基于共轭聚合物的新型荧光传感薄膜的创制及相关检测仪器的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着反恐、反化学生物武器、非金属地雷探测、环境质量监测等需求的增加,世界各国对各类高性能薄膜传感器的研究愈来愈重视。相对于均相(溶液)传感器,薄膜传感器具有可重复使用、基本不污染待测体系、易于器件化等优点,因此,备受人们重视。而共轭聚合物作为一种新的传感元素因以下原因受到特别的关注:(1)摩尔消光系数可达106M-1cm-1,具有很强的集光能力;(2)因整个分子主链为共轭结构,允许光激发电子在链上迅速流动,具有所谓的“分子导线效应”(Molecular Wire Effect),对被测量分子表现为“一点接触、多点响应”,呈现出显著的信号放大效应;(3)共轭荧光聚合物的光诱导电子转移或者能量转移是一个超快过程,一般可在数百飞秒内完成,较之正常的辐射衰变快4个数量级,因此与猝灭剂作用时,可表现为“超级猝灭”(Super-Quenching)。就目前的研究现状而言,基于共轭聚合物的薄膜传感器已经表现出巨大的优势和广阔的应用前景。然而需要指出的是,就硝基芳烃类爆炸物检测而言,到目前为止大多数工作集中在通过聚合物结构改造或者设计制备新的共轭聚合物来提高这类材料的传感性能。事实上,这并不是提高荧光传感器检测性能的唯一方法。通过对荧光薄膜传感器制备方法的改进,也可以提高传感器对硝基芳烃类爆炸物的检测性能。
     本论文在硝基芳烃类爆炸物检测用聚合物传感器研究综述的基础上,结合本实验室在硝基芳烃类爆炸物检测方面的研究进展,利用超分子化学原理,探索了薄膜制备方式对薄膜传感器性能的影响,以共轭荧光聚合物为传感元素,设计、制备了多种对硝基芳烃类爆炸物,特别是对某种特定爆炸物具有高灵敏度和选择性的荧光传感薄膜。同时,作为主要成员参与了以本实验开发的高性能薄膜传感器为核心部件的便携式爆炸物探测仪的研发和应用推广工作。具体来讲,主要完成了以下工作:
     (1)将六苯基环戊二烯硅烷的纳米颗粒作为传感元素掺杂于壳聚糖,通过旋涂技术将其固定于基质表面,得到了一种新型的荧光薄膜。对其传感性能的研究发现,此薄膜可以对苦味酸实现高灵敏度、高选择性的检测,检出限达到2.1×10-8mol/L。并且三硝基甲苯(TNT)、二硝基甲苯(DNT)、硝基苯(NB)、苯酚、苯、甲苯、乙醇、甲醇和硝酸锌的引入对传感薄膜的荧光发射影响很小。传感机理研究发现,苦味酸阴离子与壳聚糖表面胺基阳离子之间的静电相互作用是此薄膜高选择性和高灵敏度的主要原因。同时,壳聚糖的网络结构还有助于六苯基环戊二烯硅烷纳米粒子的稳定,阻止了其进一步的聚集。此外,此薄膜对于苦味酸的检测完全可逆。由于该薄膜制备工艺简单,传感性能优异,有望在实践中获得应用。
     (2)设计、合成了两种含芘的苯乙炔类共轭聚合物(PyPE-1和PyPE-2)。将这两种聚合物分别旋涂到玻璃基质上制备得薄膜1和薄膜2,并对其传感行为进行了研究。结果表明,在水相中,这两种薄膜对2,4,6-三硝基甲苯(TNT)的存在都非常敏感。相对于不含芘的类似物聚苯乙炔撑(PPE)所制备的薄膜3,薄膜1和2对于水相中TNT的检测不仅具有更高的灵敏度,而且还表现出了较好的选择性。这主要归结为两个原因:第一,芘的引入增强了聚合物和TNT之间的π-π相互作用:第二,芘的引入使得聚合物与TNT分子轨道能量更加匹配。进一步的研究表明,薄膜1对TNT的传感过程是可逆的。荧光寿命的测定表明该荧光猝灭过程是一种静态猝灭。该薄膜性能优越、制备简单,有望发展成为对地下水和海水中TNT具有高灵敏和高选择性的传感器。
     (3)首次提出了将单分子层化学的优点与共轭聚合物检测时所具有的信号放大效应相结合来制备荧光传感薄膜。在此思想的指导下,将寡聚二苯基硅烷化学键合于玻璃基质表面,制备了一种性能优越的气相硝基芳烃类爆炸物检测用荧光传感薄膜。正是兼具两者的优势,所制备的薄膜实现了对于气相中微痕量的硝基芳烃类爆炸物超灵敏、高选择性检测。同时,此薄膜可多次、重复使用。荧光寿命的测定结果表明,TNT对传感薄膜的猝灭过程为静态猝灭。由于该薄膜对硝基芳烃类爆炸物的超灵敏响应、高选择性和可逆性使得其极有希望发展成为一类对硝基芳烃类爆炸物敏感的荧光薄膜传感器。
     (4)将聚苯乙炔撑衍生物(M-PPEs)化学键合于玻璃基质表面,制备了一种荧光行为可控的共轭荧光聚合物荧光薄膜。研究发现,薄膜的荧光行为对其所处的介质极性极为敏感。这主要是由于不同极性溶剂中,固定化于基质表面的聚合物长而柔性的烷基侧链构象会发生变化,从而导致了聚合物主链相互作用的改变。在“不良”溶剂或者其蒸气中,侧链以压缩构象存在,导致聚合物主链之间聚集,使得薄膜的荧光强度降低,表现出明显的聚集荧光猝灭现象。然而在“良”溶剂或者其蒸气中,侧链趋向于伸展状态,采取一种松散的或者伸展的线圈构象,有效阻止聚合物之间的聚集,因此薄膜的荧光强度增强。有意思的是,这种聚集一解聚集的过程完全可逆,而且可在一分钟以内达到平衡。静态和时间分辨荧光技术及分子动力学模拟的研究都证明了聚合物侧链是薄膜能够接受外界刺激响应的决定性因素。另外,基于此薄膜丰富的荧光行为,发展了两种两输入的INH和OR逻辑门。毫无疑问,利用聚合物侧链构象的改变来实现薄膜荧光行为的调控将是设计基于共轭聚合物单分子层荧光传感薄膜一种新的策略,不仅会大大拓展基于共轭聚合物荧光薄膜的设计思路,也必为此类薄膜的器件化奠定坚实的基础。(5)将强络合能力的喹啉基团引入共轭聚合物的设计、合成中来,制备了三种含8-羟基喹啉的共轭聚合物(P1,P2和P3)。由于聚合物络合位点的差异,聚合物对铜离子的响应有比较大的差异。含有羟基和咪唑的聚合物P2和P3对铜离子表现出了较好的响应,聚合物的荧光被有效的猝灭。而P1对铜离子几乎不响应。更为有趣的是,P2与铜离子的相互作用是可逆的。加入与铜离子相互作用更强的氨基酸,会使铜离子与聚合物远离,P2的荧光恢复。而由于P3与铜离子相互作用太强,氨基酸,甚至EDTA都不能使荧光恢复。利用这一现象,可以实现对溶液中氨基酸的灵敏检测。
     (6)高灵敏、便携式硝基芳烃类爆炸物探测仪由于其特殊的应用价值已经成为此类研究工作发展趋势之一。在本论文的附录工作中,以第二、三部分制备的传感薄膜为核心器件,作为主要成员参与设计并加工出硝基芳烃类爆炸物检测用便携式探测仪。重点介绍了仪器相关的器件、电路、及相应的检测性能。毋庸置疑,高灵敏、便携式硝基芳烃类爆炸物探测仪的成功研发必将在环境污染监测、反恐等领域发挥重要的作用。
     本论文的创新点在于:
     (1)改进了传统荧光薄膜的制备方法,发现了基质组成和结构对薄膜检测性能的重要作用,为同类薄膜的设计制备提供了新的思路。
     (2)设计、制备了多种新型共轭荧光聚合物,得到了综合性能优异,在旋涂成膜条件下对硝基芳烃类爆炸物高度敏感的传感薄膜材料。
     (3)首次提出将单分子层化学组装与共轭荧光聚合物结合创制液、气两相通用高性能荧光敏感薄膜的思路,由此制备了一系列可对硝基芳烃类爆炸物超灵敏、高选择性检测的传感薄膜。与此同时,发现在不改变基质类型和传感元素主体结构的条件下,仅仅通过改变聚合物侧链结构就可以得到性能完全不同的荧光薄膜材料,极大地拓展了此类薄膜的创新空间。
     (4)基于实验室创制的传感薄膜,参与设计并加工出了高灵敏、便携式硝基芳烃类爆炸物探测仪,目前,其市场化的工作也正在进行中。
The design and fabrication of chemical sensors with high sensitivity and selectivity has attracted extensive attention for several decades since they play a great role in environmental monitoring, medical diagnosis, forensic analysis, especially in anti-terrorism. Film sensors offer advantages in terms of reversibility and reproducibility, which are the two crucial parameters for practical applications of fluorescent sensors and their actual device implementation. As a novel kind of sensing element, conjugated polymers (CPs) have recently emerged as one important family of sensing units and are used extensively in chemical sensors. CPs provide several advantageous features:1) high molar extinction coefficient (106 M-1 cm-1),2) the backbone of CPs enabling the rapid propagation of an exciton throughout the individual polymer chain, which is the so-called "molecular wire effect",3) super-fast photo induced electron transfer or energy transfer between CPs and analytes (in several hundred femtoseconds), which leads to "super-quenching effect". More recently, most of the scientists have paid their attention to developing sensing materials, such as design and synthesis of novel CPs. The results showed that this strategy can greatly enhance the sensing properties. However, this is not the only way to fabricate high performance film sensors. It was proven that the sensing performance of film sensor can also be improved through changing the preparation methods of film sensors.
     On the basis of the above discussion and the research progress in our lab, the objective of the present dissertation is to fabricate a series of CPs-based film sensors with novel sensing mechanisms. After a brief review on polymer sensors for nitro-aromatic explosive detection (the first Chapter), the design strategies and fabrication of several CPs-based film sensors and their sensing abilities were described in the following chapters (Chapter 2 to 6). These film sensors were proved to be highly sensitive and selective to the target analytes, such as nitro-aromatic compounds and vapor of organic compounds. In addition, the related film sensor-based portable detector for nitro-aromatic explosives has been developed in our lab.
     In Chapter 3, a novel fluorescent film was fabricated by doping the aggregates of hexaphenylsilole (HPS) into a chitosan film. It was demonstrated that the fluorescence emission of the film is sensitive and highly selective to the presence of picric acid (PA). The detecting limit for PA is about 2.1×10-8 mol/L. Introduction of 2,4,6-trinitrotoluene (TNT),2,4-dinitrotoluene (DNT), nitrobenzene (NB), phenol, benzene, toluene, methanol, ethanol, and zinc nitrate (Zn(NO3)2) had little effect upon the fluorescence emission of the film. The selectivity of the film was attributed to the specific electrostatic association effect of the protonated substrate film to picrate anion and the screening effect of the film to the interferents. The network structure of the substrate film is also favorable for the stabilization of the fluorescence emission of the hybrid film through preventing the further aggregation of silole aggregates. Fluorescence lifetime measurements revealed that the quenching is static in nature. Furthermore, the quenching process is fully reversible. Considering the simplicity of the preparation and the outstanding performances of the hybrid film, it is expected that the film may be developed into a real-life PA sensor.
     In Chapter 4, two poly(pyrene-co-phenyleneethynylene)s of different compositions (PyPE-1 and PyPE-2) were synthesized and characterized. The two polymers had been casted onto glass plate surfaces to fabricate films (Film 1, Film 2) for investingating their sensing performances, separately. It has been demonstrated that the fluorescence emissions of the two films are sensitive to the presence of 2,4,6-trinitrotoluene (TNT) in aqueous phase. Interestingly, TNT shows little effect upon the emission of the parent polymer, poly(phenyleneethynylene) (PPE). The difference was explained by 1) theπ-πinteraction between pyrene moieties contained in the co-polymers and the analyte, TNT, molecules, and 2) more suitable matching of the LUMOs (lowest unoccupied molecular orbital) of the pyrene-containing conjugated polymers with that of TNT molecules. Further experiments demonstrated that the sensing is reversible, and rarely encounters interference from commonly found compounds, including other NACs. Fluorescence lifetime measurements revealed that the quenching is static in nature. The smart performance of the films and the easiness of their preparation guarantee that the films may be developed into sensor devices for super-sensitive detection of TNT in groundwater or seawater.
     In Chapter 5, the self-assembly monolayers (SAMs) techniques was used to fabricate sensing films. A fluorescent film sensor was prepared by chemical assembly of oligo(diphenylsilane)s on a glass plate surface, and was used for the detection of nitroaromatic compounds (NACs) in vapor phase. This design combines the advantages of fluorescent films based on single-layer chemistry and the signal amplification effect of conjugated polymers, and provides an effective way to create novel fluorescent sensing films for NACs explosives. The advantages have been demonstrated experimentally by the super sensitive response of the film mentioned above to the presence of trace amounts of NACs in vapor phase. Further experiments showed that the sensing process is reversible, and the common interferents have no interference to the process. Fluorescence lifetime measurement revealed that the quenching is static in nature. The super sensitive response, the reversibility and free interference of the sensing process make the film a promising NACs sensor.
     In Chapter 6, a fluorescence behavior controllable conjugated polymer (CPs)-based fluorescent film was developed by chemically attaching poly(2,5-dihexadecyloxy-phenyleneethynylene) (M-PPEs) onto a glass plate surface. It was revealed that the profile of the fluorescence emission spectrum of the film depended upon the polarity of its medium. This dependence has been attributed to the alteration of the conformation of the side chains of the polymer in immobilized state. In "poor" solvents or vapors, the side chains may adopt a compact coil conformation, resulting in aggregation of the immobilized polymers and thereby fluorescence emission of the film is reduced because of the so called aggregation induced fluorescence quenching effect. Whereas in "good" solvents or vapors, the side chains tend to be swollen and adopt extended or loose coil structure, and thereby preventing the aggregation of the polymers, coupled with increasing the fluorescence emission. Interestingly, this alteration process is fully reversible, and the retention time for each equilibration is less than 1 min. The film is also responsible for the changes in the compositions of mixture solvents, such as THF/methanol. In particular, a two-input INH and OR logic gates were presented on the basis of the film. No doubt, this finding can be taken as a new strategy for the design of CPs and self-assembled monolayer (SAM) based fluorescent sensing films, and will definitely expand their applications.
     In Chapter 7, a fluorescent conjugated polymer (CPs)-based amino acid chemsensor has been built up successfully by using "turn-on" strategy. The sensing performances were determined by the "proper interaction" between functional groups of polymers and copper (Ⅱ) ions. Obviously, the imidazole-functionalized CPs, P2, is a perfect sensing material to fabricate the amino acid chemsensors.
     In the appendix, a highly sensitive and portable explosive detector was created, which was based on the sensing films prepared in Part 2 and 3. The basic structure was provided in this chapter. No doubt, the economical, stable and portable detector with high-quality performance would gain extensive applications in the fields of environmental monitoring, anti-terrorism and nonmetal landmine detection.
     The main contributions of the thesis are described as follows:
     (1) Expending the design strategies for fabrication of sensing films. It is found that the substrate played the key role in sensing process, which gave a new way to fabricate the similar sensing films.
     (2) Designing and synthesizing a class of new conjugated polymers, which have been proved that it is an effective method to enhance the sensing performances of sensing films.
     (3) It was demonstrated clearly that the combination of the advantages of fluorescent films based on mono-molecular-layer chemistry and those based on conjugated polymers is an effective and feasible way to create novel fluorescent film sensors. Further research work showed that altering the side chains can affect the fluorescence properties, which may be a new strategy to make high performance sensing films.
     (4) On the basis of the above-mentioned fluorescent sensing films, an economical, stable and portable explosive detector with high performance has been created in our lab.
引文
[1]A. M. Rouhi. Seeking druges in natural products[J]. Chem. Eng. News,1997,75 (14),14-29.
    [2]U. S. E. P. Agency.2004 Edition of the drinking water standards and health advisories, Washington DC,2004.
    [3]U. S. E. P. Agency. Approaches for the remediation of federal facility sites contaminated with explosive or radioactive wastes, Washington DC,1993.
    [4]A. W. Czarnik. A sense for landmines[J]. Nature,1998,394 (6692),417-418.
    [5]K. Hakansson, R. V. Coorey, R. A. Zubarev, V. L. Talrose, P. Hakansson. Low-mass ions observed in plasma desorption mass spectrometry of high explosives[J]. J. Mass Spectrom.,2000, 35,337-346.
    [6]J. M. Sylvia, J. A. Janni, J. D. Klein, K. M. Spencer. Surface-enhanced raman detection of 2,4-dinitrotoluene impurity vapor as a marker to locate landmines[J]. Anal. Chem.,2000,72 (23), 5834-5840.
    [7]V. P. Anferov, G. V. Mozjoukhine, R. Fisher. Pulsed spectrometer for nuclear quadrupole resonance for remote detection of nitrogen in explosives [J]. Rev. Sci. Instrum.,2000,71 (4), 1656-1659.
    [8]R. D. Luggar, M. J. Farquharson, J. A. Horrocks, R. J. Lacey. Multivariate analysis of statistically poor EDXRD spectra for the detection of concealed explosives[J]. J. X-Ray Spectrom.,1998,27,87-94.
    [9]M. Krausa, K. Schorb. Trace detection of 2,4,6-trinitrotoluene in the gaseous phase by cyclic voltammetry[J]. J. Electroanal. Chem.,1999,461 (1-2),10-13.
    [10]D. S. Moore. Instrumentation for trace detection of high explosives [J]. Rev. Sci. Instrum.,2004, 75,2499-2512.
    [11]W. C. Trogler. in NATO ASI Workshop, Electronic noses & sensors for the detection of explosives,2004, Kluwer Academic Publishers, Netherlands.
    [12]J. Yinon. Forensic and environmental detection of explosives, John Wiley & Sons, Chichester, 1999.
    [13]L. C. Shriver-Lake, B. L. Donner, F. S. Ligler. On-site detection of TNT with a portable fiber optic biosensor[J]. Environ. Sci. Technol.,1997,31 (3),837-841.
    [14]J. Lu, Z. Zhang. A reusable optical sensing layer for picric acid based on the luminescence quenching of the Eu-thenoyltrifluoroacetone complex[J]. Anal. Chim. Acta,1996,318 (2), 175-179.
    [15]A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, V. Bulovic. Sensitivity gains in chemosensing by lasing action in organic polymers[J]. Nature,2005,434 (7035),876-879.
    [16]S. J. Toal, W. C. Trogler. Polymer sensors for nitroaromatic explosives detection[J]. J. Mater. Chem.,2006,16 (28),2871-2883.
    [17]P. Mostak, M. Stanel. Detection of SEMTEX plastic explosives [J]. NATO Sci. Ser., Ⅱ,2002,66, 93-102.
    [18]K. G. Furton, R. J. Harper, J. M. Perr, J. R. Almirall. Optimization of biological and instrumental detection of explosives and ignitable liquid residues including canines, SPME/ITMS and GC/MSn [J]. Proc. SPIE-Int. Soc. Opt. Eng.,2003,5071,183-192.
    [19]G. A. Eiceman, J. A. Stone. Peer reviewed:ion mobility spectrometers in national defense[J]. Anal. Chem.,2004,76 (21),390 A-397 A.
    [20]U. S. D. O. Defense. Environmental safety technology certification program cost and performance report, Feb.2004.
    [21]H. Sohn, R. M. Calhoun, M. J. Sailor, W. C. Trogler. Detection of TNT and picric acid on surfaces and in seawater by using photoluminescent polysiloles[J]. Angew. Chem., Int. Ed.,2001, 40,2104-2015.
    [22]D. T. McQuade, A. E. Pullen, T. M. Swager. Conjugated polymer-based chemical sensors[J]. Chem. Rev.,2000,100 (7),2537-2574.
    [23]T. M. Swager. The molecular wire approach to sensory signal amplification[J]. Acc. Chem. Res., 1998,31 (5),201-207.
    [24]J. Zheng, T. M. Swager. Poly(aryleneethynylene)s in chemosensing and biosensing[J]. Adv. Polym. Sci.,2005,177,151-179.
    [25]Y. Liu, R. C. Mills, J. M. Boncella, K. S. Schanze. Fluorescent polyacetylene thin film sensor for nitroaromatics[J]. Langmuir,2001,17 (24),7452-7455.
    [26]K. Tsuchihara, T. Masuda, T. Higashimura. Tractable silicon-containing poly(diphenylacetyl-enes):their synthesis and high gas permeability [J]. J. Am. Chem. Soc.,1991,113 (22), 8548-8549.
    [27]C. P. Chang, C. Y. Chao, J. H. Huang, A. K. Li, C. S. Hsu, M. S. Lin, B. R. Hsieh, A. C. Su. Fluorescent conjugated polymer films as TNT chemosensors[J]. Synth. Met.,2004,144 (3), 297-301.
    [28]L. Chen, D. McBranch, R. Wang, D. Whitten. Surfactant-induced modification of quenching of conjugated polymer fluorescence by electron acceptors:applications for chemical sensing[J]. Chem. Phys. Lett.,2000,330 (1-2),27-33.
    [29]C. Deng, Q. He, C. He, L. Shi, J. Cheng, T. Lin. Conjugated polymer-titania nanoparticle hybrid films:random lasing action and ultrasensitive detection of explosive vapors[J]. J. Phys. Chem. B, 2010,114 (13),4725-4730.
    [30]J.-S. Yang, T. M. Swager. Porous shape persistent fluorescent polymer films:an approach to TNT sensory materials[J]. J. Am. Chem. Soc.,1998,120 (21),5321-5322.
    [31]J. W. Grate, M. H. Abraham. Solubility interactions and the design of chemically selective sorbent coatings for chemical sensors and arrays[J]. Sens. Actuators, B,1991,3 (2),85-111.
    [32]S. Chen, Q. Zhang, J. Zhang, J. Gu, L. Zhang. Synthesis of two conjugated polymers as TNT chemosensor materials[J]. Sens. Actuators, B,2010,149 (1),155-160.
    [33]H. H. Nguyen, X. Li, N. Wang, Z. Y. Wang, J. Ma, W. J. Bock, D. Ma. Fiber-optic detection of explosives using readily available fluorescent polymers[J]. Macromolecules,2009,42 (4), 921-926.
    [34]Y. Long, H. Chen, Y. Yang, H. Wang, Y. Yang, N. Li, K. Li, J. Pei, F. Liu. Electrospun nanofibrous film doped with a conjugated polymer for DNT fluorescence sensor[J]. Macromolecules,2009,42 (17),6501-6509.
    [35]H. Wang, T. Lin, F. Bai, A. Kaynak. Fluorescence quenching behaviour of hyperbranched polymer to the nitro-compounds (2004). Proceedings of the NATO advanced study institute on nanoengineered nanofibrous materials. pp.459-468, Kluwer Academic Publishers, Dordrecht, The Netherlands.
    [36]D. A. Olley, E. J. Wren, G. Vamvounis, M. J. Fernee, X. Wang, P. L. Burn, P. Meredith, P. E. Shaw. Explosive sensing with fluorescent dendrimers:the role of collisional quenching[J]. Chem. Mater.,2010,23 (3),789-794.
    [37]H. Nie, Y. Zhao, M. Zhang, Y. Ma, M. Baumgarten, K. Mullen. Detection of TNT explosives with a new fluorescent conjugated polycarbazole polymer[J]. Chem. Commun.,2011,47 (4), 1234-1236.
    [38]www.nomadics.com.
    [39]R. West, H. Sohn, U. Bankwitz, J. Calabrese, Y. Apeloig, T. Mueller. Dilithium derivative of tetraphenylsilole:an eta(1)-eta(5) dilithium structure[J]. J. Am. Chem. Soc.,1995,117 (46), 11608-11609.
    [40]A. Saxena, M. Fujiki, R. Rai, G. Kwak. Fluoroalkylated polysilane film as a chemosensor for explosive nitroaromatic compounds[J]. Chem. Mater.,2005,17 (8),2181-2185.
    [41]T. Ichikawa, Y. Yamada, J. Kumagai, M. Fujiki. Suppression of the anderson localization of charge carriers on polysilane quantum wire[J]. Chem. Phys. Lett.,1999,306 (5-6),275-279.
    [42]K. Tamao, M. Uchida, T. Izumizawa, K. Furukawa, S. Yamaguchi. Silole derivatives as efficient electron transporting materials[J]. J. Am. Chem. Soc.,1996,118 (47),11974-11975.
    [43]A. Adachi, J. Ohshita, A. Kunai, J. Kido, K. Okita. Multilayer organic electroluminescent device with dithienosilole derivative [J]. Chem. Lett.,1998,23,1233.
    [44]H. Sohn, R. R. Huddleston, D. R. Powell, R. West, K. Oka, X. Yonghua. An electroluminescent polysilole and some dichlorooligosiloles[J]. J. Am. Chem. Soc.,1999,121 (12),2935-2936.
    [45]H. Sohn, M. J. Sailor, D. Magde, W. C. Trogler. Detection of nitroaromatic explosives based on photoluminescent polymers containing metalloles[J]. J. Am. Chem. Soc.,2003,125 (13), 3821-3830.
    [46]J. Chen, C. C. W. Law, J. W. Y. Lam, Y. Dong, S. M. F. Lo, I. D. Williams, D. Zhu, B. Z. Tang. Synthesis, light emission, nanoaggregation, and restricted intramolecular rotation of 1,1-substituted 2,3,4,5-tetraphenylsiloles[J]. Chem. Mater.,2003,15 (7),1535-1546.
    [47]J. Chen, B. Xu, K. Yang, Y. Cao, H. H. Y. Sung, I. D. Williams, B. Z. Tang. Photoluminescence spectral reliance on aggregation order of 1,1-bis(2-thienyl)-2,3,4,5-tetraphenylsilole[J]. J. Phys. Chem. B,2005,109 (36),17086-17093.
    [48]S. Yamaguchi, R.-Z. Jin, K. Tamao. Modification of the electronic structure of silole by the substituents on the ring silicon[J]. J. Organomet. Chem.,1998,559 (1-2),73-80.
    [49]S. Yamaguchi, K. Tamao. Silole-containing σ-and π-conjugated compounds[J]. J. Chem. Soc., Dalton Trans.,1998,22,3693-3702.
    [50]S. J. Toal, H. Sohn, L. N. Zakarov, W. S. Kassel, J. A. Golen, A. L. Rheingold, W. C. Trogler. Syntheses of oligometalloles by catalytic dehydrocoupling[J]. Organometallics,2005,24 (13), 3081-3087.
    [51]Y. Yamaguchi. Design of novel σ*-π* conjugated polysilanes[J]. Synth. Met.,1996,82 (2), 149-153.
    [52]J. Michl. Solution photophysics and electronic structure of polysilanes[J]. Synth. Met.,1992,50 (1-3),367-386.
    [53]L. Rosenberg, D. N. Kobus. Dehydrogenative coupling of primary alkyl silanes using Wilkinson's catalyst[J]. J. Organomet. Chem.,2003,685 (1-2),107-112.
    [54]H. Liu, P. K. Dasgupta. Analytical chemistry in a drop[J]. Trends Anal. Chem.,1996,15 (9), 468-475.
    [55]J. Yinon. Peer reviewed:detection of explosives by electronic noses[J]. Anal. Chem.,2003,75 (5),98A-105A.
    [56]S. W. Thomas, G. D. Joly, T. M. Swager. Chemical sensors based on amplifying fluorescent conjugated polymers[J]. Chem. Rev.,2007,107 (4),1339-1386.
    [57]A. J. Matzger, T. P. Vaid, N. S. Lewis. Vapor sensing with arrays of carbon black-polymer composites[J]. Proc. SPIE-Int. Soc. Opt. Eng.,1999,3710,315-320.
    [58]R. A. McGill, T. E. Mlsna, R. Chung, V. K. Nguyen, J. Stepnowski. The design of functionalized silicone polymers for chemical sensor detection of nitroaromatic compounds [J]. Sens. Actuators, B,2000,65 (1-3),5-9.
    [59]G. K. Kannan, A. T. Nimal, U. Mittal, R. D. S. Yadava, J. C. Kapoor. Adsorption studies of carbowax coated surface acoustic wave (SAW) sensor for 2,4-dinitrotoluene (DNT) vapour detection[J], Sens. Actuators, B,2004,101 (3),328-334.
    [60]X. Yang, X. X. Du, J. Shi, B. Swanson. Molecular recognition and self-assembled polymer films for vapor phase detection of explosives[J]. Talanta,2001,54 (3),439-445.
    [61]B. Filanovsky, B. Markovsky, T. Bourenko, N. Perkas, R. Persky, A. Gedanken, D. Aurbach. Carbon electrodes modified with TiO2/Metal nanoparticles and their application for the detection of trinitrotoluene[J]. Adv. Func. Mater.,2007,17 (9),1487-1492.
    [62]S. Content, W. C. Trogler, M. J. Sailor. Detection of nitrobenzene, DNT, and TNT vapors by quenching of porous silicon photoluminescence[J]. Chem. Eur. J.,2000,6 (12),2205-2213.
    [63]S. Nieto, A. Santana, S. P. Hernandez-Rivera, R. T. Lareau, R. T. Chamberlain, M. E. Castro-Rosario. Quantum dots for detection of trace amount of nonvolatile explosives:the effect of TNT in the fluorescence of CdSe quantum dots[J]. Proc. SPIE-Int. Soc. Opt. Eng.,2004,5403, 256-260.
    [64]S. J. Toal, D. Magde, W. C. Trogler. Luminescent oligo(tetraphenyl)silole nanoparticles as chemical sensors for aqueous TNT[J]. Chem. Commun.,2005, (43),5465-5467.
    [65]J. Liu, Y. Zhong, J. W. Y. Lam, P. Lu, Y. Hong, Y. Yu, Y. Yue, M. Faisal, H. H. Y. Sung, I. D. Williams, K. S. Wong, B. Z. Tang. Hyperbranched conjugated polysiloles:synthesis, structure, aggregation-enhanced emission, multicolor fluorescent photopatterning, and superamplified detection of explosives[J]. Macromolecules,2010,43 (11),4921-4936.
    [66]L. M. Dorozhkin, V. A. Nefedov, A. G. Sabelnikov, V. G. Sevastjanov. Detection of trace amounts of explosives and/or explosive related compounds on various surfaces by a new sensing technique/material[J]. Sens. Actuators, B,2004,99 (2-3),568-570.
    [67]S. J. Toal, J. C. Sanchez, R. E. Dugan, W. C. Trogler. Visual detection of trace nitroaromatic explosive residue using photoluminescent metallole-containing polymers[J]. J. Forensic Sci., 2007,52,79-83.
    [68]G. Kwak, W.-E. Lee, W.-H. Kim, H. Lee. Fluorescence imaging of latent fingerprints on conjugated polymer films with large fractional free volume[J]. Chem. Commun.,2009, (16), 2112-2114.
    [69]J. C. Sanchez, A. G. DiPasquale, A. L. Rheingold, W. C. Trogler. Synthesis, luminescence properties, and explosives sensing with 1,1-tetraphenylsilole-and 1,1-silafluorene-vinylene polymers[J]. Chem. Mater.,2007,19 (26),6459-6470.
    [70]J. Yang, S. Aschemeyer, H. P. Martinez, W. C. Trogler. Hollow silica nanospheres containing a silafluorenea-fluorene conjugated polymer for aqueous TNT and RDX detection[J]. Chem. Commun.,2010,46 (36),6804-6806.
    [71]J. C. Sanchez, W. C. Trogler. Efficient blue-emitting silafluorene-fluorene-conjugated copolymers:selective turn-off/turn-on detection of explosives[J]. J. Mater. Chem.,2008,18 (26), 3143-3156.
    [72]L. P. Ding, Y. Fang. Chemically assembled monolayers of fluorophores as chemical sensing materials [J]. Chem. Soc. Rev.,2010,39,4258-4273.
    [73]A. P. d. Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, T. E. Rice. Signaling recognition events with fluorescence sensors and switches[J]. Chem. Rev.,1997,97 (5),1515-1566.
    [74]R. A. Bissell, A. P. d. Silva, H. Q. N. Gunaratne, P. L. M. Lynch, G. E. M. Maguire, K. P. A. S. Sandanayake. Molecular fluorescent signaling with'fluor-spacer-receptor'systems:approaches to sensing and switching devices via supramolecular photophysics[J]. Chem. Soc. Rev.,1992,21 (3),187-195.
    [75]S. Onclin, B. J. Ravoo, D. N. Reinhoudt. Engineering silicon oxide surfaces using self-assembled monolayers [J]. Angew. Chem., Int. Ed.,2005,44 (39),6282-6304.
    [76]L. Basabe-Desmonts, R. S. Z. J. Beld, D. N. R. J. Hernando, M. C. Calama. A simple approach to sensor discovery and fabrication on self-assembled monolayers on glass[J]. J. Am. Chem. Soc.,2004,126 (23),7293-7299.
    [77]M. Mazur, G. J. Blanchard. Probing intermolecular communication with surface-attached pyrene[J]. J. Phys. Chem. B,2005,109 (9),4076-4083.
    [78]Y. Zheng, J. Orbulescu, X. Ji, F. M. Andreopoulos, S. M. Pham, R. M. Leblanc. Development of fluorescent film sensors for the detection of divalent copper[J]. J. Am. Chem. Soc.,2003,125 (9), 2680-2686.
    [79]宁光辉,吕九如,房喻,胡道道.介质极性敏感膜的制备和性能研究[J].高等学校化学学报,2000,21(8),1196-1199.
    [80]L. P. Ding, Y. Fang, L. L. Jiang, L. N. Gao, X. Yin. Twisted intra-molecular electron transfer phenomenon of dansyl immobilized on chitosan film and its sensing property to the composition of ethanol-water mixtures[J]. Thin Solid Films,2005,478 (1-2),318-325.
    [81]S. J. Zhang, F. T. Lv, L. N. Gao, L. P. Ding, Y. Fang. Fluorescence sensors for nitroaromatic compounds based on monolayer assembly of polycyclic aromatics[J]. Langmuir,2007,23 (3), 1584-1590.
    [82]J. P. Kang, L. P. Ding, F. T. Lv, S. J. Zhang, Y. Fang. Dansyl-based fluorescent film sensor for nitroaromatics in aqueous solution[J]. J. Phys. D:Appl. Phys.,2006,39 (23),5097-5102.
    [83]V. Pimienta, R. Etchenique, T. Buhse. On the origin of electrochemical oscillations in the picric acid/CTAB two-phase system[J]. J. Phys. Chem. A,2001,105 (44),10037-10044.
    [84]C. Beyer, U. Bohme, C. Pietzsch, G. Roewer. Preparation, characterization and properties of dipolar l,2-N,N-dimethylaminomethylferrocenylsilanes[J]. J. Organomet. Chem.,2002,654 (1-2),187-201.
    [85]P. G. Thorne, T. F. Jenkins. A field method for quantifying ammonium picrate and picric acid in soil[J]. Field Anal. Chem. Technol.,1997,1 (3),165-170.
    [86]T. P. Hadjiioannou, E. P. Diamandis. Analytical study of a new picrate-selective membrane electrode[J]. Anal. Chim. Acta,1977,94 (2),443-447.
    [87]M. Godejohann, A. Preiβ, K. Levsen, G. Wunsch. Determination of nitrophenols, nitrobenzoic acids and polar explosives by HPLC-diode array detection in ground water samples of former ammunition plants[J]. Chromatographia,1996,43 (11),612-618.
    [88]S. Z. Qureshi, Izzatullah, R. Bansal. Sensitive and selective ion exchange test for microgram detection and spectrophotometric determination of picric acid[J]. Microchem. J.,1981,26 (4), 472-476.
    [89]A. Bromberg, R. A. Mathies. Homogeneous immunoassay for detection of TNT and its analogues on a microfabricated capillary electrophoresis chip[J]. Anal. Chem.,2003,75 (5), 1188-1195.
    [90]C. Jian, W. R. Seitz. Membrane for in situ optical detection of organic nitro compounds based on fluorescence quenching[J]. Anal. Chim. Acta,1990,237,265-271.
    [91]X. Yang, C. G. Niu, G. L. Shen, R. Q. Yu. Picric acid sensitive optode based on a fluorescence carrier covalently bound to membrane[J]. Analyst,2001,126 (3),349-352.
    [92]R. Ni, R. B. Tong, C. C. Guo, G. L. Shen, R. Q. Yu. An anthracene/porphyrin dimer fluorescence energy transfer sensing system for picric acid[J]. Talanta,2004,63 (2),251-257.
    [93]Y. J. Hu, S. Z. Tan, G. L. Shen, R. Q. Yu. A selective optical sensor for picric acid assay based on photopolymerization of 3-(N-methacryloyl) amino-9-ethylcarbazole[J], Anal. Chirn. Acta, 2006,570(2),170-175.
    [94]S. Zhang, F. Lu, L. Gao, L. Ding, Y. Fang. Fluorescent sensors for nitroaromatic compounds based on monolayer assembly of polycyclic aromatics[J]. Langmuir,2006,23 (3),1584-1590.
    [95]J. C. Sanchez, S. A. Urbas, S. J. Toal, A. G. DiPasquale, A. L. Rheingold, W. C. Trogler. Catalytic hydrosilylation routes to divinylbenzene bridged silole and silafluorene polymers. applications to surface imaging of explosive particulates[J]. Macromolecules,2008,41 (4), 1237-1245.
    [96]J. C. Sanchez, W. C. Trogler. Efficient blue-emitting silafluorene-fluorene-conjugated copolymers:selective turn-off/turn-on detection of explosives[J]. J. Mater. Chem,2008,18 (26), 3143-3156.
    [97]M. Hissler, P. W. Dyer, R. Reau. Linear organic π-conjugated systems featuring the heavy group 14 and 15 elements[J]. Coord. Chem. Rev.,2003,244 (1-2),1-44.
    [98]C. Chuit, R. J. P. Corriu, C. Reye, J. C. Young. Reactivity of penta-and hexacoordinate silicon compounds and their role as reaction intermediates[J]. Chem. Rev.,1993,93 (4),1371-1448.
    [99]X. Zhan, C. Risko, F. Amy, C. Chan, W. Zhao, S. Barlow, A. Kahn, J. L. Bredas, S. R. Marder. Electron affinities of 1,1-diaryl-2,3,4,5-tetraphenylsiloles:direct measurements and comparison with experimental and theoretical estimates[J]. J. Am. Chem. Soc.,2005,127 (25),9021-9029.
    [100]H. Murata, G. G. Malliaras, M. Uchida, Y. Shen, Z. H. Kafafi. Non-dispersive and air-stable electron transport in an amorphous organic semiconductor[J]. Chem. Phys. Lett.,2001,339 (3-4), 161-166.
    [101]S. J. Toal, K. A. Jones, D. Magde, W. C. Trogler. Luminescent silole nanoparticles as chemoselective sensors for Cr(Ⅵ)[J]. J. Am. Chem. Soc.,2005,127 (33),11661-11665.
    [102]L. Notin, C. Viton, L. David, P. Alcouffe, C. Rochas, A. Domard. Morphology and mechanical properties of chitosan fibers obtained by gel-spinning:Influence of the dry-jet-stretching step and ageing[J]. Acta Biomater.,2006,2 (4),387-402.
    [103]F. T. Lv, L. N. Gao, L. P. Ding, L. L. Jiang, Y. Fang. Spacer layer screening effect:a novel fluorescent film sensor for organic copper(II) salts[J]. Langmuir,2006,22 (2),841-845.
    [104]Y. Fang, G. Ning, D. Hu, J. Lu. Synthesis and solvent-sensitive fluorescence properties of a novel surface-functionalized chitosan film:potential materials for reversible information storage[J]. J. Photochem. Photobiol., A,2000,135 (2-3),141-145.
    [105]L. Ding, Y. Fang, L. Jiang, L. Gao, X. Yin. Twisted intra-molecular electron transfer phenomenon of dansyl immobilized on chitosan film and its sensing property to the composition of ethanol-water mixtures[J]. Thin Solid Films,2005,478 (1-2),318-325.
    [106]H. Wang, Y. Fang, L. Ding, L. Gao, D. Hu. Preparation and nitromethane sensing properties of chitosan thin films containing pyrene and/β-cyclodextrin units[J]. Thin Solid Films,2003,440 (1-2),255-260.
    [107]B. Z. Tang, X. Zhan, G. Yu, P. P. Sze Lee, Y. Liu, D. Zhu. Efficient blue emission from siloles[J]. J. Mater. Chem.,2001,11 (12),2974-2978.
    [108]F. Xiao, M. Ichikawa. Oxide-supported triruthenium ketenylidene cluster:evidence for metal-metal bonds from laser Raman spectroscopy[J]. Langmuir,1993,9 (11),2963-2964.
    [109]D. T. McQuade, A. E. Pullen, T. M. Swager. Conjugated polymer-based chemical sensors[J]. Chem. Rev.,2000,100 (7),2537-2574.
    [110]K. J. Albert, N. S. Lewis, C. L. Schauer, G. A. Sotzing, S. E. Stitzel, T. P. Vaid, D. R. Walt. Cross-reactive chemical sensor arrays[J]. Chem. Rev.,2000,100 (7),2595-2626.
    [111]J. Yinon. Field detection and monitoring of explosives[J]. Trends Anal. Chem.,2002,21 (4), 292-301.
    [112]W. E. Tenhaeff, L. D. McIntosh, K. K. Gleason. Synthesis of poly(4-vinylpyridine) thin films by initiated chemical vapor deposition (iCVD) for selective nanotrench-based sensing of nitroaromatics[J]. Adv. Funct. Mater.,2010,20,1144-1151.
    [113]B. Filanovsky, B. Markovsky, T. Bourenko, N. Perkas, R. Persky, A. Gedanken, D. Aurbach. Carbon electrodes modified with TiO2/metal nanoparticles and their application to the detection of trinitrotoluene[J]. Adv. Funct. Mater.,2007,17,1487-1492.
    [114]C. A. Weisberg, M. L. Ellickson. Practical modifications to US EPA method 8330 for the analysis of explosives by high performance liquid chromatography (hplc)[J]. Am. Lab.,1998,30, 32N-32V.
    [115]J. M. Sylvia, J. A. Janni, J. D. Klein, K. M. Spencer. Surface-enhanced raman detection of 2,4-dinitrotoluene impurity vapor as a marker to locate landmines[J]. Anal. Chem.,2000,72 (23), 5834-5840.
    [116]A. Hilmi, J. H. T. Luong. Electrochemical detectors prepared by electroless deposition for microfabricated electrophoresis chips[J]. Anal. Chem.,2000,72 (19),4677-4682.
    [117]R. D. Luggar, M. J. Farquharson, J. A. Horrocks, R. J. Lacey. Multivariate analysis of statistically poor spectra for the EDXRD detection of concealed explosives[J]. X-Ray Spectrom., 1998,27,87-94.
    [118]M. Krausa, K. Schorb. Trace detection of 2,4,6-trinitrotoluene in the gaseous phase by cyclic voltammetry[J]. J. Electroanal. Chem.,1999,461,10-13.
    [119]T. Naddo, Y. Che, W. Zhang, K. Balakrishnan, X. M. Yang, M. Yen, J. C. Zhao, J. S. Moore, L. Zang. Detection of explosives with a fluorescent nanofibril film[J]. J. Am. Chem. Soc.,2007, 129 (22),6978-6979.
    [120]M. D. Woodka, V. P. Schnee, M. P. Polcha. Fluorescent polymer sensor array for detection and discrimination of explosives in water[J]. Anal. Chem.,2010,82 (23),9917-9924.
    [121]W. Chen, N. B. Zuckerman, J. P. Konopelski, S. Chen. Pyrene-functionalized ruthenium nanoparticles as effective chemosensors for nitroaromatic derivatives[J]. Anal. Chem.,2010,82 (2),461-465.
    [122]R. Y. Tu, B. H. Liu, Z. Y. Wang, D. M. Gao, F. Wang, Q. L. Fang, Z. P. Zhang. Amine-capped ZnS-Mn2+nanocrystals for fluorescence detection of trace TNT explosive[J]. Anal. Chem.,2008, 80 (9),3458-3465.
    [123]T. M. Swager. The molecular wire approach to sensory signal amplification[J]. Acc. Chem. Res., 1998,31 (5),201-207.
    [124]J.-S. Yang, T. M. Swager. Fluorescent porous polymer films as TNT chemosensors:electronic and structural effects[J]. J. Am. Chem. Soc.,1998,120 (46),11864-11873.
    [125]D. H. Zhao, T. M. Swager. Sensory responses in solution vs solid state:a fluorescence quenching study of poly(ptycenebutadiynylene)s[J]. Macromolecules,2005,38 (22),9377-9384.
    [126]Y. Liu, R. C. Mills, J. M. Boncella, K. S. Schanze. Fluorescent polyacetylene thin film sensor for nitroaromatics[J]. Langmuir,2001,17 (24),7452-7455.
    [127]H. Sohn, M. J. Sailor, D. Magde, W. C. Trogler. Detection of nitroaromatic explosives based on photoluminescent polymers containing metalloles[J]. J. Am. Chem. Soc.,2003,125 (13),3821-3830.
    [128]J. C. Sanchez, S. A. Urbas, S. J. Toal, A. G. DiPasquale, A. L. Rheingold, W. C. Trogler. Catalytic hydrosilylation routes to divinylbenzene bridged silole and silafluorene polymers, applications to surface imaging of explosive particulates[J]. Macromolecules,2008,41 (4), 1237-1245.
    [129]J. C. Sanchez, W. C. Trogler. Efficient blue-emitting silafluorene-fluorene-conjugated copolymers:selective turn-off/turn-on detection of explosives[J]. J. Mater. Chem.,2008,18, 3143-3156.
    [130]J. C. Sanchez, A. G. DiPasquale, A. L. Rheingold, W. C. Trogler. Synthesis, luminescence properties, and explosives sensing with 1,1-tetraphenylsilole-and 1,1-silafluorene-vinylene polymers[J]. Chem. Mater.,2007,19 (26),6459-6470.
    [131]L. Shriver-Lake, B. Donner, F. Ligler. On-site detection of TNT with a portable fiber optic biosensor[J]. Environ. Sci. Technol.,1997,31 (3),837-841.
    [132]A. Saxena, M. Fujiki, R. Rai, G. Kwak. Fluoroalkylated polysilane film as a chemosensor for explosive nitroaromatic compounds[J]. Chem. Mater.,2005,17 (8),2181-2185.
    [133]G. He, H. N. Peng, T. H. Liu, M. N. Yang, Y. Zhang, Y. Fang. A novel picric acid film sensor via combination of the surface enrichment effect of chitosan films and the aggregation-induced emission effect of siloles[J]. J. Mater. Chem.,2009,19,7347-7353.
    [134]J. H. Li, C. E. Kendig, E. E. Nesterov. Chemosensory performance of molecularly imprinted fluorescent conjugated polymer materials[J]. J. Am. Chem. Soc.,2007,129 (51),15911-15918.
    [135]M. E. Germain, M. J. Knapp. Discrimination of nitroaromatics and explosives mimics by a fluorescent Zn(salicylaldimine) sensor array[J]. J. Am. Chem. Soc.,2008,130 (16),5422-5423.
    [136]A. D. Hughes, I. C. Glenn, A. D. Patrick, A. Ellington, E. V. Anslyn. A pattern recognition based fluorescence quenching assay for the detection and identification of nitrated explosive analytesfJ]. Chem. Eur. J.,2008,14,1822-1827.
    [137]H. Bai, C. Li, G. Q. Shi. Rapid nitroaromatic compounds sensing based on oligopyrene[J]. Sens. Actuators, B 2008,130,777-782.
    [138]G. Venkataramana, S. Sankararaman. Synthesis and spectroscopic investigation of aggregation through cooperative σ-σ and C-H...O teractions in a novel pyrene octaaldehyde derivative[J]. Org. Lett.,2006,8 (13),2739-2742.
    [139]H. Shimizu, K. Fujimoto, M. Furusyo, H. Maeda, Y. Nanai, K. Mizuno, M. Inouye. Highly emissive π-conjugated alkynylpyrene oligomers:their synthesis and photophysical properties[J]. J. Org. Chem.,2007,72 (4),1530-1533.
    [140]S. J. Zhang, F. T. Lv, L. N. Gao, L. P. Ding, Y. Fang. Fluorescent sensors for nitroaromatic compounds based on monolayer assembly of polycyclic aromatics[J]. Langmuir,2007,23 (3), 1584-1590.
    [141]S. Leroy-Lhez, F. Fages. Synthesis and photophysical properties of a highly fluorescent ditopic ligand based on 1,6-bis(ethynyl)pyrene as central aromatic core[J]. Eur. J. Org. Chem.,2005, 2684-2688.
    [142]T. M. Swager, C. J. Gil, M. S. Wrighton. Fluorescence studies of poly(p-phenyleneethynylene)s: the effect of anthracene substitution[J]. J. Phys. Chem.,1995,99 (14),4886-4893.
    [143]A. Farcas, N. Jarroux, I. Ghosh, P. Guegan, W. M. Nau, V. Harabagiu. Polyrotaxanes of pyrene-triazole conjugated azomethine and a-cyclodextrin with high fluorescence properties [J]. Macromol. Chem. Phys.,2009,210,1440-1449.
    [144]J. A. Mikroyannidis. Luminescent monomer of substituted tetrastyrylpyrene and poly(p-phenylenevinylene) derivative with pyrene segments:synthesis and photophysics[J]. Synth. Met., 2005,155,125-129.
    [145]J. Ohshita, K. Yoshimoto, Y. Tada, Y. Harima, A. Kunai, Y. Kunugi, K. Yamashita. Hole-transporting properties of organosilanylene-diethynylpyrene and diethynylanthracene alternating polymers. Applications to patterning of light-emitting images[J]. J. Organomet. Chem.,2003,678,33-38.
    [146]S. Hayase, D. A. Hrovat, W. T. Borden. A B3LYP study of the effects of phenyl substituents on 1,5-hydrogen shifts in 3-(Z)-1,3-pentadiene provides evidence against a chameleonic transition structure[J]. J. Am. Chem. Soc.,2004,126 (32),10028-10034.
    [147]Z. L. Cai, M. J. Crossley, J. R. Reimers, R. Kobayashi, R. D. Amos. Density functional theory for charge transfer:the nature of the N-bands of porphyrins and chlorophylls revealed through CAM-B3LYP, CASPT2, and SAC-CI calculations[J]. J. Phys. Chem. B,2006,110 (31), 15624-15632.
    [148]M. Frisch, G. Trucks, J. Cheeseman, G. Scalmani, F. Clemente, H. Hratchian, M. Caricato, A. I. J. Hess, A. Carabetta, A. Crusberg, M. Gindel, K. Tanch, J. Tarbell, J. Cei, Guassian 09, Guassian Inc., Pittsubrgh PA 2009.
    [149]Y. Kim, J. E. Whitten, T. M. Swager. High ionization potential conjugated polymers[J]. J. Am. Chem. Soc.,2005,127 (34),12122-12130.
    [150]H. Y. Du, G. He, T. H. Liu, L. P. Ding, Y. Fang. Preparation of pyrene-functionalized fluorescent film with a benzene ring in spacer and sensitive detection to picric acid in aqueous phase[J]. J. Photochem. Photobiol., A,2010,217,356-362.
    [151]G. Kwak, W. E. Lee, H. Jeong, T. Sakaguchi, M. Fujiki. Swelling-induced emission enhancement in substituted acetylene polymer film with large fractional free volume: fluorescence response to organic solvent stimuli[J]. Macromolecules,2009,42 (1),20-24.
    [152]Q. Zhou, T. M. Swager. Method for enhancing the sensitivity of fluorescent chemosensors: energy migration in conjugated polymers[J]. J. Am. Chem. Soc.,1995,117 (26),7017-7018.
    [153]Y. Kim, J. E. Whitten, T. M. Swager. High ionization potential conjugated polymers[J]. J. Am. Chem. Soc.,2005,127 (34),12122-12130.
    [154]J.-S. Yang, T. M. Swager. Fluorescent porous polymer films as TNT chemosensors:electronic and structural effects[J]. J. Am. Chem. Soc.,1998,120 (46),11864-11873.
    [155]J. Chen, B. Xu, K. Yang, Y. Cao, H. H. Y. Sung, I. D. Williams, B. Z. Tang. Photoluminescence spectral reliance on aggregation order of 1,1-bis(2'-thienyl)-2,3,4,5-tetraphenylsilole[J]. J Phys. Chem. B,2005,109 (36),17086-17093.
    [156]H. J. Tracy, J. L. Mullin, W. T. Klooster, J. A. Martin, J. Haug, S. Wallace, I. Rudloe, K. Watts. Enhanced photoluminescence from group 14 Metalloles in aggregated and solid solutions[J]. Inorg. chem.,2005,44 (6),2003-2011.
    [157]S. J. Toal, D. Magde, W. C. Trogler. Luminescent oligo(tetraphenyl)silole nanoparticles as chemical sensors for aqueous TNT[J]. Chem. Commun.,2005, (43),5465-5467.
    [158]M. Crego-Calama, D. N. Reinhoudt. New materials for metal ion sensing by self-assembled monolayers onglass[J]. Adv. Mater.,2001,13,1171-1174.
    [159]L. Gao, Y. Fang, X. Wen, Y. Li, D. Hu. Monomolecular layers of pyrene as a sensor to dicarboxylic acids[J]. J. Phys. Chem. B,2004,108 (4),1207-1213.
    [160]N. J. van der Veen, S. Flink, M. A. Deij, R. J. M. Egberink, F. C. J. M. van Veggel, D. N. Reinhoudt. Monolayer of a Na+-selective fluoroionophore on glass:connecting the fields of monolayers and optical detection of metal Ions[J]. J. Am. Chem. Soc.,2000,122 (25),6112-6113.
    [161]A. Gulino, P. Mineo, E. Scamporrino, D. Vitalini, I. Fragala. Molecularly engineered silica surfaces with an assembled porphyrin monolayer as optical NO2 molecular recognizers[J]. Chem. Mater.,2004,16(10),1838-1840.
    [162]R. D. Miller, J. Michl. Polysilane high polymers[J]. Chem. Rev.,1989,89 (6),1359-1410.
    [163]A. Saxena, K. Okoshi, M. Fujiki, M. Naito, G. Guo, T. Hagihara, M. Ishikawa. Spectroscopic evidence of Si-H end groups in dialkylpolysilanes synthesized via wurtz coupling[J]. Macromolecules,2003,37 (2),367-370.
    [164]M. d. F. B. Sousa, R. Bertazzoli. Preconcentration and voltammetric determination of mercury(II) at a chemically modified glassy carbon electrode[J]. Anal. Chem.,1996,68 (7),1258-1261.
    [165]H. Lee, J. S. Park, H. Kim, K. B. Yoon, O. H. Seeck, D. H. Kim, S. H. Seo, H. C. Kang, D. Y. Noh. Characterization of molecular linkages placed between zeolite microcrystal monolayers and a substrate with X-ray reflectivity [J]. Langmuir,2006,22 (6),2598-2604.
    [166]K. Furukawa. End-grafted polysilane-an approach to single polymer science[J]. Acc. Chem. Res., 2002,36(2),102-110.
    [167]K. Ebata, K. Furukawa, N. Matsumoto. Synthesis and characterization of end-grafted polysilane on a substrate surface[J]. J. Am. Chem. Soc.,1998,120 (29),7367-7368.
    [168]G. Guo, M. Naito, M. Fujiki, A. Saxena, K. Okoshi, Y. Yang, M. Ishikawa, T. Hagihara. Room-temperature one-step immobilization of rod-like helical polymer onto hydrophilic substrates[J]. Chem. Commun.,2004, (3),276-277.
    [169]K. Furukawa, K. Ebata, M. Fujiki. One-dimensional silicon chain architecture:molecular dot, rope, octopus, and toroid[J]. Adv. Mater.,2000,12 (14),1033-1036.
    [170]S. M. George, B. Yoon, A. A. Dameron. Surface chemistry for molecular layer deposition of organic and hybrid organic-inorganic polymers[J]. Acc.Chem.Res,2009,42 (4),498-508.
    [171]U. Pischel. Advanced molecular logic with memory function[J]. Angew. Chem., Int. Ed.,2010, 49(8),1356-1358.
    [172]R. Yerushalmi, A. Scherz, M. E. van der Boom. Enhancement of molecular properties in thin films by controlled orientation of molecular building blocks[J]. J. Am. Chem. Soc.,2004,126 (9),2700-2701.
    [173]Y.-J. Han, J. Aizenberg. Face-selective nucleation of calcite on self-assembled monolayers of alkanethiols:effect of the parity of the alkyl chain[J]. Angew. Chem., Int. Ed.,2003,42 (31), 3668-3670.
    [174]I. Tokarev, M. Motornov, S. Minko. Molecular-engineered stimuli-responsive thin polymer film: a platform for the development of integrated multifunctional intelligent materials[J]. J. Mater. Chem.,2009,19 (38),6932-6948.
    [175]O. Shekhah, H. Wang, M. Paradinas, C. Ocal, B. Schupbach, A. Terfort, D. Zacher, R. A. Fischer, C. Woll. Controlling interpenetration in metal-organic frameworks by liquid-phase epitaxy[J]. Nat. Mater.,2009,8 (6),481-484.
    [176]I. Kuzmenko, H. Rapaport, K. Kjaer, J. Als-Nielsen, I. Weissbuch, M. Lahav, L. Leiserowitz. Design and characterization of crystalline thin film architectures at the air-liquid.interface: simplicity to complexity[J]. Chem. Rev.,2001,101 (6),1659-1696.
    [177]J. H. Moon, T. M. Swager. Poly(p-phenylene ethynylene) Brushes[J]. Macromolecules,2002,35 (16),6086-6089.
    [178]N. Marshall, S. K. Sontag, J. Locklin. Substituted poly(p-phenylene) thin films via surface-initiated kumada-type catalyst transfer polycondensation[J]. Macromolecules,2010,43 (5),2137-2144.
    [179]S. K. Sontag, N. Marshall, J. Locklin. Formation of conjugatedpolymer brushes by surface-initiated catalyst-transfer polycondensation[J]. Chem. Commun.,2009, (23),3354-3356.
    [180]C. Woll. Interfacial systems chemistry:towards the remote control of surface properties[J]. Angew. Chem., Int. Ed.,2009,48 (45),8406-8408.
    [181]R. A. Fischer, C. Woll. Layer-by-layer liquid-phase epitaxy of crystalline coordination polymers at surfaces[J]. Angew. Chem., Int. Ed.,2009,48 (34),6205-6208.
    [182]O. Shekhah, H. Wang, S. Kowarik, F. Schreiber, M. Paulus, M. Tolan, C. Sternemann, F. Evers, D. Zacher, R. A. Fischer, C. Woll. Step-by-step route for the synthesis of metal-organic frameworks[J]. J. Am. Chem. Soc.,2007,129 (49),15118-15119.
    [183]Y. Ito, A. A. Virkar, S. Mannsfeld, J. H. Oh, M. Toney, J. Locklin, Z. Bao. Crystalline ultrasmooth self-assembled monolayers of alkylsilanes for organic field-effect transistors[J]. J. Am. Chem. Soc.,2009,131 (26),9396-9404.
    [184]X. Wu, B. Xu, H. Tong, L. Wang. Phosphonate-functionalized polyfluorene film sensors for sensitive detection of iron(III) in both organic and aqueous media[J]. Macromolecules,2010,43 (21),8917-8923.
    [185]L. A. J. Chrisstoffels, A. Adronov, J. M. J. Frechet. Surface-confined light harvesting, energy transfer, and amplification of fluorescence emission in chromophore-labeled self-asembled monolayers[J]. Angew. Chem., Int. Ed.,2000,39 (12),2163-2167.
    [186]B. J. Ravoo. Microcontact chemistry:surface reactions in nanoscale confinement[J]. J. Mater. Chem,2009,19 (47),8902-8906.
    [187]K. Fries, S. Samanta, S. Orski, J. Locklin. Reversible colorimetric ion sensors based on surface initiated polymerization of photochromic polymers[J]. Chem. Commun.,2008, (47),6288-6290.
    [188]F. Lu, Y. Fang, G. J. Blanchard. Surface-confined energy transfer in mixed self-assembled monolayers[J]. Langmuir,2008,24 (16),8752-8759.
    [189]L. Ding, J. Kang, F. Lu, L. Gao, X. Yin, Y. Fang. Fluorescence behaviors of 5-dimethylamino-l-naphthalene-sulfonyl-functionalized self-assembled monolayer on glass wafer surface and its sensing properties for nitrobenzene[J]. Thin Solid Films,2007,515 (5), 3112-3119.
    [190]T. M. Swager. The molecular wire approach to sensory signal amplification[J]. Acc.Chem.Res, 1998,31 (5),201-207.
    [191]P. S. Heeger, A. J. Heeger. Making sense of polymer-based biosensors[J]. Proc. Natl. Acad. Sci. U.S.A.,1999,96(22),12219-12221.
    [192]K. Lee, J. M. Rouillard, T. Pham, E. Gulari, J. Kim. Signal-amplifying conjugated polymer-DNA hybrid chips[J]. Angew. Chem., Int. Ed.,2007,46 (25),4667-4670.
    [193]S. W. Thomas, G. D. Joly, T. M. Swager. Chemical sensors based on amplifying fluorescent conjugated polymers[J]. Chem. Rev.,2007,107 (4),1339-1386.
    [194]X. Feng, X. Duan, L. Liu, F. Feng, S. Wang, Y. Li, D. Zhu. Fluorescence logic-signal-based multiplex detection of nucleases with the assembly of a cationic conjugated polymer and branched DNA[J]. Angew. Chem., Int. Ed.,2009,48 (29),5316-5321.
    [195]G. Kwak, W.-E. Lee, H. Jeong, T. Sakaguchi, M. Fujiki. Swelling-induced emission enhancement in substituted acetylene polymer film with large fractional free volume: fluorescence response to organic solvent stimuli[J]. Macromolecules,2008,42 (1),20-24.
    [196]W. E. Lee, J. W. Kim, C. J. Oh, T. Sakaguchi, M. Fujiki, G. Kwak. Correlation of intramolecular excimer emission with lamellar layer distance in liquid-crystalline polymers:verification by the film-swelling method[J]. Angew. Chem, Int. Ed.,2010,49 (8),1406-1409.
    [197]G. He, G. Zhang, F. Lv, Y. Fang. Fluorescent film sensor for vapor-phase nitroaromatic explosives via monolayer assembly of oligo(diphenylsilane) on glass plate surfaces[J]. Chem. Mater,2009,21 (8),1494-1499.
    [198]T. Liu, G. He, M. Yang, Y. Fang. Monomolecular-layer assembly of oligothiophene on glass wafer surface and its fluorescence sensitization by formaldehyde vapor[J]. J. Photochem. Photobiol., A,2009,202 (2-3),178-184.
    [199]U. H. F. Bunz. Poly(aryleneethynylene)s:syntheses, properties, structures, and applications [J]. Chem. Rev.,2000,100 (4),1605-1644.
    [200]L. Ding, E. Y. Chi, S. Chemburu, E. Ji, K. S. Schanze, G. P. Lopez, D. G. Whitten. Insight into the mechanism of antimicrobial poly(phenylene ethynylene) polyelectrolytes:interactions with phosphatidylglycerol lipid membranes[J]. Langmuir,2009,25 (24),13742-13751.
    [201]A. Satrijo, T. M. Swager. Anthryl-doped conjugated polyelectrolytes as aggregation-based sensors for nonquenching multicationic analytes[J]. J. Am. Chem. Soc.,2007,129 (51), 16020-16028.
    [202]T. M. Swager, C. J. Gil, M. S. Wrighton. Fluorescence studies of poly(p-phenyleneethynylene)s: the effect of anthracene substitution[J]. J. Phys. Chem.,1995,99 (14),4886-4893.
    [203]K. Ogawa, S. Chemburu, G. P. Lopez, D. G. Whitten, K. S. Schanze. Conjugated polyelectrolyte-grafted silica microspheres[J]. Langmuir,2007,23 (8),4541-4548.
    [204]F. Lii, L. Gao, H. Li, L. Ding, Y. Fang. Molecular engineered silica surfaces with an assembled anthracene monolayer as a fluorescent sensor for organic copper(II) salts[J]. Appl. Surf. Sci., 2007,253 (9),4123-4131.
    [205]J. Kim, D. T. McQuade, S. K. McHugh, T. M. Swager. Ion-specific aggregation in conjugated polymers:highly sensitive and selective fluorescent ion chemosensors[J]. Angew. Chem., Int. Ed.,2000,39 (21),3868-3872.
    [206]H. Wang, Y. Fang, Y. Cui, D. Hu, G. Gao. Fluorescence properties of immobilized pyrene on quartz surface[J]. Mater. Chem. Phys.,2003,77 (1),185-191.
    [207]J. R. Lakowicz, Principles of fluosescence spectroscopy (3th ed), Springer-Verlag Berlin Heideberg,2006.
    [208]I. O. Benitez, B. Bujoli, L. J. Camus, C. M. Lee, F. Odobel, D. R. Talham. Monolayers as models for supported catalysts:zirconium phosphonate films containing manganese(III) porphyrins[J]. J. Am. Chem. Soc.,2002,124 (16),4363-4370.
    [209]D. C. Magri, G. J. Brown, G. D. McClean, A. P. de Silva. Communicating chemical congregation:a molecular AND logic gate with three chemical inputs as a "lab-on-a-molecule" prototype[J]. J. Am. Chem. Soc.,2006,128 (15),4950-4951.
    [210]Y. Tang, F. He, S. Wang, Y. Li, D. Zhu, G. C. Bazan. Multiply configurable optical-logic systems based on cationic conjugated polymer/DNA assemblies[J]. Adv. Mater.,2006,18 (16), 2105-2110.
    [211]L. Mu, W. Shi, G. She, J. C. Chang, S.-T. Lee. Fluorescent logic gates chemically attached to silicon nanowires[J]. Angew. Chem., Int. Ed.,2009,48 (19),3469-3472.
    [212]A. Prasanna de Silva, M. R. James, B. O. F. McKinney, D. A. Pears, S. M. Weir. Molecular computational elements encode large populations of small objects[J]. Nat. Mater.,2006,5(10), 787-789.
    [213]C. W. Tang, S. A. VanSlyke. Organic electroluminescent diodes[J]. Appl. Phys. Lett.,1987,51, 913-915.
    [214]V. A. Montes, R. Pohl, J. Shinar, P. Anzenbacher. Effective manipulation of the electronic effects and its influence on the emission of 5-substituted tris(8-quinolinolate) aluminum(III) complexes[J]. Chem. Eur. J.,2006,12 (17),4523-4535.
    [215]L. S. Sapochak, F. E. Benincasa, R. S. Schofield, J. L. Baker, K. K. C. Riccio, D. Fogarty, H. Kohlmann, K. F. Ferris, P. E. Burrows. Electroluminescent Zinc(II) bis(8-hydroxyquinoline): structural effects on electronic states and device performance[J]. J. Am. Chem. Soc,2002,124 (21),6119-6125.
    [216]X. Xia, J. Lu, H. Li, S. Yao, L. Wang. Zn(II) based mixed complex with 8-hydroxyquinoline end group functionalized PSt and the study of fluorescent properties [J]. Opt. Mater.,2005,27 (8), 1350-1357.
    [217]S. Y. Chai, R. Zhou, Z. W. An, A. Kimura, K. Fukuno, M. Matsumura.5-Coordinated aluminum complexes having two 2,4-dimethyl-8-hydroxylquinoline ligands and a phenolic ligand as possible materials for white emission organic light-emitting devices[J]. Thin Solid Films,2005, 479 (1-2),282-287.
    [218]A. V. Bordunov, J. S. Bradshaw, X. X. Zhang, N. K. Dalley, X. Kou, R. M. Izatt. Synthesis and properties of 5-chloro-8-hydroxyquinoline-substituted azacrown ethers:a new family of highly metal ion-selective lariat ethers[J]. Inorg. Chem.,1996,35 (25),7229-7240.
    [219]E. Tamanini, A. Katewa, L. M. Sedger, M. H. Todd, M. Watkinson. A synthetically simple, click-generated cyclam-based Zinc(II) sensor[J]. Inorg. Chem.,2008,48 (1),319-324.
    [220]R. T. Bronson, J. S. Bradshaw, P. B. Savage, S. Fuangswasdi, S. C. Lee, K. E. Krakowiak, R. M. Izatt. Bis-8-hydroxyquinoline-armed diazatrithia-15-crown-5 and diazatrithia-16-crown-5 ligands:possible fluorophoric metal ion sensors[J]. J. Org. Chem.,2001,66 (14),4752-4758.
    [221]H. Gershon, D. D. Clarke, M. Gershon. Synergistic antifungal action of 8-quinolinol and its bischelate with copper(II) and with mixed ligand chelates composed of copper(II),8-quinolinol, and aromatic hydroxy acids[J]. J. Pharm. Sci.,1989,78 (11),975-978.
    [222]M. Shamsipur, M. Sadeghi, K. Alizadeh, H. Sharghi, R. Khalifeh. An efficient and selective flourescent optode membrane based on 7-[(5-chloro-8-hydroxy-7-quinolinyl)methyl] 5,6,7,8,9, 10-hexahydro-2H-1,13,4,7,10-benzodioxatriazacyclopentadecine-3,11(4H,12H)-dione as a novel fluoroionophore for determination of cobalt(Ⅱ) ions[J]. Anal. Chim. Acta,2008,630 (1),57-66.
    [223]T. Iijima, T. Yamamoto. Preparation of main-chain-type quinolinol polymers by organometallic polycondensation[J]. Macromol. Rapid Commun.,2004,25 (5),669-672.
    [224]T. Yamamoto, I. Yamaguchi. Enzymatic synthesis of poly(quinolinol) and its fluorescent aluminum complex[J]. Polym. Bull.,2003,50 (1),55-60.
    [225]T. Iijima, S.-i. Kuroda, T. Yamamoto. Main-chain-type 8-quinolinol polymers:synthesis, optical properties, and complex formation with metals[J]. Macromolecules,2008,41 (5),1654-1662.
    [226]A. Alvarez-Diaz, A. Salinas-Castillo, M. a. Camprubi-Robles, J. M. Costa-Fernandez, R. Pereiro, R. Mallavia, A. Sanz-Medel. Conjugated polymer microspheres for "turn-off'/"turn-on" fluorescence optosensing of inorganic ions in aqueous media[J]. Anal. Chem.,2011,83 (7), 2712-2718.
    [227]L. An, L. Liu, S. Wang. Label-free, homogeneous, and fluorescence "turn-on" detection of protease using conjugated polyelectrolytes[J]. Biomacromolecules,2008,10 (2),454-457.
    [228]Q. Zeng, P. Cai, Z. Li, J. Qin, B. Z. Tang. An imidazole-functionalized polyacetylene: convenient synthesis and selective chemosensor for metal ions and cyanide[J]. Chem. Commun., 2008, (9),1094-1096.
    [229]R. n. D. Costa, A. Pertegas, E. Orti, H. J. Bolink. Improving the turn-on time of light-emitting electrochemical cells without sacrificing their stability[J]. Chem. Mater.,2010,22 (4), 1288-1290.
    [230]L. J. Fan, W. E. Jones. Studies of photoinduced electron transfer and energy migration in a conjugated polymer system for fluorescence "turn-on" chemosensor applications [J]. J. Phys. Chem. B,2006,110 (15),7777-7782.
    [231]L.-J. Fan, W. E. Jones. A highly selective and sensitive inorganic/organic hybrid polymer fluorescence "turn-on" chemosensory system for iron cations[J]. J. Am. Chem. Soc.,2006,128 (21),6784-6785.
    [232]Z. a. Li, X. Lou, H. Yu, Z. Li, J. Qin. An imidazole-functionalized polyfluorene derivative as sensitive fluorescent probe for metal ions and cyanide[J]. Macromolecules,2008,41 (20), 7433-7439.
    [233]R. C. Smith, A. G. Tennyson, M. H. Lim, S. J. Lippard. Conjugated polymer-based fluorescence turn-on sensor for nitric oxide[J]. Org. Lett.,2005,7 (16),3573-3575.
    [234]H. Tong, L. Wang, X. Jing, F. Wang. "Turn-on" conjugated polymer fluorescent chemosensor for fluoride ion[J]. Macromolecules,2003,36 (8),2584-2586.
    [235]Z. a. Li, X. Lou, Z. Li, J. Qin. A new approach to fluorescence "turn-on" sensing of a-amino acids[J]. ACS Appl. Mater. Interfaces,2008,1 (2),232-234.
    [236]X. Zhang, X. Ren, Q.-H. Xu, K. P. Loh, Z. K. Chen. One-and two-photon turn-on fluorescent probe for cysteine and homocysteine with large emission shift[J]. Org. Lett.,2009,11 (6), 1257-1260.
    [237]H. Huang, K. Wang, W. Tan, D. An, X. Yang, S. Huang, Q. Zhai, L. Zhou, Y. Jin. Design of a modular-based fluorescent conjugated polymer for selective sensing[J]. Angew. Chem., Int. Ed., 2004,43 (42),5635-5638.
    [238]C. Bruschini. Commercial systems for the direct detection of explosives for explosive ordnance disposal tasks[J]. Subsurf. Sens. Technol. Appl.,2001,2 (3),299-336.
    [239]J. A. MacDonald, J. R. Lockwoods, J. McFee. Alternative for landmire detection, Science and Technology Policy Institute, RAND,2003 (A Research Report).
    [240]M. Krausa, A. A. Reznev. Vapour and trace detection of explosives for anti-terrorism purposes, Dordrecht:Kluwer Academic Publishers,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700