去氢吴茱萸碱在Alzheimer样tau蛋白过度磷酸化中的保护作用及其机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿尔茨海默病(Alzheimer’s disease,AD)是老年人常见的一种慢性进行性神经退行性疾病,目前针对AD的药物治疗效果不明显,仅对轻中度AD患者的痴呆症状有所改善或延缓痴呆进展,不能治愈或阻止疾病发展。由于AD的发病原因及机制没有完全清楚,研究开发出真正具有预防或治疗作用的药物将有广阔的前景和深远的意义。AD的主要神经病理学特征是大量形成以过度磷酸化的微管相关蛋白tau为主要成分的神经原纤维缠结(neurofibrillary tangles, NFTs)及由β-淀粉样多肽(β-amyloid, Aβ)组成的神经细胞间的大量老年斑(senile plaques,SP),tau蛋白过度磷酸化被发现是AD的早期改变,而且AD患者的临床痴呆程度仅与NFTs的数量密切相关,因此研究针对以tau蛋白过度磷酸化及其机制为靶点的药物可能是防治AD的有效方法。
     去氢吴茱萸碱(dehydroevodiamine, DHED)是从吴茱萸未成熟果实中提取的单体化合物生物碱。本研究主要目的是探讨DHED在wotmanni(nWT)及GF-109203X(GFX)引起的AD样病理变化模型中的药理作用及其机制。
     我们尾静脉注射给予DHED(6.25 mg/kg/day或12.5 mg/kg/day)或生理盐水7天,同时进行Morris水迷宫训练,第8天在大鼠侧脑室联合注射10μl浓度为100μM的PI3K特异性抑制剂wortmannin (WT)及PKC的特异性抑制剂GF-109203X (GFX)。侧脑室注射24h后进行Morris水迷宫测试检测大鼠空间记忆保留功能,水迷宫测试后取材进行免疫印迹及免疫组化检测。结果显示:
     1.DHED可改善WT/GFX引起的空间记忆保留障碍
     侧脑室注射WT/GFX 24h后,大鼠搜寻水迷宫平台的时间延长,搜寻轨迹杂乱,大鼠表现空间记忆保留障碍,预先给予DHED 7天可以明显缩短大鼠寻找平台的时间,搜寻策略也得以改善,由杂乱无章变成趋向式搜寻。结果表明预先给予DHED能有效改善因WT/GFX所致的大鼠空间记忆障碍。
     2. DHED可减轻WT/GFX引起的大鼠海马tau蛋白过度磷酸化侧脑室注射WT/GFX 24h后,免疫印迹检测tau蛋白磷酸化的抗体PHF-1及PS396显色增强,而识别非磷酸化位点的tau-1显色减弱,表明WT/GFX可以引起tau蛋白在Ser396/404及Ser199/202位点发生过度磷酸化,12.5 mg/kg/day的DHED可以减轻tau蛋白在PHF-1、PS396及tau-1位点的磷酸化,而低浓度6.25 mg/kg/day的DHED仅可减轻PS396位点的磷酸化。用R134d检测了总tau蛋白水平,各个实验组均无明显变化。免疫组织化学检测tau蛋白磷酸化情况,结果显示侧脑室注射WT/GFX 24h后,PHF-1在大鼠海马CA3区的阳性染色明显增强,而tau-1在海马CA3区的阳性染色明显减弱,表示WT/GFX可导致tau蛋白过度磷酸化,用DHED处理后,WT/GFX引起的PHF-1及tau-1的染色改变均明显减轻,表明DHED能减轻WT/GFX导致的tau蛋白在PHF-1及tau-1位点的过度磷酸化。
     3. DHED可减轻WT/GFX诱导的大鼠海马GSK-3β过度激活通过免疫印迹检测大鼠海马GSK-3β的免疫反应,尽管其总GSK-3β水平在各组均无明显变化,与对照组相比,注射WT/GFX后其非活性形式Ser9磷酸化的GSK-3β降低,预先给予DHED可增加Ser9磷酸化GSK-3β的水平,表明DHED能抑制WT/GFX所致的GSK-3β过度激活。
     为了进一步研究在细胞水平激活GSK-3β对tau蛋白过度磷酸化的影响以及DHED的保护作用,我们用不同浓度的DHED预处理野生型鼠成神经瘤(N2a)细胞株24h,然后用浓度为1μM的WT/GFX处理细胞1h。结果显示:
     1. DHED可减轻WT/GFX引起的N2a细胞tau蛋白过度磷酸化
     DHED 5、10μM预处理细胞24h均能明显减轻WT/GFX所致的tau蛋白在Ser396/404及Ser199/202位点过度磷酸化(p<0.01),两个浓度的DHED降低tau蛋白磷酸化的作用没有差别;单独用DHED处理细胞对tau蛋白磷酸化没有明显影响。
     2. DHED可减轻N2a细胞的GSK-3β过度激活
     通过免疫印迹检测细胞GSK-3β的免疫反应,与对照组相比,总GSK-3β水平在各组均无明显变化,1μM的WT/GFX处理1h后其非活性形式Ser9磷酸化的GSK-3β降低到41%(p<0.01);5、10μM的DHED预处理细胞24h均可逆转WT/GFX所致的Ser9磷酸化GSK-3β下降,分别上升到81%(5μM)及87%(10μM)(p<0.01),表明DHED能减轻WT/GFX激活的GSK-3β。免疫荧光染色发现WT/GFX处理后细胞的Ser9磷酸化GSK-3β显色减弱,而PHF-1的显色加强,用DHED 10μM预处理细胞24h可以明显逆转WT/GFX所致的变化。
     瞬时转染wtGSK-3β到N2a细胞后用10μM DHED处理24h。DHED可以降低N2a细胞过表达外源性GSK-3β的活性及抑制其引起的tau蛋白过度磷酸化,进一步证明DHED可以抑制GSK-3β的活性。
     3. DHED可以增加N2a细胞的Akt(PKB)磷酸化水平
     Akt是使GSK-3β的Ser9发生磷酸化的最重要的磷酸激酶,其通过Ser473及Thr308两个位点磷酸化得以激活。我们检测了N2a细胞的Akt磷酸化水平,与对照组相比,总Akt水平在各组均无明显变化,但1μM的WT/GFX处理1h后Akt在Ser473及Thr-308位点磷酸化水平降低(p<0.01);DHED预处理细胞24h可增加Akt在Ser473及Thr-308位点的磷酸化水平,说明DHED可以促进Akt激活。
     根据上述结果,我们得出以下结论,WT/GFX激活GSK-3β,从而导致tau蛋白过度磷酸化,DHED可以通过抑制GSK-3β活性从而降低tau蛋白的磷酸化,其抑制GSK-3β可能是通过激活Akt来实现。
Alzheimer’s disease is a common and progressive neurodegenerative disease in the eldly population. Current medications that have passed approval for treatment of AD seem to be able to produce modest symptomatic improvement in some of mild to moderate cases. None of the medications, however, appears to be able to cure AD or stop the disease progression. Because the etiology of AD is still unclear, the search for efficient drugs to prevent or treat AD is facing opportunity and will have nice prospect.
     Pathologically, AD is characterized by the formation of numerous intracellular neurofibrillary tangles (NFTs) and extracellular senile plaques (SPs) in the brain, which are respectively consisted of hyperphosphorylated tau andβ-amyloid (Aβ) peptide. Hyperphosphorylated tau is believed to be an early pathological event of AD and only the amount of NFTs is closely correlated with the clinical dementia degree of AD patients. Thus target the underlying pathogenic mechanisms of tau hyperphosphorylation in AD might be a potential therapeutic strategy for prevention or treatment of the diseae.
     Dehydroevodiamine (DHED) is a constituent of alkaloids isolated from the unripe fruit of a Chinese herb, namely Evodia rutaecarpa Bentham. In our present study, we have investigated the pharmacological effect of DHED on WT/GFX induced AD-like pathological models and its involved mechanism of the effection.
     The rats were injected through vena caudalis 6.25 mg/kg/day or 12.5 mg/kg/day of DHED or NS for 7 days. At the same time, the rats received water maze training. At the day 8, wortmannin (WT, a specific PI3K inhibitor) and GF-109203X (GFX, a specific PKC inhibitor) (100μM of each, total volume of 10μl) were co-injected into the left ventricle of the rats and the spatial memory retention was tested at 24 h after the brain injection. The samples were prepared for western blotting and immunocytochemistry research after the spatial memory retention test. The results are shown as follows.
     1. Effects of DHED on WT/GFX-induced spatial memory retention deficits of rats.
     It was shown that the latency increased significantly after the injection of WT/GFX, and pre-injection of DHED at both dosages significantly shortened the WT/GFX-induced increase of the latency. Instead of taking a tortuous swimming path to find the hidden platform as seen in WT/GFX-injected group, the pre-injection of DHED at both dosages significantly improved the searching strategy of the rats. These results suggest that pre-administration of DHED can effectively prevent the rats from WT/GFX-induced spatial memory deficits.
     2. Effects of DHED on WT/GFX-induced tau hyperphosphorylation in rat hippocampus.
     The immunoreactivity of PHF-1 and PS396 was enhanced and the immunoreactivity of tau-1 was decreased in WT/GFX-injected rats, suggesting that WT/GFX induces tau hyperphosphorylation at Ser396/404 (PHF-1 and PS396) and Ser199/202 (tau-1 reacts with non-phosphorylated tau). Pre-injection of DHED at 12.5 mg/Kg/day attenuated the WT/GFX-induced tau hyperphosphorylation at PHF-1, PS396 and tau-1 epitopes. When lower concentration of DHED (6.25 mg/Kg/day) was used, the attenuation of tau hyperphosphorylation was only seen at PS396 site but not at PHF-1 and tau-1 epitopes. We also tested the level of total tau using antibody R134d, but no significant difference was observed.
     The effect of DHED on WT/GFX-induced tau hyperphosphorylation was also studied by immunocytochemistry. In WT/GFX-injected rats, the immunoreaction of PHF-1 mainly in the mossy fibers of CA3 region of the hippocampus was enhanced, while the immunoreactivity of tau-1 in the mossy fibers of CA3 region was decreased, suggesting that WT/GFX induces tau hyperphosphorylation. Pre-injection of DHED significantly arrested the WT/GFX-induced tau hyperphosphorylation at PHF-1 and tau-1 epitopes.
     3. Effects of DHED on WT/GFX-induced overactivation of GSK-3βin rat hippocampus.
     we measured the total level and the activity-dependent Ser9-phosphorylated level of GSK-3βin the hippocampal extracts by western blotting. No obvious change was seen in total level of GSK-3βin WT/GFX-injected or DHED-preinjected rats. However, the level of Ser9-phosphorylated GSK-3β(p-S9-GSK-3β, representing the inactivated form of the kinase) was significantly decreased in WT/GFX-injected control group, and preinjection of DHED increased the level of the Ser9-phosphorylated GSK-3β. suggesting that the DHED could prevent GSK-3βfrom WT/GFX-induced overactivation.
     To further study the effect of DHED on tau phosphorylation and GSK-3βactivation in cell line, we pretreated the neuro2A (N2a) cells with different dose of DHED for 24h, and then treated 1μM each of WT and GFX for 1h. The main results are as followings:
     1. Effect of DHED on tau hyperphosphorylation induced by WT/GFX in N2a cells.
     Western blotting demonstrated that the immunoreactivity of tau Ser396/404 and Ser199/202 was significantly attenuated by 5 and 10μM DHED (p<0.01). No significant difference was observed between the two doses of DHED. The application of DHED alone did not change of tau phosphorylation level.
     2. Effect of DHED on overactivation of GSK-3βin N2a cells. We measured the total level and the activity-dependent
     Ser9-phosphorylated level of GSK-3βin N2a cells by western blotting. No obvious change was seen in total GSK-3βwith or without DHED. However, the level of Ser9-phosphorylated GSK-3β(p-S9-GSK-3β) was significantly decreased to 41% after 1μM WT/GFX treatment 1h(p<0.01), and pretreatment of DHED 5μM and 10μM for 24h increased the level of the p-S9-GSK-3βto 81% and 87% respectively (p<0.01). Suggesting that the DHED could prevent GSK-3βfrom WT/GFX-induced overactivation.
     By immunofluorescence staining, a significantly decreased immunoreaction of p-S9-GSK-3βwith an enhanced staining of the phosphorylated tau at PHF-1 was seen after WT/GFX treatment, and pretreatment of the cells with 10μM DHED for 24h reversed the changes.
     We transiently transfected wtGSK-3βin N2a cells and treated the cells with DHED for 24h. The overexpression of the exogenous GSK-3βwas suppressed by DHED. Tau hyperphosphorylation following with overexpression of wtGSK-3βalso attenuated by add with DHED. These data confirmed that DHED down-regulating the activity of GSK-3β.
     3. DHED increases the phosphorylation level of Akt in N2a cells.
     The most important kinase responsible for Ser9-phosphorylation of GSK-Sβis Akt. It is to believe that Akt requires phosphorylation at Ser473 and Thr308 to be activated. We tested the activity-dependent Ser473- and Thr308-phosphorylated level of Akt in the N2a cells. No obvious change was seen in total level of Akt with or without DHED. However, the level of Ser473 and Thr308-phosphorylated Akt was significantly decreased after 1μM WT/GFX treatment 1h, and pretreatment of DHED for 24h increased the level of the Ser473 and Thr308-phosphorylated Akt.
     In summary, we have demonstrated in the present study that WT/GFX induced tau hyperphosphorylation through GSK-3βactivation in N2a cell line and rats. DHED attenuates tau hyperphosphorylation via GSK-3βinhibition. The effect of DHED on GSK-3βmay be involves Akt activation.
引文
1. Hedera P, Turner RS. (2002) Inherited dementions. Neurol Clin.2002; 20:779-808.
    2. Hermann C, Stern RG, Losonzcy MF, Jaff S, Davidson M. (1991) Diagnostic and pharmacological approaches in Alzheimer's disease. Drugs Aging 1:144-62.
    3. Winblad B, Jelic V. (2004) Long-term treatment of Alzheimer disease: efficacy and safety of acetylcholinesterase inhibitors. Alzheimer Dis Assoc Disord 18:S2-8.
    4. Chiu E. (2002) Alzheimer disease. Current treatment options. Aust Fam Physician 31:323-26.
    5. Tariot PN, Federoff HJ. (2003) Current treatment for Alzheimer disease and future prospects. Alzheimer Dis Assoc Disord 7 Suppl 4:5105-113.
    6. Nabeshima T, Yamada K. (2000) Neurotrophic factor strategies for the treatment of Alzheimer disease. Alzheimer Dis Assoc Disord14 Suppl 1:539-46.
    7. Oishi M, Mochizuki Y, Takasu T, Chao E, Nakamura S. (1998) Effectiveness of traditional Chinese medicine in Alzheimer disease. Alzheimer Dis Assoc Disord 12:247-50.
    8. Qizilbash N, Whitehead A, Higgins J, Wilcock GS Schneider L, Farlow M. (1998) Cholinesterase inhibition for Alzheimer disease: a meta-analysis of the tacrine trials. Dementia Trialists' Collaboration. JAMA., 280:1777-82.
    9. Geldmacher DS. (2004) Donepezil (Aricept) for treatment of Alzheimer's disease and other dementing conditions. Expert Rev Neurother 4:5-16.
    10. Clark CM and Karlawish JH. (2003) Alzheimer disease: current concepts and emerging diagnostic and therapeutic strategies. Ann Intern Med 138:400–10.
    11. Cummings JL. (2004) Alzheimer's disease. N Engl J Med 351:56–67.
    12. Scarpini E, Scheltens P, Feldman H. (2003) Treatment of Alzheimer's disease: current status and new perspectives. Lancet Neurol 2:539–47.
    13. Grundke-Iqbal I., Iqbal K., Quinlan M., Tung YC, Zaidi MS, Wisniewski HM. (1986) Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem 261:6084-89.
    14. Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI. (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer tytoskeletal pathology. Proc Natl Acad Sci USA 83:4913-17.
    15. Iqbal K, Grundke-Iqbal I., Smith AI, George L, Tung YC, Zaidi T. (1989) Identification and localization of a tau peptide to paired helical filaments of Alzheimer’s disease. Proc Natl Acad Sci USA 86:5646-50.
    16. Lee VM, Balin BJ, Otvos LJ, Trojanowski JQ. (1991) A68: a major subunit of paired helical filaments and derivatized forms of normal Tau. Science 251:675-78.
    17. Goedert M, Spillantini MG, Cairns NJ, Crowther RA. (1992) Tau proteins of Alzheimer paired helical filaments: abnormal phosphorylation of all six brain isoforms. Neuron 8:159-68.
    18. Kosik KS, Joachim CL, Selkoe DJ. (1986) Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc Natl Acad Sci USA 83:4044-8.
    19. Selkoe DJ. (1994) Alzheimer’s disease: A central role for amyloid. Journal of Neuropathology and Experimental Neurology 53:438-47.
    20. Glenner GG and Wong CW. (1984) Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120:885-90.
    21. Koh JY, Yang LL, Cotman CW. (1990) Beta-amyloid protein increases the vulnerability of cultured cortical neurons to exitotoxic damage. BrainResearch 533:315-320.
    22. Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K. (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA 82:4245-9.
    23. Drewes G, Ebneth A, Mandelkow EM. (1998) MAPs, MARKs and microtubule dynamics. Trends Biochem Sci 23:307-11.
    24. Johnson GV, Hartigan JA. (1999) Tau protein in normal and alzheimer’s disease brain: an update. J Alzheimers Dis 1:329-51.
    25. Gustke N, Steiner B, Mandelkow EM, Biernat J, Meyer HE, Goedert M, et al. (1992) The Alzheimer-like phosphorylation of tau protein reduces microtubule binding and involves Ser-Pro and Thr-Pro motifs. FEBS Lett 307:199-205.
    26. Bramblett GT, Goedert M, Jakes R, Merrick SE, Trojanowski JQ, Lee VM. (1993) Abnormal tau phosphorylation at Ser396 in Alzheimer's disease recapitulates development and contributes to reduced microtubule binding. Neuron 10:1089-99.
    27. Maas T, Eidenmuller J, Brandt R. (2000) Interaction of tau with the neural membrane cortex is regulated by phosphorylation at sites that are modified in paired helical filaments. J Biol Chem 275:15733-40.
    28. Ognibene E, Middei S, Daniele S, Adriani W, Ghirardi O, Caprioli A, Laviola G. (2005) Aspects of spatial memory and behavioral disinhibition in Tg2576 transgenic mice as a model of Alzheimer’s disease. Behavioural Brain Research 156:225-32.
    29. Tatebayashi Y, Miyasaka T, Chui DH, Akagi T, Mishima K, Iwasaki K, Fujiwara M, Tanemura K, Murayama M, Ishiguro K, Planel E, Sato S, Hashikawa T, Takashima A. (2002) Tau filament formation and associative memory deficit in aged mice expressing mutant (R406W) human tau. Proc Natl Acad Sci USA 99: 13896-901.
    30. Wilcock GK and Esiri MM. (1982) Plaques, tangles and dementia. A quantitative study. J Neurol Sci 56:343-56.
    31. Fukutani Y, Kobayashi K, Nakamura I, Watanabe K, Isaki K, Cairns NJ. (1995) Neurons, intracellular and extracellular neurofibrillary tangles in subdivisions of the hippocampal cortex in normal ageing and Alzheimer's disease. Neurosci Lett 200:57-60.
    32. Arriagada PV, Growdon JH, Hedley-Whyte ET, Hugman BT, (1992) Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42:631-39.
    33. Featy MB, Dickson DW. (1996) Neurodegenerative disorders with extensive tau pathology: a comparative study and review. Annals of Neurology 40:139-48.
    34. Yamaguchi H, Ishiguro K, Uchida T, Takashima A, Lemere CA, Imahori K. (1996) Preferential labeling of Alzheimer neurofibrillary tangles with antisera for tau protein kinase (TPK)Ι/glycogen synthase kinase-3βand cyclin-dependent kinase 5, a component of TPKΙΙ. Acta Neuropathologica (Berl) 92:232-41.
    35. Bennecib M, Gong CX, Grundke-Iqbal I, Iqbal K. (2000) Role of protein phosphatase-2A and -1 in the regulation of GSK-3, cdk-5, and cdc-2 and the phosphorylation of tau in rat forebrain. FEBS Letters 485:87-93.
    36. Li X, Bijur GN, Jope RS. (2002) Glycogen synthase kinase 3β, mood stabilizers, and neuroprotection. Bipolar Disord 4:137-44.
    37. Bhat RV, Budd SL. (2002) GSK-3βsignalling: casting a wide net in Alzheimer’s disease. Neurosignals 11:251-61.
    38. Lucas JJ, Hernandez F, Gomez-Ramos P, Moran MA, Hen R, Avila J. (2001) Decreased nuclear beta-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3beta conditional transgenic mice. EMBO J 20:27-39.
    39. Grimes CA, Jope RS. (2001) The multifaceted roles of glycogen synthase kinase 3βin cellular signaling. Progress in Neurobiology 65: 391-426.
    40. Liu SJ, Zhang AH, Li HL, Wang Q, Deng HM, Netzer WJ, Xu HX, Wang JZ. (2003) Overactivation of glycogen synthase kinase-3 by inhibition of phosphoinositol-3 kinase and protein kinase C leads to hyperphosphorylation of tau and impairment of spatial memory. Journal of Neurochemistry 87:1333-44.
    41. Yang MC, Wu SL, Kuo JS, Chen CF. (1990) The hypotensive and negative chronotropic effects of dehydroevodiamine. European Journal of Pharmacology 182:537-542.
    42. Chiou WF, Sung YJ, Liao JF, Shum AY, Chen CF. (1997) Inhibitory effect of dehydroevodiamine and evodiamine on nitric oxide production in cultured murine macrophages. Journal of Natural Products 60:708-11.
    43. Haji A, Momose Y, Takeda R, Nakanishi S, Horiuchi T, Arisawa M. (1994) Increased feline cerebral blood flow induced by dehydroevodiamine hydrochloride from Evodia rutaecaroa. Journal of Natural Products 57:387-89.
    44. Park CH, Lee YJ, Lee SH, Choi SH, Kim SH, Jeong SJ, Kim SS, Suh YH. (2000) Dehydroevodiamine?HCl prevents impairment of learning and memory and neuronal loss in rat models of cognitive disturbance. Journal of Neurochemistry 74:244-53.
    45. Wang HH, Chou CJ, Liao JF, Chen CF. (2001) Dehydroevodiamine attenuatesβ-amyloid peptide-induced amnesia in mice. European Journal of Pharmacology 413:221-25.
    46. Morris R. (1984) Developments of a water-maze procedure for studying spatial learning in the rat. Journal of Neuroscience Methods 11:47-60.
    47. Paxinos G, Watson CJ. (1996) The rat brain in stereotaxic coordinates. 2nd edition. New York, Academic Press.
    48. Guillozet AL, Weintraub, Mash DC, Mesulam MM. (2003) Neurofibrillary tangles, amyloid, and memory in aging and mild cognitive impairment. Archives of Neurology 60:729-36.
    49. Braak H, Braak E, Bohl J, Reintjes R. (1996) Age, neurofibrillary changes, abeta-amyloid and the onset of Alzheimer’s disease. Neuroscience Letters 210:87-90.
    50. Bhat RV, Budd SL, Avila J. (2004) Glycogen synthase kinase 3: a drug target for CNS therapies. Journal of Neurochemistry 89:1313-17.
    51. Pei JJ, Tanaka T, Tung YC, Braak E, Iqbal K, Grundke-Iqbal I. (1997) Distribution, levels, and activity of glycogen synthase-3 in the Alzheimer disease brain. J Neuropathol Exp Neurol 56:70-78.
    52. Lovestone S, Reynolds CH, Latimer D, Davis DR, Anderton BH, Gallo JM, Hanger D, Mulot S, Marquardt B, Stable S, et al. (1994) Alzheimer’s disease-like phosphorylation of the microtubule-associated protein tau by glycogen synthase kinase-3 in transfected mammalian cells. Curr Biol 4:1077-86.
    53. Hernandez F, Lucas JJ, Cuadros R, Avila J. (2003) GSK-3 dependent phosphoepitopes recognized by PHF-1 and AT-8 antibodies are present in different tau isoforms. Neurobiology of Aging 24:1087-94.
    54. Li X, Lu F, Tian Q, Yang Y, Wang Q, Wang JZ. (2006) Activation of glycogen synthase kinase-3 induces Alzheimer-like tau hyperphosphorylation in rat hippocampus slices in culture. J Neural Transm 113:93-102.
    55. Wang JZ, Grundke-Iqbal I, Iqbal K. (2007) Kinases and phosphatases and tau sites involved in Alzheimer neurofibrillary degeneration. Eur J Neurosci 25:59-68.
    56. Lovestone S, Hartley CL, Pearce J, Anderton BH. (1996) Phosphorylation of tau by glycogen synthase kinase-3beta in intact mammalian cells: the effectson the organization and stability of microtubules. Neuroscience 73:1145-57.
    57. Hernandez F, Borrell J, Guaza C, Avila J, Lucas JJ. (2002) Spatial learning deficit in transgenic mice that conditionally over-express GSK-3beta in the brain but do not form tau filaments.J Neurochem 83:1529-33.
    58. Park EJ, Suh YH, Kim JY, Choi S, Lee CJ. (2003) Long-lasting facilitation by dehydroevodiamine?HCl of synaptic responses evoked in the CA1 region of rat hippocampal slices. Neuroreport 14:399-403.
    59. Lim DK, Lee YB, Kim HS. (2004) Effect of dehydroevodiamine exposure on glutamate release and uptake in the cultured cerebellar cells. Neurochemical Research 29:407-11.
    60. Tsujio I., Tanaka T, Kudo T, Nishikawa T, Shinozaki K, Grundke-Iqbal I, Iqbal K, Takeda M. (2000) Inactivation of glycogen synthase kinase-3 by protein kinase C delta: Implications for regulation of tau phosphorylation. FEBS Letters 469:111-17.
    61. Eldar-Finkelman H. (2002) Glycogen synthase kinase 3: an emerging therapeutic target. Trends in Molecule Medicine 8:126-132.
    62. Krasilnikov MA. (2000) Phosphatidylinositol-3 kinase dependent pathways: the role in control of cell growth, survival, and malignant transformation. Biochemistry (Mosc) 65:59-67.
    63. Pap M, Cooper GM. (1998) Role of glycogen synthase kinase-3 in the phosphatidylinositol 3-kinase/Akt cell survival pathway. J Biol Chem 273: 19929–32.
    64. Persad S, Attwell S, Gray V, Mawji N, Deng JT, Leung D, Yan J, Sanghera J, Walsh MP, Dedhar S. (2001) Regulation of protein kinase B/Akt-serine 473 phosphorylation by integrin-linked kinase: critical roles for kinase activity and amino acids arginine 211 and serine 343. J Biol Chem 276:27462-69.
    65. Downward J. (1998) Mechanisms and consequences of activation of protein kinase B/Akt. Curr Opin Cell Biol 10:262-67.
    66. Alessi DR, Deak M, Casamayor A, Caudwell FB, Morrice N, Norman DG, Gaffney P, Reese CB, MacDougall CN, Harbison D, Ashworth A, Bownes M. (1997) 3-Phosphoinositide-dependent protein kinase-1 (PDK1): structural and functional homology with the Drosophila DSTPK61 kinase. Curr Biol 7:776-89.
    67. Guizzetti M, Costa LG. (2001) Activation of phosphatidylinositol 3 kinase by muscarinic receptors in astrocytoma cells. Neuroreport 12:1639-42.
    68. Murga C, Laguinge L, Wetzker R, Cuadrado A, Gutkind JS. (1998) Activation of Akt/protein kinase B by G protein-coupled receptors: A role forαandβγsubunits of heterotrimeric G proteins acting through phosphatidylinositol-3-OH kinaseγ. J Biol Chem 273:19080-5.
    69. Tang X, Batty IH, Downes CP. (2002) Muscarinic receptors mediate phospholipase C-dependent activation of protein kinase B via Ca2+, ErbB3, and phosphoinositide 3-kinase in 1321N1 astrocytoma cells. J Biol Chem 277:338-44.
    70. Park CH, Kim SH, Choi W, Lee YJ, Suh YH. (1996) Novel anticholinesterase and antiamnesic activities of dehydroevodiamine?HCl, a constituent of Evodia rutaecarpa. Planta Medica 62:405-9.
    71. Takada-Takatori Y, Kume T, Sugimoto M, Katsuki H, Sugimoto H, Akaike A. (2006) Acetylcholinesterase inhibitors used in treatment of Alzheimer’s disease prevent glutamate neurotoxicity via nicoginic acetylcholine receptors and phosphatidylinositol 3-kinase cascade. Neuropharmacology 549:19-26.
    72. De Sarno P, Bijur GN, Zmijewska AA, Li XH, Jope RS. (2006) In vivo regulation of GSK3 phosphorylation by cholinergic and NMDA receptors. Neurobiology of Aging 27:413-22.
    73. Forlenza OV, Spink JM, Dayanandan R, Anderton BH, Olesen OF, Lovestone S. (2000) Muscarinic agonists reduce tau phosphorylation in non-neuronal cells via GSK-3βinhibition and in neurons. J Neural Transm107:1201-12.
    74. Sadot E, Gurwitz D, Barg J, Behar L, Ginzburg I, Fisher A. (1996) Activation of m1 muscarinic acetylcholine receptor regulates tau phosphorylation in transfected PC12 cells. J Neurochem 66:877-80.
    75. Martinez A, Castro A, Dorronsoro I, Alonso M. (2002) Glycogen synthase kinase 3 (GSK-3) inhibitors as new promising drugs for diabetes, neurodegeneration, cancer, and inflammation. Med Res Rev 22:373-84.
    76. Phiel CJ, Wilson CA, Lee VM, Klein PS. (2003) GSK-3αregulates production of Alzheimer’s disease amyloid-βpeptides. Nature 423:435–9.
    77. Su Y, Ryder J, Li B, Wu X, Fox N, Solenberg P, et al. (2004) Lithium a common drug for bipolar disorder treatment, regulates amyloid-βprecursor protein processing. Biochemistry 43:6899-908.
    78. Alvarez G, Munoz-Montano JR, Satrustegui J, Avila J, Bogonez E, Diaz-Nido J. (1999) Lithium protects cultured neurons againstβ-amyloid-induced neurodegeneration. FEBS Lett 453:260-4.
    79. Alvarez G, Munoz-Montano JR, Satrustegui J, Avila J, Bogonez E, Diaz-Nido J. (2002) Regulation of tau phosphorylation and protection againstβ-amyloid-induced neurodegeneration by lithium. Possible implications for Alzheimer’s disease. Bipolar Disord 4:153-65.
    80. De Ferrari GV, Chacon MA, Barria MI, Garrido JL, Godoy JA, Olivares G, et al. (2003) Activation of Wnt signaling rescues neurodegeneration and behavioral impairments induced byβ-amyloid fibrils. Mol Psychiatry 8:195-208.
    81. Hoshi M, Sato M, Matsumoto S, Noguchi A, Yasutake K, Yoshida N, et al. (2003) Spherical aggregates ofβ-amyloid (amylospheroid) show high neurotoxicity and activate tau protein kinase I/glycogen synthase kinase-3β. Proc Natl Acad Sci USA 100:6370-5.
    82. Cooney MM, Tserng KY, Makar V, McPeak RJ, Ingalls ST, Dowlati A,Overmoyer B, McCrae K, Ksenich P, Lavertu P, Ivy P, Hoppell CL, Remick S. (2005) A phase IB clinical and pharmacokinetic study of the angiogenesis inhibitor SU5416 and paclitaxel in recurrent or metastatic carcinoma of the head and neck. Cancer Chemotherapy and Pharmacology 55:295-300.
    83. Ahn SH, Jeon SH, Tsuruo T, Shim CK, Chung SJ. (2004) Pharmacokinetic characterization of dehydroevodiamine in the rat brain. Journal of Pharmaceutical Sciences 93:283-92.
    1. Nussbaum RL and Ellis CE. (2003) Alzheimer's disease and Parkinson's disease. N Engl J Med 348:1356-64.
    2. Morrison JH and Hof PR. (1997) Life and death of neurons in the aging brain. Science 278:412-9.
    3. Glenner GG and Wong CW. (1984) Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120:885-90.
    4. Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K. (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA 82:4245-9.
    5. Grundke-Iqbal I, Iqbal K, Quinlan M, Tung YC, Zaidi MS, Wisniewski HM. (1986a) Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem 261:6084-9.
    6. Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI. (1986b) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 83:4913-7.
    7. Kosik KS, Joachim CL, Selkoe DJ. (1986) Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc Natl Acad Sci USA 83:4044-8.
    8. Lee VM, Balin BJ, Otvos L Jr. (1991) Trojanowski JQ. A68: a major subunit of paired helical filaments and derivatized forms of normal tau. Science 251:675-8.
    9. Maurer K, Volk S, Gerbaldo H. (1997) Auguste D and Alzheimer's disease. Lancet 349:1546-9.
    10. Alzheimer A. (1907)über eine eigenartige Erkrankung der Hirnrinde.Allgemeine Zeitschrift für Psychiatrie und Psychisch-gerichtliche Medizin 64:146-8.
    11. Bullock R. (2004) Future directions in the treatment of Alzheimer's disease. Expert Opin Investig Drugs 13:303-14.
    12. Cummings JL. (2004) Alzheimer's disease. N Engl J Med 351:56-67.
    13. Forsyth E and Ritzline PD. (1998) An overview of the etiology, diagnosis, and treatment of Alzheimer disease. Phys Ther 78:1325-31.
    14. Scarpini E, Scheltens P, Feldman H. (2003) Treatment of Alzheimer's disease: current status and new perspectives. Lancet Neurol 2:539-47.
    15. Bartus RT, Dean RL III, Beer B, Lippa AS. (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217:408-14.
    16. Cummings JL and Back C. (1998) The cholinergic hypothesis of neuropsychiatric symptoms in Alzheimer's disease. Am J Geriatr Psychiatry 6:S64-78.
    17. Bowen DM, Smith CB, White P, Davison AN. (1976) Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies. Brain 99:459-96.
    18. Perry EK, Perry RH, Blessed G, Tomlinson BE. (1977) Necropsy evidence of central cholinergic deficits in senile dementia. Lancet 1:189.
    19. Doody RS, Stevens JC, Beck C, Dubinsky RM, Kaye JA, Gwyther L, et al. (2001) Practice parameter: management of dementia (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 56:1154-66.
    20. Whitehouse PJ, Martino AM, Antuono PG, Lowenstein PR, Coyle JT, Price DL, et al. (1986) Nicotinic acetylcholine binding sites in Alzheimer's disease. Brain Res 371:146-51.
    21. Davis KL, Mohs RC, Marin D, Purohit DP, Perl DP, Lantz M, et al. (1999) Cholinergic markers in elderly patients with early signs of Alzheimer disease.JAMA 281:1401-6.
    22. DeKosky ST, Ikonomovic MD, Styren SD, Beckett L, Wisniewski S, Bennett DA, et al. (2002) Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Ann Neurol 51:145-55.
    23. Mesulam MM, Guillozet A, Shaw P, Levey A, Duysen EG, Lockridge O. (2002) Acetylcholinesterase knockouts establish central cholinergic pathways and can use butyrylcholinesterase to hydrolyze acetylcholine. Neuroscience 110:627-39.
    24. Corey-Bloom J, Anand R, Veach J. (1998) For the ENA 713 B352 Study Group. A ramdomized trial evaluating the efficacy of ENA 713 (rivastigmine tartrate), a new actylcholinesterase inhibitor, in patients with mild to moderately severe Alzheimer's disease. Int J Geriatr Psychopharmacol 1:55-65.
    25. Tariot PN, Solomon PR, Morris JC, Kershaw P, Lilienfeld S, Ding CA. (2000) 5-month, randomized, placebo-controlled trial of galantamine in AD. The Galantamine USA-10 Study Group. Neurology 54:2269-76.
    26. Cochrane Database Syst Rev Birks J, Iakovidou V, Tsolaki M. (2000) Rivastigmine for Alzheimer's disease. CD001191.
    27. Cochrane Database Syst Rev Birks JS and Harvey R. (2003) Donepezil for dementia due to Alzheimer's disease. CD001190.
    28. Cochrane Database Syst Rev Loy C and Schneider L. (2004) Galantamine for Alzheimer's disease. CD001747.
    29. Whitehead A, Perdomo C, Pratt RD, Birks J, Wilcock GK, Evans JG. (2004) Donepezil for the symptomatic treatment of patients with mild to moderate Alzheimer's disease: a meta-analysis of individual patient data from randomised controlled trials. Int J Geriatr Psychiatry 19:624-33.
    30. Ritchie CW, Ames D, Clayton T, Lai R. (2004) Metaanalysis of randomizedtrials of the efficacy and safety of donepezil, galantamine, and rivastigmine for the treatment of Alzheimer disease. Am J Geriatr Psychiatry 12:358-69.
    31. Kaduszkiewicz H, Zimmermann T, Beck-Bornholdt HP, van den Bussche H. (2005) Cholinesterase inhibitors for patients with Alzheimer's disease: systematic review of randomised clinical trials. BMJ 331:321-7.
    32. Bleich S, Romer K, Wiltfang J, Kornhuber J. (2003) Glutamate and the glutamate receptor system: a target for drug action. Int J Geriatr Psychiatry 18:S33-40.
    33. Hynd MR, Scott HL, Dodd PR. (2004) Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer's disease. Neurochem Int 45:583-95.
    34. Kornhuber J and Weller M. (1997) Psychotogenicity and N-methyl-D-aspartate receptor antagonism: implications for neuroprotective pharmacotherapy. Biol Psychiatry 41:135-44.
    35. Javitt DC. (2004) Glutamate as a therapeutic target in psychiatric disorders. Mol Psychiatry 9:984-97-979.
    36. Kornhuber J, Bormann J, Retz W, Hubers M, Riederer P. (1989) Memantine displaces [3H]MK-801 at therapeutic concentrations in postmortem human frontal cortex. Eur J Pharmacol 166:589-90.
    37. Sonkusare SK, Kaul CL, Ramarao P. (2005) Dementia of Alzheimer's disease and other neurodegenerative disorders—memantine, a new hope. Pharmacol Res 51:1-17.
    38. Areosa Sastre A, Sherriff F, McShane R. (2005) Memantine for dementia (Cochrane Review). Cochrane Database Syst Rev 2.
    39. Wenk GL, Quack G, Moebius HJ, Danysz W. (2000) No interaction of memantine with acetylcholinesterase inhibitors approved for clinical use. Life Sci 66:1079-83.
    40. Tariot PN, Farlow MR, Grossberg GT, Graham SM, McDonald S, Gergel I. (2004) Memantine treatment in patients with moderate to severe Alzheimerdisease already receiving donepezil: a randomized controlled trial. JAMA 291:317-24.
    41. Selkoe DJ. (1991) The molecular pathology of Alzheimer's disease. Neuron 6:487-98.
    42. Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K. (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA 82:4245-9.
    43. Wischik CM, Novak M, Thogersen HC, Edwards PC, Runswick MJ, Jakes R, et al. (1988) Isolation of a fragment of tau derived from the core of the paired helical filament of Alzheimer disease. Proc Natl Acad Sci USA 85:4506-10.
    44. Kidd M. (1963) Paired helical filaments in electron microscopy of Alzheimer's disease. Nature 197:192-3.
    45. Hardy J and Selkoe DJ. (2002) The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297:353-6.
    46. Chartier-Harlin MC, Crawford F, Houlden H, Warren A, Hughes D, Fidani L, et al. (1991) Early-onset Alzheimer's disease caused by mutations at codon 717 of the beta-amyloid precursor protein gene. Nature 353:844-6.
    47. Murrell J, Farlow M, Ghetti B, Benson MD. A. (1991) mutation in the amyloid precursor protein associated with hereditary Alzheimer's disease. Science 254:97-9.
    48. Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M, et al. (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature 375:754-60.
    49. Suzuki N, Cheung TT, Cai XD, Odaka A, Otvos L Jr, Eckman C, et al. (1994) An increased percentage of long amyloid beta protein secreted by familial amyloid beta protein precursor (beta APP717) mutants. Science264:1336-40.
    50. Duff K, Eckman C, Zehr C, Yu X, Prada CM, Perez-tur J, et al. (1996) Increased amyloid-beta42(43) in brains of mice expressing mutant presenilin 1. Nature 383:710-3.
    51. Citron M, Westaway D, Xia W, Carlson G, Diehl T, Levesque G, et al. (1997) Mutant presenilins of Alzheimer's disease increase production of 42-residue amyloid beta-protein in both transfected cells and transgenic mice. Nat Med 3:67-72.
    52. Lorenzo A and Yankner BA. (1994) Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red. Proc Natl Acad Sci USA 91:12243-7.
    53. Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, et al. (1998) Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA 95:6448-53.
    54. Games D, Adams D, Alessandrini R, Barbour R, Berthelette P, Blackwell C, et al. (1995) Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature 373:523-7.
    55. Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, et al. (1996) Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 274:99-102.
    56. Sturchler-Pierrat C, Abramowski D, Duke M, Wiederhold KH, Mistl C, Rothacher S, et al. (1997) Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc Natl Acad Sci USA 94:13287-92
    57. Calhoun ME, Burgermeister P, Phinney AL, Stalder M, Tolnay M, Wiederhold KH, et al. (1999) Neuronal overexpression of mutant amyloid precursor protein results in prominent deposition of cerebrovascular amyloid. Proc Natl Acad Sci USA 96:14088-93.
    58. Calhoun ME, Wiederhold KH, Abramowski D, Phinney AL, Probst A, Sturchler-Pierrat C, et al. (1998) Neuron loss in APP transgenic mice. Nature 395:755-6.
    59. Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Masters CL, Grzeschik KH, et al. (1987) The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature 325:733-6.
    60. Weidemann A, Konig G, Bunke D, Fischer P, Salbaum JM, Masters CL, et al. (1989) Identification, biogenesis, and localization of precursors of Alzheimer's disease A4 amyloid protein. Cell 57:115-26.
    61. Esch FS, Keim PS, Beattie EC, Blacher RW, Culwell AR, Oltersdorf T, et al. (1990) Cleavage of amyloid beta peptide during constitutive processing of its precursor. Science 248:1122-4.
    62. Haass C, Schlossmacher MG, Hung AY, Vigo-Pelfrey C, Mellon A, Ostaszewski BL, et al. (1992) Amyloid beta-peptide is produced by cultured cells during normal metabolism. Nature 359:322-5.
    63. Seubert P, Vigo-Pelfrey C, Esch F, Lee M, Dovey H, Davis D, et al. (1992) Isolation and quantification of soluble Alzheimer's beta-peptide from biological fluids. Nature 359:325-7
    64. De Strooper B, Saftig P, Craessaerts K, Vanderstichele H, Guhde G, Annaert W, et al. (1998) Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 391:387-90.
    65. Wolfe MS, Xia W, Ostaszewski BL, Diehl TS, Kimberly WT, Selkoe DJ. (1999) Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity.
    66. De Strooper B. (2003) Aph-1, Pen-2, and nicastrin with presenilin generate an active gamma-secretase complex. Neuron 38:9-12.
    67. Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, et al. (1999) Beta-secretase cleavage of Alzheimer's amyloid precursor protein bythe transmembrane aspartic protease BACE. Science 286:735-41.
    68. Luo Y, Bolon B, Kahn S, Bennett BD, Babu-Khan S, Denis P, et al. (2001) Mice deficient in BACE1, the Alzheimer's beta-secretase, have normal phenotype and abolished beta-amyloid generation. Nat Neurosci 4:231-2
    69. Citron M. (2004) Strategies for disease modification in Alzheimer's disease. Nat Rev Neurosci 5:677-85.
    70. Siemers E, Skinner M, Dean RA, Gonzales C, Satterwhite J, Farlow M, et al. (2005) Safety, tolerability, and changes in amyloid beta concentrations after administration of a gamma-secretase inhibitor in volunteers. Clin Neuropharmacol 28:126-32.
    71. Weggen S, Eriksen JL, Das P, Sagi SA, Wang R, Pietrzik CU, et al. (2001) A subset of NSAIDs lower amyloidogenic Abeta42 independently of cyclooxygenase activity. Nature 414:212-6.
    72. Hung AY, Haass C, Nitsch RM, Qiu WQ, Citron M, Wurtman RJ, et al. (1993) Activation of protein kinase C inhibits cellular production of the amyloid beta-protein. J Biol Chem 268:22959-62.
    73. Wolf BA, Wertkin AM, Jolly YC, Yasuda RP, Wolfe BB, Konrad RJ, et al. (1995) Muscarinic regulation of Alzheimer's disease amyloid precursor protein secretion and amyloid beta-protein production in human neuronal NT2N cells. J Biol Chem 270:4916-22
    74. Fisher A. (2000) Therapeutic strategies in Alzheimer's disease: M1 muscarinic agonists. Jpn J Pharmacol 84:101-12
    75. Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, et al. (2003) Triple-transgenic model of Alzheimer's disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39:409-21.
    76. Billings LM, Oddo S, Green KN, McGaugh JL, LaFerla FM. (2005) Intraneuronal Abeta causes the onset of early Alzheimer's disease-related cognitive deficits in transgenic mice. Neuron 45:675-88.
    77. Caccamo A, Oddo S, Billings LM, Green KN, Martinez-Coria H, Fisher A, et al. (2006) M1 receptors play a central role in modulating AD-like pathology in transgenic mice. Neuron 49:671-82.
    78. Cherny RA, Atwood CS, Xilinas ME, Gray DN, Jones WD, McLean CA, et al. (2001) Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer's disease transgenic mice. Neuron 30:665-76.
    79. Boggs J. Toxicity issues halt PBT1 program in Alzheimer's; Prana's stock falls. Bioworld online April 13th, 2005.
    80. Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, et al. (1999) Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400:173-7.
    81. Bard F, Cannon C, Barbour R, Burke RL, Games D, Grajeda H, et al. (2000) Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med 6:916-9.
    82. Lemere CA, Beierschmitt A, Iglesias M, Spooner ET, Bloom JK, Leverone JF, et al. (2004) Alzheimer's disease Abeta vaccine reduces central nervous system Abeta levels in a non-human primate, the Caribbean vervet. Am J Pathol 165:283-97.
    83. Oddo S, Billings L, Kesslak JP, Cribbs DH, LaFerla FM. (2004) Abeta immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome. Neuron 43:321-32.
    84. Janus C, Pearson J, McLaurin J, Mathews PM, Jiang Y, Schmidt SD, et al. (2000) A beta peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer's disease. Nature 408:979-82.
    85. Kotilinek LA, Bacskai B, Westerman M, Kawarabayashi T, Younkin L, Hyman BT, et al. (2002) Reversible memory loss in a mouse transgenicmodel of Alzheimer's disease. J Neurosci 22:6331-5.
    86. Klyubin I, Walsh DM, Lemere CA, Cullen WK, Shankar GM, Betts V, et al. (2005) Amyloid beta protein immunotherapy neutralizes Abeta oligomers that disrupt synaptic plasticity in vivo. Nat Med 11:556-61
    87. Bussiere T, Bard F, Barbour R, Grajeda H, Guido T, Khan K, et al. (2004) Morphological characterization of thioflavin-S-positive amyloid plaques in transgenic Alzheimer mice and effect of passive Abeta immunotherapy on their clearance. Am J Pathol 165:987-95.
    88. Solomon B, Koppel R, Frankel D, Hanan-Aharon E. (1997) Disaggregation of Alzheimer beta-amyloid by site-directed mAb. Proc Natl Acad Sci USA 94:4109-12
    89. McLaurin J, Cecal R, Kierstead ME, Tian X, Phinney AL, Manea M, et al. (2002) Therapeutically effective antibodies against amyloid-beta peptide target amyloid-beta residues 4-10 and inhibit cytotoxicity and fibrillogenesis. Nat Med 8:1263-9
    90. Wilcock DM, Munireddy SK, Rosenthal A, Ugen KE, Gordon MN, Morgan D. (2004) Microglial activation facilitates Abeta plaque removal following intracranial anti-Abeta antibody administration. Neurobiol Dis 15:11-20.
    91. DeMattos RB, Bales KR, Cummins DJ, Dodart JC, Paul SM, Holtzman DM. (2001) Peripheral anti-A beta antibody alters CNS and plasma A beta clearance and decreases brain A beta burden in a mouse model of Alzheimer's disease. Proc Natl Acad Sci USA 98:8850-5.
    92. Pfeifer M, Boncristiano S, Bondolfi L, Stalder A, Deller T, Staufenbiel M, et al. (2002) Cerebral hemorrhage after passive anti-Abeta immunotherapy. Science 298:1379.
    93. DeMattos RB, Bales KR, Cummins DJ, Paul SM, Holtzman DM. (2002) Brain to plasma amyloid-beta efflux: a measure of brain amyloid burden in a mouse model of Alzheimer's disease. Science 295:2264-7.
    94. Bayer AJ, Bullock R, Jones RW, Wilkinson D, Paterson KR, Jenkins L, et al. (2005) Evaluation of the safety and immunogenicity of synthetic Abeta42 (AN1792) in patients with AD. Neurology 64:94-101.
    95. Nicoll JA, Wilkinson D, Holmes C, Steart P, Markham H, Weller RO. (2003) Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide: a case report. Nat Med 9:448-52.
    96. Gilman S, Koller M, Black RS, Jenkins L, Griffith SG, Fox NC, et al. (2005) Clinical effects of Abeta immunization (AN1792) in patients with AD in an interrupted trial. Neurology 64:1553-62.
    97. Ferrer I, Boada Rovira M, Sanchez Guerra ML, Rey MJ, Costa-Jussa F. (2004) Neuropathology and pathogenesis of encephalitis following amyloid-beta immunization in Alzheimer's disease. Brain Pathol 14:11-20.
    98. Masliah E, Hansen L, Adame A, Crews L, Bard F, Lee C, et al. (2005) Abeta vaccination effects on plaque pathology in the absence of encephalitis in Alzheimer disease. Neurology 64:129-31.
    99. Fox NC, Black RS, Gilman S, Rossor MN, Griffith SG, Jenkins L, et al. (2005) Effects of Abeta immunization (AN1792) on MRI measures of cerebral volume in Alzheimer disease. Neurology 64:1563-72.
    100. Racke MM, Boone LI, Hepburn DL, Parsadainian M, Bryan MT, Ness DK, et al. (2005) Exacerbation of cerebral amyloid angiopathy-associated microhemorrhage in amyloid precursor protein transgenic mice by immunotherapy is dependent on antibody recognition of deposited forms of amyloid beta. J Neurosci 25:629-36.
    101. Braak H and Braak E. (1995) Staging of Alzheimer's disease-related neurofibrillary changes. Neurobiol Aging 16:271-8 discussion 278-84.
    102. Bramblett GT, Goedert M, Jakes R, Merrick SE, Trojanowski JQ, Lee VM. (1993) Abnormal tau phosphorylation at Ser396 in Alzheimer's disease recapitulates development and contributes to reduced microtubule binding.Neuron 10:1089-99.
    103. Alonso AC, Zaidi T, Grundke-Iqbal I, Iqbal K. (1994) Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease. Proc Natl Acad Sci USA 91:5562-6.
    104. Iqbal K, Zaidi T, Bancher C, Grundke-Iqbal I. (1994) Alzheimer paired helical filaments. Restoration of the biological activity by dephosphorylation. FEBS Lett 349:104-8.
    105. Mandelkow EM and Mandelkow E. (1998) Tau in Alzheimer's disease. Trends Cell Biol 8:425-7.
    106. Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H, et al. (1998) Association of missense and 5'-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393:702-5.
    107. Lee VM, Goedert M, Trojanowski JQ. (2001) Neurodegenerative tauopathies. Annu Rev Neurosci 24:1121-59.
    108. Dermaut B, Kumar-Singh S, Rademakers R, Theuns J, Cruts M, Van Broeckhoven C. (2005) Tau is central in the genetic Alzheimer-frontotemporal dementia spectrum. Trends Genet 21:664-72.
    109. Andorfer C, Acker CM, Kress Y, Hof PR, Duff K, Davies P. (2005) Cell-cycle reentry and cell death in transgenic mice expressing nonmutant human tau isoforms. J Neurosci 25:5446-54.
    110. Santacruz K, Lewis J, Spires T, Paulson J, Kotilinek L, Ingelsson M, et al. (2005) Tau suppression in a neurodegenerative mouse model improves memory function. Science 309:476-81.
    111. Johnson GVV and Hartigan JA. (1998) Tau protein in normal and Alzheimer's disease brain: an update. Alzheimer's Dis Rev 3:125-141.
    112. Cruz JC, Tseng HC, Goldman JA, Shih H, Tsai LH. (2003) Aberrant Cdk5 activation by p25 triggers pathological events leading to neurodegeneration and neurofibrillary tangles. Neuron 40:471-83.
    113. Noble W, Olm V, Takata K, Casey E, Mary O, Meyerson J, et al. (2003) Cdk5 is a key factor in tau aggregation and tangle formation in vivo. Neuron 38:555-65.
    114. Lucas JJ, Hernandez F, Gomez-Ramos P, Moran MA, Hen R, Avila J. (2001) Decreased nuclear beta-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3beta conditional transgenic mice. EMBO J 20:27-39.
    115. Spittaels K, Van den Haute C, Van Dorpe J, Geerts H, Mercken M, Bruynseels K, et al. (2000) Glycogen synthase kinase-3beta phosphorylates protein tau and rescues the axonopathy in the central nervous system of human four-repeat tau transgenic mice. J Biol Chem 275:41340-9.
    116. Drewes G, Lichtenberg-Kraag B, Doring F, Mandelkow EM, Biernat J, Goris J, et al. (1992) Mitogen activated protein (MAP) kinase transforms tau protein into an Alzheimer-like state. EMBO J 11:2131-8
    117. Goedert M, Hasegawa M, Jakes R, Lawler S, Cuenda A, Cohen P. (1997) Phosphorylation of microtubule-associated protein tau by stress-activated protein kinases. FEBS Lett 409:57-62.
    118. Pei JJ, Braak H, An WL, Winblad B, Cowburn RF, Iqbal K, et al. (2002) Up-regulation of mitogen-activated protein kinases ERK1/2 and MEK1/2 is associated with the progression of neurofibrillary degeneration in Alzheimer's disease. Brain Res Mol Brain Res 109:45-55.
    119. Latimer DA, Gallo JM, Lovestone S, Miller CC, Reynolds CH, Marquardt B, et al. (1995) Stimulation of MAP kinase by v-raf transformation of fibroblasts fails to induce hyperphosphorylation of transfected tau. FEBS Lett 365:42-6.
    120. Giasson BI, Sampathu DM, Wilson CA, Vogelsberg-Ragaglia V, Mushynski WE, Lee VM. (2002) The environmental toxin arsenite induces tau hyperphosphorylation. Biochemistry 41:15376-87.
    121. Lewis J, McGowan E, Rockwood J, Melrose H, Nacharaju P, Van Slegtenhorst M, et al. (2000) Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nat Genet 25:402-5.
    122. Noble W, Planel E, Zehr C, Olm V, Meyerson J, Suleman F, et al. (2005) Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo. Proc Natl Acad Sci USA 102:6990-5.
    123. Le Corre S, Klafki HW, Plesnila N, Hubinger G, Obermeier A, Sahagun H, et al. (2006) An inhibitor of tau hyperphosphorylation prevents severe motor impairments in tau transgenic mice. Proc Natl Acad Sci USA 103:9673-8.
    124. Lu PJ, Wulf G, Zhou XZ, Davies P, Lu KP. (1999) The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein. Nature 399:784-8.
    125. Zhou XZ, Kops O, Werner A, Lu PJ, Shen M, Stoller G, et al. (2000) Pin1-dependent prolyl isomerization regulates dephosphorylation of Cdc25C and tau proteins. Mol Cell 6:873-83.
    126. Liou YC, Sun A, Ryo A, Zhou XZ, Yu ZX, Huang HK, et al. (2003) Role of the prolyl isomerase Pin1 in protecting against age-dependent neurodegeneration. Nature 424:556-61.
    127. Lu KP. (2004) Pinning down cell signaling, cancer and Alzheimer's disease. Trends Biochem Sci 29:200-9.
    128. Ramakrishnan P, Dickson DW, Davies P. (2003) Pin1 colocalization with phosphorylated tau in Alzheimer's disease and other tauopathies. Neurobiol Dis 14:251-64.
    129. Gong CX, Shaikh S, Wang JZ, Zaidi T, Grundke-Iqbal I, Iqbal K. (1995) Phosphatase activity toward abnormally phosphorylated tau: decrease in Alzheimer disease brain. J Neurochem 65:732-8.
    130. Lau LF, Schachter JB, Seymour PA, Sanner MA. (2002) Tau proteinphosphorylation as a therapeutic target in Alzheimer's disease. Curr Top Med Chem 2:395-415.
    131. Gong CX, Lidsky T, Wegiel J, Zuck L, Grundke-Iqbal I, Iqbal K. (2000) Phosphorylation of microtubule-associated protein tau is regulated by protein phosphatase 2A in mammalian brain. Implications for neurofibrillary degeneration in Alzheimer's disease. J Biol Chem 275:5535-44.
    132. Kins S, Crameri A, Evans DR, Hemmings BA, Nitsch RM, Gotz J. (2001) Reduced protein phosphatase 2A activity induces hyperphosphorylation and altered compartmentalization of tau in transgenic mice. J Biol Chem 276:38193-200.
    133. Iqbal K and Grundke-Iqbal I. (2004) Inhibition of neurofibrillary degeneration: a promising approach to Alzheimer's disease and other tauopathies. Curr Drug Targets 5:495-502.
    134. Li L, Sengupta A, Haque N, Grundke-Iqbal I, Iqbal K. (2004b) Memantine inhibits and reverses the Alzheimer type abnormal hyperphosphorylation of tau and associated neurodegeneration. FEBS Lett 566:261-9.
    135. Tolnay M and Probst A. (1999) Review: tau protein pathology in Alzheimer's disease and related disorders. Neuropathol Appl Neurobiol 25:171-87.
    136. Lee VM, Goedert M, Trojanowski JQ. (2001) Neurodegenerative tauopathies. Annu Rev Neurosci 24:1121-59.
    137. Gomez-Isla T, Hollister R, West H, Mui S, Growdon JH, Petersen RC, et al. (1997) Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer's disease. Ann Neurol 41:17-24.
    138. Khlistunova I, Biernat J, Wang Y, Pickhardt M, von Bergen M, Gazova Z, et al. (2006) Inducible expression of tau repeat domain in cell models of tauopathy: aggregation is toxic to cells but can be reversed by inhibitor drugs. J Biol Chem 281:1205-14
    139. Pickhardt M, Gazova Z, von Bergen M, Khlistunova I, Wang Y, Hascher A, et al. (2005) Anthraquinones inhibit tau aggregation and dissolve Alzheimer's paired helical filaments in vitro and in cells. J Biol Chem 280:3628-35.
    140. Tuppo EE and Arias HR. (2005) The role of inflammation in Alzheimer's disease. Int J Biochem Cell Biol 37:289-305.
    141. Szekely CA, Thorne JE, Zandi PP, Ek M, Messias E, Breitner JC, et al. (2004) Nonsteroidal anti-inflammatory drugs for the prevention of Alzheimer's disease: a systematic review. Neuroepidemiology 23:159-69.
    142. Aisen PS, Schafer KA, Grundman M, Pfeiffer E, Sano M, Davis KL, et al. (2003) Effects of rofecoxib or naproxen vs placebo on Alzheimer disease progression: a randomized controlled trial. JAMA 289:2819-26.
    143. Weggen S, Eriksen JL, Das P, Sagi SA, Wang R, Pietrzik CU, et al. (2001) A subset of NSAIDs lower amyloidogenic Abeta42 independently of cyclooxygenase activity. Nature 414:212-6.
    144. Simons M, Keller P, De Strooper B, Beyreuther K, Dotti CG, Simons K. (1998) Cholesterol depletion inhibits the generation of beta-amyloid in hippocampal neurons. Proc Natl Acad Sci USA 95:6460-4.
    145. Wolozin B, Kellman W, Ruosseau P, Celesia GG, Siegel G. (2000) Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methyglutaryl coenzyme A reductase inhibitors. Arch Neurol 57:1439-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700