-298.
    [194] 刘惠珊.关于砾质土液化特性问题的讨论.第五届全国土动力学学术会议论文集,大连,1998:155-160.
    [195] 常亚屏,王昆耀,陈宁.关于一个饱和砂砾料液化性状的试验研究.第五届全国土动力学学术会议论文集.大连,1998:161-166.
    [196] 王昆耀,常亚屏,陈宁.饱和砂砾料液化特性的试验研究.水利学报,2002,(2):37-41.
    [197] 徐斌,孔宪京,邹德高等.饱和砂砾料的振动孔压与轴向应变发展模式试验研究.岩土力学,27(6):925-928.
    [198] 徐斌,孔宪京,邹德高等.砂砾料液化机理与孔压特性的试验研究.东南大学学报,2005,35(SI):100-104.
    [199] 徐斌,孔宪京,邹德高等.砂砾料液化后变形与强度特性试验研究.岩土工程学报,2007,29(1):
    [200] 孔宪京,张涛,邹德高,等.中型动三轴仪的研制及微小应变测试技术的应用[J].大连理工大学学报,2005,45(1):79-84.
    [201] 邹德高,孔宪京,孙贺泉.大型三轴仪测试系统可视化采集软件开发.第七届全国土力学数值分析与解析方法讨论会.大连:大连理工大学出版社,2001
    [202] 张涛.中型动三轴仪的研制及城市垃圾土动力特性试验研究:(硕士学位论文).大连:大连理工大学.2004
    [203] SL237—006,土工试验规程.北京:中国水利水电出版社,1999.
    [204] 张建民,王建华.土动力学与土工抗震.第八届土力学与岩土工程学术会议论文集,北京,1999.
    [205] 汪闻韶.日本研究饱和砂土问题的新进展.水利水电科学研究院科学研究论文集,16:398-402.
    [206] 刘小生,汪闻韶,赵冬.饱和原状土的静、动力强度特性试验研究.水利学报,1991,(11):41-46.
    [207] 刘小生,赵冬,汪闻韶.原状结构对砂土动力变形特性的影响试验.水利学报,1993,(2):
    [208] Dobry R. Soil properties and earthquake ground response. Proceedings of the 10th European Conference on Soil Mechanics and Foundation Engineering, Florence,ltaly,4.
    [209] Mulilis J P, Seed H B, Chan C K, et al. Effects of sample preparation on sand liquefaction. Journal of ASCE, 1977, 103(GT2):91-108.
    [210] Tatsuoka F, Ochi K, Fujii S, et al. Cyclic undrained triaxial and torsional shear strength of sands for different sample preparation methods. Soils and Foundations, 1986,26:23-41.
    [211] 孙吉主,黄明利,汪稳.内孔隙与各向异性堆钙质砂液化特性的影响.岩土力学,2002,23(2):166-169.
    [212] 钱家欢,殷宗则.土工原理与计算.北京:中国水利水电出版社,1980.
    [213] 周云东.地震液化引起的地面大变形试验研究:(博士学位论文).南京:河海大学,2003.
    [214] 贾革续.粗粒土工程特性的试验研究:(博士学位论文).大连:大连理工大学,2003.
    [215] Ishihara K, Towhata I. Sand response to cyclic rotation of principal stress directions as induced by wave loads. Soils and Foundations, 1983, 23(4):11-26.
    [216] Wichtmann T, Niemunis A, et al. Correlation of cyclic preloading with the liquefaction resistance. Soil dynamics and Earthquake Engineering. 2005, 25(9):923-932.
    [217] Shibuya S, et al. Elastic Deformation Properties of Geomaterials. Soils and Foundations.1992, 32(3): 26~46.
    [218] 朱百里,沈珠江.计算土力学.上海:上海科学技术出版社,1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700