汽车前纵梁结构耐撞性设计与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车碰撞安全性是现代汽车工业研究的关键内容之一,而如何提高汽车在碰撞事故中的耐撞性能是汽车安全性设计中的核心问题。作为最传统、最有效的吸能元件一金属薄壁构件,在车身吸能装置中已得到了广泛的应用。而在汽车正面碰撞过程中,薄壁前纵梁是主要的变形吸能结构。汽车碰撞的能量由薄壁前纵梁的塑性变形来吸收,汽车的碰撞加速度由车辆前部吸能结构的平均压缩载荷来决定,而薄壁前纵梁结构在汽车压缩变形中起到了主导作用,前纵梁的变形和吸能状况在很大程度上决定了整车的耐撞性能好坏。因此,前纵梁的结构耐撞性设计在汽车正面碰撞中具有十分重要的工程意义。
     本文对国内外汽车结构耐撞性研究现状进行了总结分析;分析了网格单元大小、时间步长、材料应变率效应、接触摩擦系数等影响碰撞仿真结果的几个重要因素;探讨了冲击速度(外载)、轴向长度、材料强度、材料厚度截面尺寸等对方形薄壁梁变形模态吸能性能的影响,并在此基础上,研究了简化纵梁的变形模态吸能性能;利用方形薄壁直梁变形模态的研究结果对纵梁进行了结构改进设计,取得了较好效果;最后探讨了正面碰撞中乘员损伤机理,确定正面碰撞设计原则,对汽车纵梁等前舱关键部件进行了改进设计,改进结果有效地降低了整车碰撞加速度峰值,控制了踏板组防火墙的侵入量。证明本文所提出的设计与改进方法是适用和有效的,具有重要的工程实用意义和价值。
Vehicle passive safety is one of the key problems for the automobile industry.How to improve the crashworthiness of vehicles has been the key issue of the automotive safety. The thin-walled metallic components---the most conventional and effective energy-absorbtion device, have been widely used in the automotive design and manufacture. The thin front rail is the main deformation and energy-absorbption structure in frontal crash. The crash energy of the car was absorpted by the plastic deformation of thin-walled front rail and the acceleration of the car was determined by the average compressive load of the vehicle front collision energy absorbing structure,while the thin-walled structure has played a leading role in the compression deformation of the car. The performance of the vehicle crashworthiness is determined by the deformation and the energy-absorption of the front rail. Therefore,the structural design of vehicle front rail crashworthiness in the frontal crash has a great engineering significance.
     This paper starts with summarizing the condition of study crashworthiness of vehicle with domestic and overseas. Then this paper analyse the several important factors which affect the crash simulation results,such as:the grid cell size, timestep setting,strain-rate effects, contact friction coefficient and material Stamping; The paper discusses the distortion wavelength and the energy absorption characteristic of square thin-walled straight beam structures' crashworthiness, which was affected by the following factors:impact speed (exterior load)、axes length material intensity、material thickness、section size and so on. On the basis of the above work, the paper studies the collapse mode and energy absorption characteristic of simple frontal crash rail; Using the production of the above work, the paper makes some improvements on the frontal crash rail. In further research, the paper discusses the mechanism of occupants' injury and improves on key components, such as the frontal crash rail, based on the frontal impact design principles. The result shows that it cut down the peak acceleration of the car effectively and controll the intrusion of pedal group and fire wall.The result manifestes that the design and methods in the paper are appropriate and effective, so the research has a important significance impact on the engineering field.
引文
[1]刘世恺.汽车百年史话.北京:人民交通出版社,2005:5-10
    [2]Nilsson L, Zhong Z H. Oldenburg M.Analysis of Shell Structures Subjected to Contact-impacts.Analytical and Computational Models of Shells-Presented at the Winter Annual Meeting of the ASME,1989,(5):457-482
    [3]Sala. G, Anghileri. M. Analytical and Experimental Evaluation of Finite Element Models for Crash Analysis. Proceedings of the Second Internationnal Conference on Structures Under Shock and Impact II,1992,(2):155-173
    [4]Kang Woo Jong, Huh Hoon Crash. Analysis of Thin-walled Structures with an Elasto-plastic Explicit Finite Element Method.5th Asia-Pacific Syposium on Advances in Engineering Plasticity and Its Applications AEPA2000,2000, (177):201-212
    [5]Pellicano F, Catallani G, Amabili M. Nonlinear Dynamics and Stability of Circular Cylindrical Shells. Proceedings of the ASME. Applied Mechanics Division,2004, (255):175-18
    [6]Hughes T J R, Liu W K. Nonlinear finite element analysis of shells. The International Journal of Computer Methods in Applied Mechanics Engineering,1981,26(3):331-362
    [7]Nayfeh Ali H, Arafat Haider M. Nollinear dynamics of closed spherical shells. DETC2005: ASME International Design Engeering Technical Conference and Computers and Information in Engeering Conference,2005,1B:1669-1681
    [8]Belytschko T, Tsay C S. Explicit algorithms for the nonlinear dynamics of shells. The International Journal of Computer Methods in Applied Mechanics and Engeering, 1984,42(2):225-251
    [9]T R Grimm, S E Minarecioglu. Crush Characteristics of Thin-Walled Cylindrical Tubing. SAE,1988,9(1):412-420
    [10]Hikmat F. Mahmood,A. Paluszny. Analytical Technique for Simulating Crash Respose of Vehicle Structures Composed of Beam Elements. SAE,1986,8(20):145-156
    [11]H F.Mahmood,A.Paluszny. Crash Analysis of Thin Walled Beam-Type Structured. SAE,1988,8(94):212-219
    [12]A K Pickett,L T Kisielswicz. Optimization of the Crashworthiness of a Passenger Car Using Interative Simulations. SAE,1993,19(77):34-47
    [13]L Castejon, J Cuartero, R Clemente, E Lanode.Energy Absorbers Design.SAE,1998, 9(64):107-116
    [14]Alber, G Fonda.Principles of Crash Energy Detemination. SAE,1999,1(106):67-75
    [15]Michael S, Varat, Stein E. Vehicle Crash Severity Assessment in Lateral Pole Impacts. SAE,1999,1(100):168-182
    [16]和田明广.向新开发体制的挑战和计算机辅助开发.PSE96,在全体会议上的讲话.北京,1996,8(13):23-34
    [17]Ginsberg M, Johnson J P. Benchmarking the performance of physical impact simulation software on vector and parallel computers.In:Proc of Supercomputing 88. vol. Ⅱ:Science and Applications.Orlando,USA,1988,10(17):180-190
    [18]Goldsmith W,Sackman J L. An Experimental Study of Energy Absorption in Impact on Sandwich Plates.International journal of impact engineering,1992,12 (2):241-262
    [19]Santosa S P,Wierzbicki T.Crash Behavior of Box Column Filled with Aluminum Honeycomb or Foam.Computer and Structures,1998,68(4):343-367
    [20]黄世霖,张金换,丁振松等.汽车整车正面碰撞试验研究.中国汽车工程学会第一届汽车安全技术学术年会,1995,6(9):48-53
    [21]黄世霖,张金换,李一兵等.汽车碰撞安全性研究的新进展.北京:中国汽车工程学会第二届汽车安全技术学术会议,1996,5(3):89-93
    [22]贾宏波.基于有限元方法的碰撞模拟技术与汽车车身结构安全性研究:[吉林工业大学博士学位论文].吉林:吉林工业大学,1998:26-39
    [23]钟志华.汽车耐撞性分析的有限元法.汽车工程,1994,16(1):1-6
    [24]钟志华,李光耀.薄板冲压成型过程的计算机仿真与应用[M].北京:北京理工大学出版社,1998:134-153
    [25]黄世霖,张金换,王晓东等.汽车碰撞与安全[M].北京:清华大学出版社,2000:35-47
    [26]梁宏毅,关乔,陈建伟.解析中国汽车正面碰撞试验法规.汽车技术,2001,4(11):5-10
    [27]朱西产.汽车正面碰撞试验法规其发展趋势的分析.汽车工程,2002,24(1):1-5
    [28]Weirzbicki T,abrsmowicz W. Development and Implementation of Special Element for Crash Analysis. SAE,1988,8(95):341-355
    [29]王怀,葛如海,栗艳丽,王晓.网格密度对车辆碰撞仿真的影响与计算效率.江苏大学学报,2002,23(4):29-33
    [30]严斌.汽车整车乘员约束系统正面碰撞仿真与优化研究:[同济大学硕士学位论文].上海:同济大学,2004:41-45
    [31]王宏雁,华蓓俊.材料特性对计算精度的影响.同济大学学报,2006,34(12):1679-1683
    [32]钟志华,郭正康.汽车抗碰撞分析中的摩擦力计算.汽车工程,1993,15(6):329-334
    [33]Alexander J M. An Approximate Analysis of the Collapse of Thin Cylindrical shells under axial loading. Mechanics and Applied Mathematics,1960,13(l):10-15
    [34]Wierzbicki T, Abramowicz W. On the Crushing Mechannics of Thin-Walled Structres. Applied Mechnics,1983,50(4):727-734
    [35]Fatt M H, Wierzbicki T, Moussouros M et al. Rigid-plastic approximation for predicting plastic deformation of cylindrical shells to dynamic loading. Shock and Vibration Journal,1996,3(3):169-181
    [36]Ohkubo Y,Aamatsu T,Shiraswa K.Mean Crushing Strength of Closed-Hat Section Members,SAE,1974,12(40):612-631
    [37]Botkin M E,Johnson N L,Hallquist J O, Lum L C K,et al.Numerical Simulation of Post-Failure Dynamic Crushing of Composite Tubes.In Proc of the 2nd Int LS-DYNA3D Conf,1994,4(21):439-452
    [38]Wierzbicki T.A new approach to the mode approximation for impulsively loaded right-plastic structures.Archives of Mechnics,1972,24(4):655-658
    [39]Abramowicz W, Jones N.Dynamic Axial Crushing of Square Tubes,Int. J. Impact Engineering,1984,2(2):179-208
    [40]Abramowicz W, Jones N.Dynamic progressive buckling of circular and square tubes,Int. J. Impact Engineering,1986,4(4):179-208
    [41]沈伟琴.结构的塑性动力响应和破坏-近期来在利物浦大学冲击研究中心的研究课题和成果.见:英国应用力学前沿研究课题选介.北京:科学出版社,1996:125-136
    [42]Karagiozova D,Jones N.Dynamic pulse buckling of a simple elastic model including axial inertia, Int. J. Solids Structures,1992,29(10):1255-1272
    [43]Fatt M H, Wierzbicki T, Moussouros M,Koenig K.Rigid-plastic approximation for predicting plastic deformation of cylindrical shells subject to dynamic loading. Shock and Vibration Journal,1996,(3):169-181
    [44]李涛,黄锡朋,洪善桃.薄壁件在碰撞过程中的塑性变形特性研究.见:清华大学工程力学数学热物理学术会议论文集.北京:清华大学出版社,1998:78-81
    [45]姚伟.汽车正面碰撞吸能元件耐撞性研究与结构优化:[同济大学博士后学位论文].上海:同济大学,2006:33-42
    [46]Timoshenko SP.History of strength of materials.McGrawHill,New York,1953,(4):187-202
    [47]Huchinson J W, Koiter J T.Post-Buckling Theory, Appl. Mech. Rev,1970,23(12): 1355-1366
    [48]Klyushnikov V D.Stability of Elastic-plastic Systems Nauka.Moscow,1980,(11):438-449
    [49]梁炳文,胡世光.弹塑性稳定理论[M].北京:国防出版社,1983:268-284
    [50]Simitses G J. Instability of Dynamically Loaded Structures Appl.Mesh Rev,1987,40(10): 1403-1408
    [51]王仁.结构的塑性静动态稳定性.广州:华中理工大学出版社,1988:4-35
    [52]王安稳.轴向压应力波下圆柱壳弹性动力失稳的判据与机理.固体力学学报,2001,22(6):171-185
    [53]王仁.冲击载荷下结构塑性稳定性的研究,冲击动力学进展.王礼立,余同希,李永池编.合肥:中国科学技术大学出版社,1992:157-176
    [54]杨桂通,王德禹.结构的冲击屈曲问题,冲击力学进展.王礼立,余同希,李永池编.合肥:中国科学技术大学出版社,1992:177-210
    [55]Wang A W,Tian W Y.Twin-characteristic-parameter solution for dynamic buckling of columns under elastic compression wave.Solids and Struct,2002,39(4):861-877
    [56]Wang A W,Tian W Y.Characteristic-value analysis for plastic dynamic buckling of columns under elastoplastic compression waves.Non-linear Mechannics,2003,38 (5):615-628
    [57]Wang A W,Tian W Y.Twin-characteristic-parameter solution of axisymmetric dynamic plastic buckling for cylindrical shells under axial compression waves. Solids and Structures,2003,40(12):3157-3175
    [58]Wang A,Tian W.Twin-characteristic-parameters analysis for elastic dynamic buckling of thin cylindrical shells under axial step loading.Impact Engineering,2005,31(6):643-666
    [59]王礼立,朱兆祥.应力波基础.北京:国防工业出版社,1985:67-85
    [60]丁启财.固体中的非线性波.北京:中国友谊出版公司,1985:152-179
    [61]王仁.结构的塑性静动态稳定性,非线性力学的新发展.钱伟长主编.广州:华中理工大学出版社,1988:4-35
    [62]王仁.冲击载荷下结构塑性稳定性的研究,冲击动力学进展.王礼立,余同希,李永池编.合肥:中国科学技术大学出版社,1992:157-176
    [63]杨桂通,王德禹.结构的冲击屈曲问题,冲击动力学进展.王礼立,于同希,李永池编.合肥:中国科学技术大学出版社,1992:177-210
    [64]陈永涛,郑钢铁.确定轴向冲击下薄壁圆柱壳第二临界速度的新方法.振动与冲击,2007,26(1):49-51
    [65]杨卫奇,张善元,路国运,刘志芳.圆柱壳轴向冲击屈曲数值仿真其应力波效应分析.科学技术与工程,2008,23(8):6204-6208
    [66]王安稳.直杆塑性动力屈曲的双特征参数解.固体力学学报,2004,25(3):54-261
    [67]郑波,王安稳.直杆碰撞刚性壁弹塑性动力后屈曲有限元分析.爆炸与冲击,2007,27(2):126-130
    [68]王仁,黄克智,朱兆祥.塑性力学进展.北京:中国铁道出版社,1988:343-344
    [69]Alexander J M.An Approximate Analysis of the Collapse of Thin Cylindrical Shells Under Axial Loading.Mechanics and Applied Mathematics,1960,13(1):10-15
    [70]Jones N.Recent studies on the dynamic plastic behavior of structures. Applied Mechanics Reviews,1989,42(4):95-116
    [71]Wierzibcki T,Recke L,Abramowicz W,Gholami:Stress profiles in thin-walled prismatic columns subjected to crush loading.Part Ⅱ Bending,Computers and Structures,1994,51(6): 635-641
    [72]Manuel Marya.Tensile-Shear Forces and Fracture Modes in Single and Multiple Weld Specimens in Dual-Phase Steels. Manufacturing Science and Engineering,2006,128(1): 287-299
    [73]李红建.轿车车体侧面抗撞性研究:[吉林大学硕士学位论文].长春:吉林大学,2002:46-57
    [74]张维刚,钟志华.汽车正撞吸能部件改进的计算机仿真.汽车工程,2002,24(1):6-9
    [75]贾宏波,黄金陵,郭孔辉等.汽车车身结构碰撞性能的计算机仿真模拟、评价与改进.吉林工业大学学报,1998,28(2):6-11
    [76]游国忠,陈晓东,程勇等.汽车侧面碰撞有限元仿真建模.江苏大学学报,2005,26(6):484-487

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700