高速列车流固耦合振动及运行安全性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着列车的高速化和轻量化发展,列车与气流的耦合振动加剧,出现了系列亟待解决的关键技术问题。具体包括:列车尾车动力学性能的恶化;侧风对列车运行安全性的威胁;高速交会压力波和气动冲击载荷对列车结构和动力学性能的影响;列车高速通过站台时的流固耦合振动导致的安全问题等。长期以来随着高速轨道交通的发展,列车空气动力学取得了丰硕的研究成果,但很少考虑列车与气流的耦合振动关系。安全问题是铁路系统问题中的重中之重,而高速列车与气流的耦合振动是一个关系到行车安全的重要工程技术问题,也是必须解决的关键工程技术问题之一。
     论文结合计算流体动力学理论和列车多体系统动力学理论,基于任意拉格朗日—欧拉方法,通过建立列车与气流耦合振动动力学模型,提出一种耦合分析方法,具体包括离线和在线耦合分析方法。离线耦合分析方法的流场分析中不考虑列车的振动状态,但列车系统动力响应分析中考虑气动载荷。在线耦合分析方法又可分为显式耦合分析方法和隐式耦合分析方法。其中显式耦合分析方法对列车动力响应和流场特性进行同步分析,注重相互作用过程,耗时较长;而隐式耦合方法则是选择性的对列车系统动力响应和流场特性进行关联分析,注重相互作用的最终状态,效率较高。论文通过提出的这种耦合分析方法对高速列车气流耦合振动及运行安全性展开了研究,具体的研究内容有如下几点:
     (1)针对无风开放空间列车与气流耦合振动问题,采用离线耦合和显式耦合分析方法对气流影响下高速列车的运行平稳性和稳定性进行分析,并与常规列车系统动力学分析结果作对比。
     (2)针对列车侧风安全性问题,考虑列车姿态变化,采用离线耦合、显式耦合和隐式耦合方法对特定工况下的列车运行安全性进行分析,并对不同耦合方法的分析结果作了对比。同时对多种工况下的列车运行安全性展开详细的隐式耦合分析,定义考虑姿态的列车侧风安全域。
     (3)采用离线耦合和显式耦合分析方法,从列车表面压力波动、气动载荷冲击、车体响应和运动稳定性出发,对不同风环境下列车高速交会安全性进行分析。比较了不同风环境和不同耦合方法下列车交会安全性的差异,并且结合线路试验结果作了对比分析。
     (4)针对列车高速通过站台的安全性问题,比较了初始固定姿态和侧风稳定姿态列车通过站台的碰撞危险性和运行稳定性,分析了不同工况下列车通过站台的安全性,定义了列车通过站台的安全域,并对列车高速通过时,屏蔽门的压力波动进行了研究。
     通过以上研究,主要结论如下:
     (1)通过无风开放空间内列车气流耦合振动分析,发现相对于常规分析方法,离线耦合分析方法所得的列车运行平稳性和稳定性有所降低;采用显式耦合分析方法考虑流固耦合关系后,头车、中间车和尾车前端的横向稳定性略有改善,而尾车后端的横向平稳性有所下降;考虑流固耦合关系后,由于气流对车体振动的限制,轮对振动向上传递受到了一定程度的影响,列车的运行稳定性降低。
     (2)通过列车侧风安全性的不同耦合方法分析,发现列车的姿态变化是其自身对侧风作用的适应性调整的结果;准确获得侧风作用下列车的稳定姿态,需要采用在线耦合分析方法;隐式耦合分析方法可以有效满足考虑姿态变化的列车侧风安全性研究;姿态变化对气动载荷的影响规律与文献中的线路试验结果具有良好的一致性;通过列车侧风安全性的隐式耦合分析,获得了不同侧风环境下列车安全运行的临界速度,定义了考虑姿态变化的列车侧风安全域;运行速度愈高,列车抵抗侧风的能力愈低,而且临界速度对侧风的敏感性增加。
     (3)通过对列车高速交会的流固耦合分析,发现与无风环境相比,侧风环境下表面压力波动和气动载荷冲击有增有减,背风侧列车的气动载荷冲击大于迎风侧;显式耦合分析所得表面压力波动、气动载荷冲击、车体响应和运行稳定性指标较离线耦合结果均有所增加;无论是表面压力波,还是车体动态响应,仿真结果与线路试验结果具有良好的一致性。
     (4)通过不同姿态列车通过站台的安全性分析,发现列车采用初始固定姿态满足分析要求。通过不同侧风风速和不同运行速度的分析,发现相同行车速度下列车距离站台的最近点横坐标与侧风风速近似成正比。列车通过站台的安全域为碰撞安全域和运行稳定性安全域的交集。列车高速通过时,屏蔽上出现类似列车交会时的压力波动。头车进出屏蔽门行车区时,屏蔽门最大气压和最小气压分别出现峰值。
     (5)根据相应的研究问题选择适当的分析方法,既要保证分析结果的准确性,又要提高分析效率。如选用隐式耦合分析方法来考虑侧风下列车的姿态变化;而屏蔽门表面气压分析则不需考虑列车的振动。
     总之,论文通过建立的列车气流耦合振动分析方法,探明了高速列车流固耦合振动导致的一系列关键问题的作用机理。通过显式耦合分析发现了气流对列车运行平稳性和稳定性的影响规律;通过列车侧风在线耦合分析发现了列车姿态变化对气动载荷和运行稳定性均产生了不可忽视的影响;考虑流固关系后列车高速交会安全性问题变得更加突出;列车高速通过站台安全性研究既要考虑流固耦合振动对运行稳定性的影响,又要防止列车与站台的碰撞。为确保行车安全,考虑流固耦合振动关系进行列车运行安全性分析是十分必要的。耦合分析方法得到了试验数据的有效验证,为流固作用下列车动力学特性研究以及列车空气动力学和列车系统动力学的交叉研究提供了思路和方法。
A series of key technical issues that should be urgently solved has arisen as the coupling vibration between the train and airflow intensifies along with the high-speed and light-weight development of train. The issues include dynamic performance deterioration of the tailing vehicle, threat to running safety of train from side wind, effect on train's structure and dynamic performance of the pressure wave and aerodynamic load impulse when two trains pass by each other at high speed, safty issues caused by fluid-solid vibration when a train passes through the platform at high speed, and so on. Although considerable achievements have been obtained in the field of train aerodynmics with development of high-speed rail transport, the coupling vibration relationship has been taken into account rarely. Safety is the all-important one among issues regarding train system. The train-airfow coupling vibration is an important engineering and technical issue concerning safety, also one of the key technical issues needed to be solved for railway development.
     In this paper, an analysis method for train-airflow coupling vibration including off-line and on-line coupling analysis method was proposed by establishing a train-ailfow coupling model on the basis of Arbitrary Lagrangian-Eulerian (ALE) through integrating the theory of computation fluid mechanics and train system dynamics. With regard to off-line coupling analysis method, the train's vibration state is not taken into consideration in flow field anlysis, but the aerodynamic load is taken into account in the anlysis on dynamic response of train system. The on-line coupling analysis method includes explicit and implicit ones. The train's dynamic response and flow field characteristic are analyzed synchronously for the explicit coupling analysis method, which focuses on the process of interaction between fluid and solid and needs more time. Whereas, for the implicit method, it focuses on the final condition of interaction between fluid and solid and needs less time as the train's dynamic response and flow field characteristic are analyzed with selective link. The research on fluid-solid coupling vibration and running safety of high-speed train was conducted by adopting the foregoing coupling vibration analysis method in the paper, of which details are as follows:
     (1)For coupling vibration between airflow and train in the calm open space, the study analyzes running stationarity and stability of a high-speed train under the influence of airflow with the off-line and explicit coupling analysis method and compares relevant results with those based on conventional method.
     (2)As for safety problem of a train running in side wind, considering the attitude change, the study analyzes running safety of the train in specific condition with the off-line, explicit and implicit coupling analysis methods and compares relevant results acquired from these different analysis methods. At the same time, running safety of a train in different conditions is analyzed with implicit coupling analysis method and safety domain of a train in side wind is defined.
     (3)Adopting the off-method and explicit method, from the perspective of surface pressure wave, aerodynamic load impulse, carbody response and running stability, the study analyzes safey of two trains passing by each other in different wind environments. The differences of safety of a train in different wind environmets and acquired from different coupling methods are compared. Additionally, a comparative analysis is made with running test data.
     (4)With respect to the safety issue, the study compares collision risk and running stability of a train with the intial fixed attitude and the stable attitude in side wind when the train passes through the railway platform at high speed, analyzes safety of a train passing through the platform in different conditions, defines safety domain of a train passing through the platform and researches the peressure wave of shield door when a train passing through the platform at high-speed.
     Main conclusions as following are reached according to above discussions.
     (l)The train-airflow coupling analysis for a train running in the calm open space shows that train's running stationarity and stability acquired from off-line coupling method diminish somewhat compared to those acquired from conventional computing method. After the fluid-solid coupling relationship is taken into consideration with explicit coupling analysis method, the lateral stability of leading vehicle, middle vehicle and the front end of the tailing vehicle improve slightly, but the lateral stability of the back end of tailing vehicle decreases. In addition, the upward transfer of wheel-rail vibration is influenced to some extent due to the limition of airflow to carbody's motion, thus the train's running stability descreaes.
     (2)Different coupling anlysis methods for safety of a train running in side wind show that the adaptive process to side wind's action results in attitude change of a train. Accurate result of attitude change needs the on-line coupling analysis method. The implicit coupling method can meet the demands of study on safety of a train running side wind with considering the attitude changes. Influence of attitude changes on aerodynamic is well consistent with running test data in relevant literatures. Critical speeds of a train running safely in different side winds are found and the safety domain of train in side wind is defined with consideration of attitude changes in the implicit coupling analyses. The faster a train runs, the lower capability to withstand side wind it has, and the more sensitive to side wind the critical speed is.
     (3)The fluid-solid analyses on two trains passing by each other at high-speed show that, some surface pressure waves and aerodynamic load impulses rise, and others descrease in the environment with side wind compared to a calm envirement without wind. The aerodynamic load impulses of the leeward train are bigger than that of windward train. The surface pressure waves, aerodynamic load impulses, carbody responses and running stabilities obtained in the explicit coupling analysis are bigger than those in the off-line coupling analysis. Moreover, simulation results of surface pressure waves and carbody responses are well consistent with concerned running test data.
     (4)The safety analyses on a train with different attitudes passing through platform show that, the train with initial fixed attitude can meet the analysis demand. The analysis on different side wind speeds and running speeds indicate the abscissa of the closest point is proportional to the wind speed when a train passing through the platform at the same speed. The safety domain of a train passing through platform in side wind is the union of collision safety domain and operating stability safety domain. There is a pressure wave on the shield door when a train passes through at high-speed, which is similar to the pressure wave when two train pass by each other. The maximum and minimum values will appear respectively when the leading vehicle runs into and out of the shield door.
     (5) Proper methods should be taken to analyze different problems in order to ensure accuracy of analysis result and enhance analysis efficiency. For example, the implicit coupling analysis method was adopted to research the attitude changes of a train running in side wind. And the analysis on pressure wave of shield door doesn't need to consider train's vibration.
     In conclusion, the paper discusses mechanisms of a series of key issue caused by coupling vibration between high-speed train and airflow. The influence pattern of airflow on train's running stationarity and stability is found by explicit coupling analysis. The on-line coupling analysis on a train in side wind reveals that attitude changes pose an effect that can not be ignored on aerodynamic load and running stability. The safety issue of trains passing by each other becomes more prominent after fluid-solid coupling relationship being taken into consideration. The attention should be paid to the influence of fluid-solid coupling on train's running stability and the collsion risk between train and platform. In order to ensure train's running safety, it is very necessary to consider the fluid-solid coupling vibration relationship for train's running safety analysis. As the coupling analysis method is verified by test datum, it throws a light on train's dynamic behaviour study under fluid-solid coupling relationship and offers a thought for cross-sectional studies on train's aerodynamics and system dynamics.
引文
[1]张卫华.机车车辆动态模拟.北京:中国铁道出版社,2006:3-13.
    [2]S Iwnicki. Future trends in railway engineering. Mechanical Engineering Science.2009,223(12):2743-2750.
    [3]Suzuki, M. An aerodynamic design of high-speed train for enducting flow-induced vibration in tunnel. European Congress on Computational Methods in Applied Sciences and Engineering. Jyvaskyla. Academic Press,2004:1-8.
    [4]Ben Diedrichs, Mats Berg, Sinisa Krajnovi. Large Eddy Simulations of the Flow Around High-Speed Trains Cruising Inside Tunnels. European Congress on Computational Methods in Applied Sciences and Engineering. Jyvaskyla. Academic Press,2004:24-28.
    [5]Masahiro SUZKI. Usteady Aerodynamic Force Acting on High Speed Trains in Tunnel.QR of PTRI.2001,42(2):89-93.
    [6]T. Johnson. Strong wind effects on railway operations-16th October 1987. Journal of Wind Engineering and Industrial Aerodynamics.1996,60 (1): 251-266.
    [7]Christina Rolen, Thomas Rung, Don Wu. Computation modeling of cross-wind stability of high-speed trains. European Congress on Computational Methods in Applied Sciences and Engineering. Jyvaskyla,24-28 July 2004.
    [8]Hassan Hemida, Chris Baker. Large-eddy simulation of the flow around a freight wagon subjected to a crosswind. Computers& Fluids.2010,39(10): 1944-1956.
    [9]蒋富强,李荧,李凯崇,程建军,薛春晓,葛盛昌.兰新铁路百里风区风沙流结构特性研究.铁道学报.2010,32(3):105-110.
    [10]熊小慧,梁习锋,高广军,刘堂红.兰州-新疆线强侧风作用下车辆的气动特.中南大学学报(自然科学版).2006,37(6):1184-1188.
    [11]高广军,田红旗,姚松,刘堂红,毕光.兰新线强横风对车辆倾覆稳定性的影响.铁道学报.2004,26(4):36-40.
    [12]周丹,田红旗,鲁寨军.大风对路堤上运行的客运列车气动性能的影响.交通运输工程学报,2007,7(4):6-9.
    [13]李人宪,赵晶,刘杰,张卫华.高速列车会车压力波对侧窗的影响.机械工程学报.2010,46(4):87-90.
    [14]崔涛,张卫华,张曙光,张继业.列车高速通过站台时的流固耦合振动研究.中国铁道科学.2010,31(2):50-56.
    [15]崔涛,张卫华.侧风环境下列车高速通过站台的流固耦合振动.西南交通大学学报.2011,46(3):404-408.
    [16]李人宪,赵晶,张曙,彭宇明.高速列车风对附近人体的气动作用影响.中国铁道科学.2007,28(5):98-104.
    [17]C Mellet, F Letourneaux, F Poisson, C Talotte. High speed train noise emission:Latest investigation of the aerodynamic/rolling noise contribution. Journal of Sound and Vibration.2006,293(3-5):535-546.
    [18]Raghu S. Raghunathan, H D Kim, T Setoguchi. Aerodynamics of high-speed railway train. Progress in Aerospace Sciences 2002,38 (6-7):469-514.
    [19]Chris Baker. The flow around high speed trains. Journal of Wind Engineering and Industrial Aerodynamics.2010,98(6-7):277-298.
    [20]Jerry Evans, Mats Berg. Challenges in simulation of rail vehicle dynamics. Vehicle System Dynamics.2009,47(8):1023-1048.
    [21]CJ Baker. Current and Recent International Work on Railway Aerodynamics. School of Engineering University of Birmingham,2003:1-30.
    [22]H Fujimoto, M Miyamoto. Measures to reduce the lateral vibration of the tail car in a high-speed train. Journal of Rail and Rapid Transit.1996, 210(F2):87-93.
    [23]Suzuki, M. An experimental study on aerodynamics force acting on train in tunnel. International Symposium on Speed-up and Service Technology for Railway and Maglev Systems. (STECH'03). Tokyo JAPAN.2003, Japan Society of Mechanical Engineering(JSME),2003:395-397.
    [24]Suzuki, M. Unsteady Aerodynamics force acting on High Speed Trains in tunnel. RTRI Report.2001,14(9):37-42.
    [25]Suzuki, M. Studies on the flow around a train in tunnel. Proceedings of conference on modeling fluid flow (CMFF'03), The 12th Intl. Conf. on Fluid Flow Technologies, Hungary,2003,702-703.
    [26]Nakade Koji, Suzuki Masahiro, and Fujimoto Hiroshi. Interaction between Vehicle Vibration and Aerodynamic Force on High-Speed Train Running in Tunnel. Vehicle System Dynamics Supplement.2004,41:717-723.
    [27]Ben Diedrichs Studies of Two Aerodynamic Efficts on High-Speed Trains: Crosswind Stability and Discomforting Car Body Vibrations Inside Tunnels. Switzerland:KTH,2006:1-65.
    [28]B. Diedrichs, M. Berg, S. Stichel, and S. Krajnovic. Vehicle dynamics of a high-speed passenger car due to aerodynamics inside tunnels. ImechE,2007, 221(4):527-545.
    [29]B Diedrichs, M Berg, S Krajnovic. Large Eddy Simulations of a typical European high-speed train inside tunnels. SAE World Congress, SAE Paper, Detroit, USA,2004.1-15.
    [30]B Diedrichs. Aerodynamic crosswind stability of a regional train model. Proc. Proc IMechE Part F J Rail and Rapid Transit.2010,224(6):580-591.
    [31]Diedrichs, B., Berg, M., and Krajnovi'c, S. Large eddy simulation of the flow around high-speed trains cruising inside tunnels. In European Congress on Computational Methods in Applied Sciences and Engineering, Jyvaskyla,2004
    [32]李人宪,刘应清,翟婉明.高速磁悬浮列车纵向及垂向气动力数值分析.中国铁道科学.2004,25(1):8-12.
    [33]武青海,周虹伟,朱勇更.高速列车湍流流场数值仿真计算探讨.铁道学报.2002,24(3):99-103.
    [34]B. Diedrichs. On computational fluid dynamics modelling of crosswind effects for high-speed rolling stock. IMechE,2003,217(F):203-226.
    [35]B Diedrichs, M Sima, A Orellano, H Tengstrand. Crosswind stability of a high-speed train on a high embankment. Proceedings of the IMECH E Part F Journal of Rail and Rapid Transit,2007,221(4):205-225.
    [36]Diedrichs, Ben; Krajnovic, Sinisa; Berg, Mats:On Tail Vibrations of Very High-Speed Trains Cruising inside Tunnels. Engineering Applications of Computational Fluid Mechanics.2008,2(1):51-75.
    [37]B Diedrichs,M Sima, A Orellano, H Tengstrand. Crosswind stability of a high-speed train on a high embankment IMechE 2007,221(F):205-225.
    [38]B. Diedrichs. On computational fluid dynamics modelling of crosswind effects for high-speed rolling stock. IMechE,217(F):203.226,2003.
    [39]Diedrichs B, Ekequist M, Stichel S, Tengstrand H. Quasi-static modelling of wheelrail reactions due to crosswind effects for various types of high-speed rolling stock. IMechE,2004,218(F):133-148
    [40]Ben Diedrichs. Aerodynamic calculations of crosswind stability of a high-speed train using control volumes of arbitrary polyhedral shape. Bulff Bodie Aerodynamics & Apllications, BBAA VI International Colloquium, Milano, Italy,2008,20-24.
    [41]D Thomasl, B Diedrichs, M Berg, S Stichel. Dynamics of a high-speed rail vehicle negotiating curves at unsteady crosswind. J. Rail and Rapid Transit.2010,224(6):567-579.
    [42]Krajnovic Sinisa, Hemida Hassan, and Diedrichs, Ben. Time-Dependent Simulations for the Directional Stability of High Speed Trains under the Influence of Cross Winds or Cruising Inside Tunnels. Fluid Dynamics Applications in Ground Transportation:Simulation, a primary delepment tool in the automotive industry, Lyon, France,2005.
    [43]Krajnovic, Sinisa. Hemida, Hassan. The Aerodynamics of High Speed Trains using Computer Simulations. Proceedings of the EURNEX-ZEL 2007, 15th International Symposium, towards more competitive European rail systems, Zilina, Zlovakia,2007.
    [44]Krajnovic Sinisa. Numerical Simulation of the Flow Around an ICE2 Train Under the Influence of a Wind Gust. International Conference on Railway Engineering 2008 (IET ICRE2008), Challenges for Railway Transportation in Information Age, China,2008.219-224
    [45]Hemida, Hassan; Krajnovic, Sinisa. Parallel CFD Computations of Cross-Wind Stability on an ICE2 Train. PARA'06:Workshop on State-of-the-art in Scientific and Parallel Computing, Sweden,2006,1-4.
    [46]Hemida Hassan. Krajnovic Sinisa. Numerical Study of the Unsteady Flow Structures Around Train-Shaped Body Subjected to Side Winds ECCOMAS CFD 2006. The Netherlands,2006,1-14.
    [47]Hemida H. Large-eddy simulation of the flow around simplified high-speed trains under side wind conditions. Chalmers University of Technology Doctoral Thesis.2006:19-35.
    [48]Hemida Hassan, Krajnovic Sinisa, Davidson Lars. Large-Eddy Simulation of the Flow Around a Simplified High Speed Train Under the Influence of a Cross-Wind.17th AIAA Computational Fluid Dynamic conference. Canada, 2005.
    [49]Hassan Hemida, Sinisa Krajnovic. Exploring the Flow Around a Generic High-Speed Train Under the Influence of Side Winds Using LES. Fourth International Symposium on Computational Wind Engineering. Japan,2006
    [50]S Kranjovic. Measures to reduce the lateral vibration of the tail car in a high-speed train. IMechE.1996.210(F2):87-93.
    [51]Hassan Hemida, Sinisa Krajnovic. LES study of the influence of the nose shape and yaw angles on flow structures around trains. Journal of Wind Engineering, and Industrial Aerodynamics.2010,98(1):34-46.
    [52]DIRK THOMAS. Lateral stability of high speed trains at unsteady crosswind. Switzerland:KTH,2009:1-31.
    [53]Alexander Orellanno, Martin Schober. Aerodynamic Performance of a Typical High-Speed Train. Proceedings of the 4th WSEAS International Conference on Fluid Mechanics and Aerodynamics, Elounda, Greece,2006, 18-25.
    [54]W. Khier, M. Breuer, F. Durst. Flow structure around trains under side wind conditions:a numerical study. Computers & Fluids.2000,29(2):179-195.
    [55]Christian Wetzel, Claire Yalamas, Carsten Proppe. On the influence of crosswind on the overturning stability of railway. PAMM.2007,7(1): 19-20.
    [56]Carsten Proppe and Christian Wetzel. Overturning probability of railway vehicles under wind gust loads. Iutam Symposium on Dynamics and Control of Nonlinear Systems with Uncertainty.2007,2(1):23-32.
    [57]Christian Wetzel, Carsten Proppe. Probabilistic Assessment of the Crosswind Stability of Railway Vehicles. Weimar Optimization and Stochastics.2007, (1):1-14.
    [58]Uwe Hoppmann, Stefan Koenig, Thorsten Tielkes,Gerd Matschke. A short-term strong wind prediction model for railway application:design and verification. Journal of Wind Engineering, and Industrial Aerodynamics. 2002,90(10):1127-1134.
    [59]F Cheli, F Ripamonti, D Rocchi, G Tomasini. Aerodynamic behaviour investigation of the new EMUV250 train to cross wind. Journal of Wind Engineering and Industrial Aerodynamics.2010,98(4-5): 189-201.
    [60]Marco Bocciolone, Federico Cheli, Roberto Corradi, Sara Muggiasca, Gisella Tomasini. Crosswind action on rail vehicles:Wind tunnel experimental analyses. Journal of Wind Engineering and Industrial Aerodynamics.2008 96(5):584-610.
    [61]Juan de Dios Sanz Bobi, Berta Suarez, Jorge Garzon Nunez, Juan Andres Brunei Vazquez. Protection hifh speed trains against lateral wnd effects Proceedings of the ASME 2009 International Mechanical Engineering Congress & Exposition. IMECE2009. November 13-19, Lake Buena Vista, Florida, USA.2009.771-780.
    [62]#12
    [63]福地合一,林田千秋,西泽正一,土屋恂.横风にょゐ列転倒の静力学的检封.铁道技衍研究报告,1973,(6):1-42
    [64]余部事故技衍调查委员会.余部事故技衍调查委具会告书.束京,财团法人铁道総合技术研究所,1988.
    [65]日比野有,石田弘明.车の転覆限界风速に関すゐ静解析法.铁道総研报 告,2003,17(4):39-44.
    [66]Minoru Suzuki, Katsuji Tanemoto, Tatsuo Maeda. Aerodynamic characteristics of train/vehicles under cross winds. Journal of Wind Engineering and Industrial Aerodynamics 2003,91(1-2):209-218.
    [67]Aita S, Tabbat A. CFD aerodynamics of the French high speed train. SAE USA.1992,85-99.
    [68]Sanquer Stephane, Barre Christian, Dufresne DE Virel Marc, Cleon Louis-Marie. Effect of cross winds on high-speed trains:development of a new experimental methodology. Journal of Wind Engineering and Industrial Aerodynamics.2004,92(7-8):535-545.
    [69]N. Paradot, B. Angel, P. E. Gautier and L. M. Cleon. Numerical Simulation and Experimental Investigation of the Side Loading on a High Speed Train. Procedings of the ERCOFTAC International Symposium on Engineering Turbulence Modelling and Measurements. Italy,2005, ETMM6-Sardinia, 2005,657-666.
    [70]Paradot N., Talotte C., Garem H., Delville J., Bonnet J. A comparison of the numerical simulation and experiment investigation of the flow around a high speed train. Proceedings of the 2002 ASME Joint U.S.-European Fluids Engineering Conference.2002.
    [71]Stephane Sanquer, Christian Barre, Marc Dufresne de Virel, Louis-Marie Cleon, Effect of cross winds on high-speed trains:development of a new experimental methodology. Journal of Wind Engineering and Industrial Aerodynamics.2004,92(7-8):535-545.
    [72]F. Alam, S. Watkins. Effects of Crosswinds on double stacked container wagons.16th Australasian Fluid Mechanic Conference. Crown Plaza, Gold Coast, Australia.2007.758-761.
    [73]C.J. Baker, J. Jones, F. Lopez-Calleja, J. Munday. Measurements of the cross wind forces on trains. Journal of Wind Engineering and Industrial Aerodynamics.2004,92(7-8):547-563.
    [74]Baker C. J. Ground vehicles in high cross winds. Part I:steady aerodynamic forces. Journal of Fluids and Structures.1991,5(1):69-90.
    [75]Baker C. J. Ground vehicles in high cross winds. Part II:unsteady aerodynamic forces. Journal of Fluids and Structures.1991,5(1):91-111
    [76]Baker C. J. Ground vehicles in high cross winds. Part III:The interaction of aerodynamic forces and the vehicle system. Journal of Fluids and Structures. 1991,5(1):221-241.
    [77]Baker C J, N Humphreys. Assessment of the adequacy of various wind tunnel techniques to obtain aerodynamic data for ground vehicles in cross winds. Journal of Wind Engineering and Industrial Aerodynamics.1996, 60:49-68.
    [78]Baker C. J. The effects of high winds on vehicle behaviour. Conference on Bridge Aerodynamics, Copenhagen,1998,267-282.
    [79]C.J. Baker. The simulation of unsteady aerodynamic cross wind forces on trains. Journal of Wind Engineering and Industrial Aerodynamics.2010, 98(2):88-99.
    [80]Chris Baker, Federico Cheli, Alexander Orellanoc, Nicolas Paradot, Carsten Proppee,Daniele Rocchi. Cross-wind effects on road and rail vehicles. Vehicle System Dynamics.2009,47(8):983-1022.
    [81]Y.L. Xua, Q.S. Ding. Interaction of railway vehicles with track in cross-winds. Journal of Fluids and Structures.2006,22(3):295-314.
    [82]王厚雄,王蜀东.防风工程对风特性及铁道车辆横风气动特性的影响.空气动力学学报.1990,8(4):430-436.
    [83]何华,田红旗,熊小慧,梁习锋.横风作用下敞车的气动性能研究.中国铁道科学.2006,27(3):73-78.
    [84]张健.路堤上铁道车辆的横风气动特性试验研究.国外铁道车辆.2007,44(1):26-28.
    [85]周丹,田红旗,杨明智,鲁寨军.强侧风作用下不同类型铁路货车在青藏线路堤上运行时的气动性能比较.铁道学报.2007,29(5):32-36.
    [86]田红旗,苗秀娟,高广军.强横风环境下棚车侧壁外形气动性能.交通运输工程学报.2006,6(3):5-8.
    [87]祝志文,陈政清.YZ22型车辆与铁路T型简支梁桥的风荷载研究.湖南大学学报.2001,28(1):93-97.
    [88]祝志文,陈政清.单、双层客车车辆在铁路桥梁上的横向气动力特性.中国工业大学学报.2001,32(4):410-413.
    [89]苗秀娟,高广军.不同风向角和地面条件下的列车空气动力性能分析.机车电传动.2006,3:33-35.
    [90]姜翠香,梁习锋.挡风墙高度和设置位置对车辆气动性能的影响.中国铁道科学.2006,27(2):66-70.
    [91]田红旗,风环境下的列车空气阻力特性研究.中国铁道科学.2008,29(5):108-112.
    [92]志文,陈伟芳,陈政清.横风中双层客车车辆的风荷载研究.国防科技大学.2001,23(5):117-121.
    [93]郗艳红,毛军,李明高,张念,马小云.高速列车侧风效应的数值模拟.北 京交通大学学报.2010,34(1):14-19.
    [94]杨志刚,马静,陈羽,张杰。横风中不同行驶工况下高速列车非定常空气动力特性.铁道学报.2010,32(2):18-23.
    [95]毕海权,雷波,张卫华.自然风对高速磁浮列车气动特性的影响.中国铁道科学.2007,28(2):65-70.
    [96]郑史雄,王林明.铁路声屏障风荷载体型系数研究.中国铁道科学.2009,30(4):46-50.
    [97]XIANG Jun, HE Dan, ZENG Qing-yuan. Effect of cross-wind on spatial vibration responses of train and track system. J. Cent. South Univ. Technol. 2009,16(3):520-524.
    [98]陈锐林,曾庆元.横风对列车通过曲线限制速度影响的数值研究.铁道学报.2009,31(1):40-45.
    [99]任尊松,徐宇工,王璐雷,邱英政.强侧风对高速列车运行安全性影响研究.铁道学报.2006,28(6):46-50.
    [100]高广军,田红旗,张健.横风对双层集装箱平车运行稳定性的影响.交通运输工程学报.2009,4(2):45-48.
    [101]王永冠,陈康.横风对高速动车曲线通过性能的影响.西南交通大学学报.2005,40(2):224-227.
    [102]马卫华,罗世辉,宋荣荣.横风对高速动车组直线运行动力学性能的影响.重庆工学院学报(自然科学).2009,23(3):1-5.
    [103]王璐雷,徐宇工,毛军.强侧风对高速列车运行安全性的影响及其控制.内燃机车.2004,(10):5-8.
    [104]张健.铁路防风栅抗风性能风洞试验研究与分析.铁道科学与工程学报.2007,4(1):13-17.
    [105]刘庆宽,杜彦良,乔富贵.日本列车横风和强风对策研究.铁道学报.2008,30(1):82-88.
    [106]KOZO FUJII, TAKANOBU OGAWA. Aerodynamics of high speed trains passing by each other. Computers & Fluids 1995,24(8):897-908.
    [107]Hideyuki TAKIZAWA,等(日).磁悬浮列车交会通过时的车辆动力学特性.国外铁道车辆.2004,4(1):30-33.
    [108]Samuel Holmes, Martin Schroeder, Elton Toma. High speed passenger and intercity train aerodynamic computer modeling. The 2000 International Mechanical Engineering Congress & Exposition. November 5-10,2000, Orlando, Florida.1-8.
    [109]Robert A. MacNeill, Samuel Holmes, Harvey S. Lee. Measurement of the aerodynamic pressures produced by passing trains. The 2002 ASME/IEEE Joint Rail Conference. April 23-25,2002, Washington D.C. 57-64.
    [110]Lutz Hermanns, J. German Gimenez, Enrique Alarcon. Efficient computation of the pressures developed during high-speed train passing events. Computers and Structures.2005,83(10-11):793-803.
    [111]Tetsuya Doia, Takanobu Ogawa, Takanori Masubuchi, Jiro Kaku. Development of an experimental facility for measuring pressure waves. Journal of Wind Engineering and Industrial Aerodynamics.2010,98(1): 55-61.
    [112]Jaeho Hwang, Dong-Ho Lee. Unsteady Aerodynamic Loads on High Speed Trains Passing by Each Other. KSME International Journal.2000,14(8): 867-878.
    [113]梁习锋,田红旗.200 km/h动车组交会空气压力波试验.中南工业大学学报.2002,33(6):621-624.
    [114]田红旗,贺德馨.列车交会压力波三维数值的计算.铁道学报.2001,23(3):18-22.
    [11 5]田红旗,梁习锋.准高速列车交会空气压力波试验研究.铁道学报.1998,20(4):37-42.
    [116]田红旗,卢执中.列车交会压力波的影响因素分析.铁道学报.2001,23(4):17-20.
    [117]田红旗.列车交会空气压力波研究及应用.铁道科学与工程学报.2004,1(1):83-89.
    [118]田红旗,许平,梁习锋,刘堂红.列车交会压力波与运行速度的关系.中国铁道科学.2006,27(6):64-67.
    [119]杨明智,袁先旭,熊小慧,梁习锋.广深线第六次提速列车交会压力波实测研究.实验流体力学.2008,22(2):56-60.
    [120]熊小慧,梁习锋.CRH2型动车组列车交会空气压力波试验分析.2009,31(6):15-20.
    [121]田红旗,姚松,姚曙光.列车交会压力波对车体和侧窗的影响.中国铁道科学.2000,21(4):6-12.
    [122]刘堂红,田红旗,梁习锋.“长白山”高速列车与货车交会试验研究.中国铁道科学.2006,27(3):56-61.
    [123]刘堂红,田红旗.磁浮列车明线交会横向振动分析.交通运输工程学报.2005,5(1):39-44.
    [124]刘堂红,田红旗,鲁寨军.列车交会压力波对高速磁浮列车.横向动态响应的影响分析.2004,25(6):9-14.
    [125]雷波,刘应清.明线上高速列车会车压力波的数值研究.西南交通大 学.1995,30(3):295-301.
    [126]李明水,雷波,林国斌,毕海权,王凤鸣.磁浮高速会车压力波和列车风的实测研究.空气动力学学报.2006,24(2):209-212.
    [127]毕海权,雷波,张卫华.高速磁浮列车会车压力波数值计算研究.空气动力学学报.2006,24(2):213-217.
    [1 28]赵晶,李人宪,刘杰.高速列车隧道内等速会车时气动作用力的数值模拟.铁道学报.2010,32(4):27-32.
    [129]李雪冰,侯传伦,张曙光,张继业,张卫华.高速列车交会时的风致振动研究.振动与冲击.2009,28(7):81-84.
    [130]ZHAO Xiao-li, SUN Zhen-xu. A new method for numerical simulation of two trains passing by each other at the same speed. Journal of Hydrodynamics.2010,22(5):697-702.
    [131]H J Gerhardt, O Kruger. Wind and train driven air movements in train stations. Journal of Wind Engineering and Industrial Aerodynamics 1998, 74(76):589-597.
    [132]J Y Kim, K Y Kim. Experimental and numerical analyses of train-induced unsteady tunnel flow in subway. Tunnelling and Underground Space. Technology.2007,22(1):166-172.
    [133]张小刚,刘应清,赵海恒.高速列车经过路边建筑物时的非定常湍流绕流数值模拟研究.铁道学报.1998,20(2):87-92.
    [134]韩华轩,王英学,蒲佳,刘佩斯.屏蔽门对高速铁路地下车站气动效应影响的研究.铁道标准设计.2008(增刊):108-110.
    [135]杨伟超,彭立敏,施成华,胡自林.地铁活塞风作用下屏蔽门的气动特性分析.郑州大学学报(工学版).2009,30(2):120-124.
    [136]邢景棠,周盛,崔尔杰.流固耦合力学概述.力学进展.1997,27(1):19-36.
    [137]Hirt C W, Amsden A A, Cook J L. An arbitrary Lagrangian-Eulerian computing method for all flow speeds. J.of Comp.Phys.1974,14(2): 227-253.
    [138]J Donea, S Giuliani, J P Halleux. An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions. Computer Methods in Applied Mechanics and Engineering.1982,33(1-3): 689-723
    [139]Huang Y Y et al. Fluid-structure impact analysis with a mixed method of arbitrary Lagrangian-Eulerian BE and FE. Acta Mechanica Solida Sinica. 1993,6(4):365-376.
    [140]E Onate, J Garca, S R Idelsohn, F Del Pin. Finite calculus formulations for finite element analysis of incompressible flows. Comput. Methods Appl. Mech. Engrg.2006,195(30):1-37.
    [141]程暮林,陈雪梅,钟长生.机翼颤振的数值模拟研究.水动力学研究与进展.2004,19(增刊):871-876.
    [142]C S Chew, K S Yeo, C Shu. A generalized finite-difference (GFD) ALE scheme for incompressible flows around moving solid bodies on hybrid meshfree-Cartesian grids. Journal of Computational Physics.2006,218(2): 510-548.
    [143]Philippe Geuzaine, Celine Grandmont, Charbel Farhat. Design and analysis of ALE schemes with provable second-order time-accuracy for inviscid and viscous flow simulations. Journal of Computational Physics.2003,191 (1):206-227
    [144]符松.CFD在高速列车研究中的应用.中国科学基金.1995,4(1):19-23.
    [145]王东屏,兆文忠,马思群.CFD数值仿真在高速列车设计中的应用.铁道学报.2007,29(5):64-68.
    [146]王永冠,陈康.横风对高速动车曲线通过性能的影响.西南交通大学学报,2005,40(2):224-227.
    [147]宋洋,任尊松.强侧向风作用下的高速列车动力学性能研究.铁道车辆,2006,44(10):4-7.
    [148]张卫华,张曙光.高速列车耦合大系统动力学及服役模拟.西南交通大学学报.2008,43(2):147-152.
    [149]王福天.计算流体动力学分析.清华大学出版社,2004
    [150]陶文铨.数值传热学(第2版).西安:西安交通大学出版社,2001:339-350
    [151]李人宪.有限体积法基础.国防工业出版社,2005
    [152]Versteeg H K, Malalasekera W. An Introduction to Com-putational Fluid Dynamics影印版.北京:世界图书出版公司,2000:21-25,50-53,67-75.
    [153]王启杰.对流传热传质分析.西安:西安交通大学出版社,1991
    [154]Ferziger J H. High-level simulation of turbulent flows. Computational methods for turbulent flows, transonic and viscous flows.Wshington DC: hemisphere,1983:93-182
    [155]Orszag S.A. Numerical simulation of turbulent flows. In:Frost W, Moulden T.H., eds. Handbook of turbulence. New York:Plenum Press,1997:281-313
    [156]张来平,邓小刚,张涵信.动态网格生成技术及非定常计算方法进展综述.力学进展.2010,40(4):424-447.
    [157]Fluent Inc.,FLUENT User's Guide. Fluent Inc.,2003
    [158]崔涛,张卫华.基于姿态变化的列车侧风安全性研究.铁道学报.2010,32(5):25-29.
    [159]田红旗.列车空气动力学.北京:中国铁道出版社,2007:178-200.
    [160]轨道交通国家实验室.京津城际高速铁路科学研究试验试验报告.西南交通大学.2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700