横风作用下的高速列车气动特性及运行安全性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速列车具有十分复杂的三维几何外形和大长细比,在高速运行时形成复杂的、强非线性的三维粘性绕流流动。与在无风环境中相比,列车遇到横风时,其绕流流场和气动特性将发生剧烈变化,轮轨动力学性能亦随之改变,使列车的运行安全受到影响。目前,国内外针对高速列车横风效应和气动安全性的研究己取得诸多成果,但在复杂场景建模、横风气动力分析、横风效应的非定常性质,以及横风气动特性对列车运行安全的影响等方面的研究还需进一步深入。
     本文通过理论分析、模型实验、流动数值模拟和多体动力学仿真相结合的方法,以CRH型高速列车原型为研究对象,对列车的横风气动特性和相应的车辆轨道动力学问题进行了数值模拟与仿真分析,探讨了横风作用下的列车运行安全控制问题。主要内容包括以下几部分:
     1、研究了单列高速列车在明线横风环境中运行的气动特性。结果表明:使用均匀风和大气底层边界速度型两种风场计算的列车气动作用力相差20%-60%,差值大小与平地、路堤和桥梁等路面条件以及车辆位置相关,使用均匀风评估列车的横风安全性将与实际情况存在较大偏差。横风风速和风向角以及车速对列车气动特性的影响规律可用三次多项式函数来描述,且对头车气动特性的影响最明显。气动阻力系数与车速、风速和风向角之间的关系可用无量纲量综合公式描述;对于编组车辆数量不同的列车,头车气动性能基本相同,三节车辆编组列车的气动安全性在一定程度上能够适用于三节以上车辆编组列车的气动安全性评估。受电弓装置和转向架的气动荷载占各节车辆气动力的份额可达10-20%,不宜忽略。
     2、采用分离涡模拟法模拟了恒定风场中高速列车绕流的非定常流动,在时域和频域内分析了车辆和转向架气动特性的瞬态性质。结果表明:在恒定来流中,列车的背风侧和尾车的尾迹区存在着强度不同、空间几何尺度各异并随时间随机变化和脉动的分离涡;各节车辆的非定常气动荷载的时均值与按整场定常流动计算得到的结果基本一致,但瞬态荷载峰值却比时均值高出较多;振幅频谱和功率谱密度的最大峰值所对应的频率不尽相同,但都集中在0-4Hz内,处于某些列车部件的固有频率范围内。头车的横向力和倾覆力矩的分布频率范围较大,与车体自身频率耦合的范围较宽,横风气动安全性较差。各个转向架气动荷载的功率谱密度的最大峰值所对应的频率也不相同,但都集中在0.5-3.5Hz内。
     3、采用移动网格原理对列车交会进行了数值模拟计算。分析了高速列车在明线交会的气动特性、横风对交会气动特性的影响,以及列车几何模型的简化对交会压力波和气动特性数值模拟结果的影响。研究表明:列车-轨道模型的简化方法和简化程度对列车交会压力波和气动力特性曲线的影响程度与车辆的位置和有无横风等条件有关,车体的离地高度、转向架等对计算结果均有较为明显的影响。列车在无风环境中交会时,速度越大,峰值越高、波幅越大。波幅与交会侧间距和列车边界层厚度以及离地高度有关,交会侧间距的影响作用更大,间距越小,波幅越大。Steinheur给出的波幅计算经验公式仅考虑了从车肩开始的列车边界层,本文则还考虑头车流线体曲面边界层的影响,提出了一组新的压力波波幅计算公式。列车在横风中交会时,其压力波和气动力的特性曲线与无风环境中的相似,压力波波幅比无横风时的大,并随交会距离的增加而明显增加;各节车辆的气动力及其波动幅值均随交会速度的增大而增大。横风使压力波波幅、各节车辆的气动力和力矩的峰值和波幅均增大。
     4、通过多体动力学仿真研究了横风风速和车速对高速列车轮轨动力学性能的影响。结果表明:横风和车速对头车的脱轨系数和轮重减载率的影响最大,头车的脱轨系数和减载率在三节车中最大;头车背风侧的脱轨系数最大值和头车迎风侧的减载率最大值均随着风速的增加而明显增大:同时,动力学性能参数随编组车辆数量的增加而逐渐增大。对于CRH型高速列车,若采用京津线轨道谱,以脱轨系数作为安全性评价标准即可;若采用德国轨道谱,则还需要补充轮重减载率作为安全判据。此外,本文实现了加载随机气动荷载进行动力学仿真。
     5、研究了横风作用下的高速列车安全控制方法。基于空气动力学和轮轨动力学分析了列车在不同横风风速作用下的运行速度安全域即列车限速运行问题,给出了相应风速下的列车速度阂值;设计了一种双层腔室结构的新型透风式挡风装置,对其挡风作用和自身抗风性能进行了模拟分析,发现其具有较好的综合性能。同时,提出了利用抽吸气法控制边界层分离以减小列车的横风气动荷载的横风主动控制新方法,并分析和论证了其作用原理和效果,为提高列车的横风安全性提供了一种新的思路和方法。
High-speed train is of complicated shape and high slenderness ratio, it causes three dimensional viscous flow that is complex and strongly nonlinear. When high-speed train runs in crosswind, the flow field and aerodynamic performance will change, as well as wheel-rail dynamic performance, thus influenting the safety of high-speed train on operation. There has been a substantial amount of research carried out to investigate the effects of crosswind on high-speed train and the aerodynamic safety in different parts of the world at present, while in the fields of complicated scene modeling, crosswind aerodynamic analysis, crosswind unsteady properties, and the influence of crosswind aerodynamics on safety of running train, remain to further investigation.
     Based on method of combining theoretic analysis, model test, flow numerical simulation and multi-body dynamics simulation, issues of crosswind aerodynamics of train and the relevant track dynamics were numerical simulated and analyzed by taking CRH high-speed train as the research object, and issues of train safety control in crosswind were studied. The main contents include the following parts:
     1. Aerodynamic performance of single car in open air and cross wind was studied. The results show that the different value of aerodynamic force between simulation with uniform wind and that with lower atmospheric boundary layer wind, is20%-60%, and the value is relative to road conditions such as flatland, embankment and bridge, as well as the location of train. So there is obvious deviation from the actual situation when estimating train safety in crosswind with uniform wind. The influence law of aerodynamic characteristics affected by cross winds speed, wind direction and driving speed is described by cubic polynomial function, and the influence on head train is the most obvious. The relationship between aerodynamic drag coefficient, wind speed and wind direction can be described by dimensionless comprehensive formulae; for different train consists, aerodynamic performances of head train are almost same, so for the head car of a train that consists of more than three cars, the aerodynamic safety can be estimated in a certain extent, based on the analyses on a train that consists of three cars. The aerodynamic loads of pantographs and bogie account for10~20%of each train, so it should not be ignored;
     2. Flow field around high-speed train and transient behavior of the aerodynamic characteristics in constant wind field were simulated by Detached Eddy Simulation, and the unsteady property was analyzed. The results show that, in steady inlet flow field, there are separated vortexes with different intensities and geometric dimensions that change and pulse randomly with time on the leeward side and wake region of train; the time-averaged value of unsteady aerodynamic load value of each car is almost the same with that calculated in whole-field steady flow, while the peak value of transient load is higher than the time-averaged value; the maximum peak values of amplitude frequency spectrum and power spectrum are not same, but they are concentrated in0-4Hz, which is in the range of inherent frequency of some train parts. For head car, the range of distribution frequency of lateral force and overturning moment is large, it has a wide range of frequency coupling with the train itself, and the aerodynamic safety is poor in crosswind. The frequency that corresponded to maximum peak values of power spectrum of aerodynamic load on bogies are different, but they are concentrated in0.5~3.5Hz.
     3. The aerodynamic performance of high-speed train passing by in open air, the influence of crosswind on aerodynamic performance of meeting trains, and the influence of simplification of train model on the result of meeting trains simulation were analyzed based on moving mesh. The results show that for meeting trains at same speed, pressure pulse is basically proportional to the speed; for meeting trains at different speed, pressure pulse is effected by the ratio between the two speed, pressure pulse of lower speed train is higher than that of higher speed train; for passing trains in crosswind, pressure pulse is higher than that without crosswind, and pressure of every point on the leeward side is higher than that on the upwind, crosswind increases the danger of trains passing by, but the danger level of leeward train and upwind train are different. Aerodynamic performances of trains passing by in different road conditions were compared. Pressure wave and aerodynamic coefficient of meeting trains simulated with real model are higher than that with simplified model. In conditions of crosswind and non-crosswind, there were greater differences in pressure wave and aerodynamic force coefficient of meeting trains simulated with simplified model and real model, the difference of pressure wave amplitude can be one time higher, and the difference of aerodynamic force coefficient can be3~4times higher, and generally that with real model is higher.
     4. Influence of crosswind velocity and driving velocity on wheel-rail dynamic performance of high-speed train was studied based on multi-body dynamics simulation. The results show that crosswind and driving velocity are most influential parameters on derailment coefficient and wheel load reduction rate of head car, and the derailment coefficient and reduction rate of wheel load of head car are the largest among the three cars; the maximum values of derailment coefficient on the leeward side of head car and wheel load reduction rate on the windward side of head car increase obviously with the increase of wind velocity; and these dynamic performance parameter values increase with the increasing number of cars that compose a train. For the CRH high-speed train, derailment coefficient is only needed as safety evaluation criterion when track spectrum of Beijing-Tianjin railway line is employed; while wheel unloading rate should be added for safety evaluation criteria when track spectrum of German railways is employed. In addition, increasing random aerodynamic load in simulation was realized in the research.
     5. Safety control method of high-speed train in crosswind was studied. Security domain for train of running speed at different crosswind speed, namely speed limit of running train, was analyzed based on aerodynamics and wheel-rail dynamics, and the limited train speed was given; a new wind-proof device that ventilated with double-layer chamber was designed, and it is proofed of good comprehensive properties by simulating and analyzing the ability of keeping out the wind and wind self-resistance. Meanwhile, A new active-control method in which boundary layer separation is controlled through suction to decrease crosswind aerodynamic load on train is proposed, the action principle and effect were analyzed and proofed, which is a new way provided to improve crosswind safety of train.
引文
[1]沈之介.加快我国高速铁路的发展[J].中国铁路.1993,(7):1-4
    [2]Ellwanger G., Wilckens M.. European high-speed transport:A service with future[J]. Rail International,1994, (1):2-12
    [3]钱立新.世界高速列车技术的最新进展[J].中国铁道科学,2003,24(4):1-11
    [4]谢贤良.时速574.8公里——法国高速列车再创世界记录[J].铁道知识,2007,(5):32-37
    [5]钱立新.速度350 km/h等级世界高速列车技术发展综述[J].中国铁道科学,2007,28(4):66-72
    [6]晁国强.国外高速列车发展动态[J].现代零部件,2007,(10):21-22
    [7]张卫华,王伯铭.中国高速列车的创新发展[J].机车电传动,2010,(1):8-12
    [8]新浪新闻中心.沪杭高铁最高时速再次刷新纪录达416.6公里,2010.9.28http://news.sina.com.cn/c/2010-09-28/150221187689.shtml,
    [9]前田达夫,江慧.高速列车的空气动力学现象与环境问题[J].变流技术与电力牵引,2000,(2):35-37
    [10]田红旗.列车空气动力学[M].中国铁道出版社,北京.2007
    [11]Anderson, H.L. Investigation of the Forces on Bluff Bodies Near the Ground, M.Sc. dissertation, Department of Aeronautics, Imrperial College,1977
    [12]葛盛昌,尹永顺.新疆铁路风区列车安全运行标准现场试验研究[J]铁道技术监督,2006,34(4):9-11
    [13]马韫娟,马淑红,李振山等.我国客运专线高速列车安全运行大风预警系统研究[J]铁道工程学报,2009(7):43-47
    [14]前田达夫,种本胜二.车辆受横风时的气动力特性[A].国外高速列车译文集(三)[C].北京:铁道科学研究院机车车辆研究所,1996,156-163.
    [15]Fujii T. Maeda T, Ishida H. Wind-induced Accidents of Train/Vehicles and Their Measure in Japan. Quarterly Report of Railway Technical Research Institute,1999, (1)50-55
    [16]Coleman, S.A., Baker, C.J., High Sided Road Vehicles in Crosswinds. Journal of wind Engineering and Industrial Aerodynamics,1990,36(2):1383-1392
    [17]E Anderssonl, J Haggstrom, M Sima and S Stichel, Assessment of train-overturning risk dueto strong cross-winds, Proceeding of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit,2004,218(3):213-223
    [18]何华,田红旗,熊小慧等.横风作用下敞车的气动性能研究[J].中国铁道科学,2006,27(3):73-77
    [19]王璐雷,徐宇工,毛军.强横风对高速列车运行安全性的影响及其控制[J].内燃机车,2004,10:5-8
    [20]李永乐,廖海黎,强士中.京沪高速铁路南京长江大桥桥址区风特性研究[J].桥梁建设,2002,(4):5-7
    [21]刘庆宽,杜彦良,乔富贵.日本列车横风和强风对策研究[J].铁道学报,2008,30(1):82-88
    [22]Fox TA, Henson D A. The prediction of the magnitudes of pressure transients generated by a train entering a single tunnel. Proc. Inst. Civ. Eng.,1971,49:53-69
    [23]孙彤,孙翔译.采用高新技术的德国铁路ICE高速列车.成都:西南交通大学出版 社,1992:50-52
    [24]井门敦志,饭田雅宣和前田达夫.列车头部尾部形状最佳化的风洞试验,空气动力学和噪声,1996:190-196
    [25]吴德康译.对超高速列车在隧道内运行时压力变化的实验研究,隧道译丛.1994(5):1-9
    [26]堀江笃,土屋恂,广田和羲.宫崎试验线にぉける列车风·自然风の试验.铁研报告.1983,1249(10):65-70
    [27]堀江笃,本间则男.宫崎试验线にぉける列车风·自然风の试验.铁研报告.1984,1281(11):29-33
    [28]C.J.Baker. Train Aerodynamic Forces from Moving Model Experiments[J]. Journal of Wind Engineering and Industrial Aerodynamics.1986,24(3):227-252
    [29]Copley J M. Three-dimensional flow around railway train. Journal of Wind Engineering and Industrial Aerodynamics.1987,26(1):21-52
    [30]N.J.W.Brockie, C.J.Baker. The Aerodynamic Drag of High Speed Trains[J]. Journal of Wind Engineering and Industrial Aerodynamics.1990,34:273-290
    [31]Baker, C.J. Wind Tunnel Tests to Obtain Train Aerodynamic Drag Coefficients. Journal of Wind Engineering and Industrial Aerodynamics,1991,38(1):23-28
    [32]N.D.Humphreys, C.J.Baker. Forces on Vehicles in Cross Winds from Moving Model Tests[J]. Journal of Wind Engineering and Industrial Aerodynamics.1992,44(1-3):2673-2684
    [33]Baker C.J., The wind tunnel determination of crosswind forces and moments on a High Speed Train, Proc. of the TRANSAERO Symposium May 04-05 1999, Paris, France.
    [34]Minoru Suzuki, Katsuji Tanemoto, Tatsuo Maeda. Aerodynamic characteristics of train/vehicles under cross wind[J]. Journal of Wind Engineering and Industrial Aerodynamics,2003,91:209-218
    [35]S tephane Sanquer etc. Effect of cross winds on high-speed trains: development of a new experimental methodology [J] Journal of Wind Engineering and Industrial Aerodynamics,2004,(92):535-545
    [36]周瑜平.列车风洞试验研究探索.第四届全国风工程及工业空气动力学学术会议论文集,1994,11:369-374
    [37]周瑜平,王惫勋.我国车辆空气动力学试验研究综述[C].第五届全国风工程及工业空气动力学学术会议论文集.湖南,张家界,1998
    [38]张健,陈南翼.横风对电动车组中各车辆气动特性影响的试验研究[J].机车电传动,1998(2):4-11
    [39]张健.高速列车动车头形风洞试验研究[J].流体力学实验与测量,1997,11(2):85-89
    [40]马启文,张松.准高速列车气动性能试验研究.西南交通大学学报,1997,32(3):266-270
    [41]陈南翼,张健.高速列车空气阻力试验研究[J].铁道学报,1998,20(5):40-46
    [42]田红旗,高广军.270km/h高速列车气动性能研究.中国铁道科学,2003,24(2)14-18
    [43]杨明智,袁先旭,鲁寨军.强横风下青藏线列车气动性能风洞试验研究.试验流体力学,2008,22(1):76-79
    [44]田红旗.风环境下的列车空气阻力特性研究,中国铁道科学,2008,29(5):108-112
    [45]A.P.Gaylard. The application of computational fluid dynamics to railway aerodynamics[J]. Journal of rail and rapid transit, Proceedings of the Institution of Mechanical Engineers Part F, 1993,57:103-121.
    [46]T.W.Chiu. Prediction of the aerodynamic loads on a railway train in a cross-wind at large yaw angles using an integrated two- and three-dimensional source-vortex panel method. Journal of Wind Engineering and Industrial Aerodynamics.1995,57:9-39
    [47]W. Khier, M. Breuer, F.Durst. Flow structure around trains under side wind conditions: a numerical study[J]. Computers and Fluids,2000,29:179-195.
    [48]B. Diedrichs. On computational fluid dynamics modeling of crosswind effects for high-speed rolling stock[J]. Journal of rail and rapid transit, Proceedings of the Institution of Mechanical Engineers Part F,2003,217:203-326.
    [49]A.Orellano, M.Schober, On side-wind stability of high speed trains, Vehicle System Dynamics Supplement 2003,40:143-160
    [50]E Anderssonl, J Haggstrom, M Sima and S Stichel, Assessment of train-overturning risk dueto strong cross-winds, Proceeding of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit,2004,218(3):213-223
    [51]A.Carrarini. Reliability based analysis of the crosswind stability of railway vehicles. Journal of Wind Engineering and Industrial Aerodynamics,2007,95:493-509
    [52]Quinn,A.D. An Investigation of the Wind-induced Rolling Moment on a Commercial Vehicle in the Atmospheric Boundary Layer. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering,2007,21(11):1367-1379
    [53]Krajnovic, Sinisa. Optimization of aerodynamic properties of high-speed trains with CFD and response surface models. Proceedings of The Aerodynamics of Heavy Vehicles II: Trucks Buses and Trains, Lake Tahoe, USA, August 26-312007
    [54]李人宪,翟婉明.磁悬浮列车横风稳定性的数值分析,交通运输工程学报,2001,1(1):99-101
    [55]高广军,田红旗,张健.横风对双层集装箱平车运行稳定性的影响,交通运输工程学报,2004,4(2):45-48
    [56]高广军,田红旗,姚松等.兰新线强横风对车辆倾覆稳定性的影响,铁道学报,2004,26(4):36-40
    [57]王璐雷.高速列车在强横风作用下的气动性能数值模拟研究[D].北京:北京交通大学,2005
    [58]杨敏.强横风对青藏线列车气动性能的影响,铁道机车车辆工人,2009,2:21-25
    [59]李雪冰,杨征,张继业,张卫华.强风中高速列车空气动力学性能,交通运输工程学报,2009,9(2):66-73
    [60]杨吉忠,毕海权,翟婉明.基于ALE方法的列车横风绕流动力学分析,铁道学报,2009,31(2):120-124
    [61]荆江.高速列车及关键部件气动性能数值分析[D].中国科学院研究生院,北京,2009.6
    [62]马卫华,罗世辉,宋荣荣.横风对高速动车组直线运行动力学性能的影响[J],重庆工学院学报(自然科学),2009,23(3):1-5
    [63]祝志文,陈政清.单、双层客车车辆在铁路桥梁上的横向气动力特性[J].中南工业大学学报.2001,32(4):410-413.
    [64]Minoru Suzuki, Katsuji Tanemoto, Tatsuo Maeda, Aerodynamic characteristics of train/vehicles under cross winds, Journal of Wind Engineering and Industrial Aerodynamics 91(2003) 209-218
    [65]张健,梁习锋.铁道车辆通过桥梁的横风气动特性试验研究[J].国外铁道车辆,2003,40(3):23-25.
    [66]杨明智,袁先旭,鲁寨军.强横风下青藏线列车气动性能风洞试验研究[J].试验流体力学,2008,22(1):76-79
    [67]高广军.强横风作用下列车运行安全性研究[D],中南大学,湖南长沙,2008.4
    [68]周丹,张健.横风对双层集装箱平车气动特性的影响[J],铁道机车车辆,2004,24(3):17-20
    [69]周丹,田红旗,鲁寨军.大风对路堤上运行的客运列车气动性能的影响[J],交通运输工程学报,2007,7(4):6-9
    [70]周丹,田红旗,杨明智等.强横风作用下不同类型铁路货车在青藏线路堤上运行时的气动性能比较[J],铁道学报,2007,29(5):32-36
    [71]周丹,田红旗,杨明智,鲁寨军.强横风下客车在不同路况运行的气动性能比较,中南大学学报(自然科学版),2008,39(3):554-559
    [72]B Diedrichs, MSima, A Orellano, HTengstrand. Crosswind stability of a high-speed train on a high embankment. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit,2007,221(2):205-225
    [73]Marco Bocciolone, Federico Cheli, Roberto Corradi,Sara Muggiasca, Gisella Tomasini, Crosswind action on rail vehicles: Wind tunnel experimental analyses. Journal of Wind Engineering and Industrial Aerodynamics,2008,96:584-610
    [74]谭深根,李雪冰,张继业,张卫华.路堤上运行的高速列车在横风下的流场结构及气动性能.铁道车辆,2008,46(8):4-8
    [75]雷波,刘应清.明线上高速列车会车压力波的数值模拟[J].西南交通大学学报,1995,30(3):295-301
    [76]田红旗,梁习锋.准高速列车交会空气压力波试验研究[J].铁道学报,1998,20(4):37-42
    [77]田红旗,中国列车空气动力学研究进展[J],交通运输工程学报,2006,6(1):1-9
    [78]High-speed passenger and intercity train aerodynamic computer modeling. Samuel Holmes Martin Schroeder Elton Toma. The 2000 International Mechanical Engineering Congress & Exposition November 5-10,2000, Orlando, Florida
    [79]梁习锋,沈娴雅.环境风与列车交会耦合作用下磁浮列车横向气动性能[J].中南大学学报(自然科学版),2007,38(4):751-757
    [80]邱英政.高速列车交会压力波数值模拟计算与测试研究[D],北京交通大学,北京,2008
    [81]董亚男.高速列车在横风环境中会车的空气动力特性模拟研究[D],北京交通大学,北京,2008
    [82]毛军,郗艳红,杨国伟.侧风风场特征对高速列车气动性能作用的研究[J],铁道学报,2011,33(4):22-30
    [83]松平精.高速車両而の運動,东海新斡线 に関する研究1[J].铁道技術研究报告,1960,(4):44-51.
    [85]福地合一,林田千秋,西泽正一,土屋恂.横風による列车転倒の静力学的(?)封[J].铁道技衍研究报告,1973,(6):142.
    [86]池茂儒,张卫华,曾京,戴焕云,邬平波.空重车混编对列车稳定性的影响[J].交通运输工程学报,2007,7(2):10-13
    [87]洪华杰,李杰,张锰.EMS型磁浮列车系统滚动稳定性研究[J].控制工程,2006,13(4):314-316
    [88]曾京,邬平波.高速列车的稳定性[J].交通运输工程学报,2005,5(2):14
    [89]刘宏友,曾京.列车系统蛇行运动稳定性研究[J].铁道学报,2004,26(5):41-45
    [90]王开云,翟婉明,蔡成标.轮轨结构参数对列车运动稳定性的影响[J].中国铁道科学,2003,24(1):43-48
    [91]王开云,翟婉明,蔡成标.车辆在弹性轨道结构上的横向稳定性分析[J].铁道车辆,2001,39(7):1-5
    [92]杨文韬,刘作义.新型行李车倾覆稳定性的计算[J].铁道货运,2006,(6):20-24
    [93]高广军,田红旗,张健.横风对双层集装箱平车运行稳定性的影响[J].交通运输工程学报,2005,4(2):45-48
    [94]高广军,田红旗,姚松,刘堂红,毕光红.兰新线强横风对车辆倾覆稳定性的影响[J].铁道学报,2004,26(4):36-40
    [95]陈锐林,曾庆元.横风对列车通过曲线限制速度影响的数值研究[J].铁道学报,2009,31(1):40-45
    [96]高广军,苗秀娟.强横风下青藏线客车在不同高度桥梁上的气动性能分析[J].中南大学学报,2010,41(1):376-380
    [97]蒋崇文,陈智,关雪梅等.平原上不同长度集装箱列车横风载荷的数值研究[J].铁道学报,2010,32(5):18-24
    [98]Christina Rolen, Thomas Rung, Don Wu. Computational modeling of cross-wind stability of high -speed trains [C]. ECCOMAS2004. European Congress on Computational Methods in Applied Sciences and Engineering. Jyv(a|¨)skyl(a|¨),24-28 July 2004
    [99]Hassan Hemida, Sinisa Krajnovic, Lars Davidson. Large-eddy simulation of the flow around a simplified high speed train under the influence of across-wind[C]//AIAA. 17th AIAA Computational Fluid Dynamics Conference.2005, AIAA 2005-5354.
    [100]Hassan Hemida, Sinisa Krajnovic. Numerical study of the unsteady flow structures around train-shaped body subjected to sidewinds [C]. ECCOMAS CFD 2006, The Netherlands, September 5-8,2006.
    [101]马静,张杰,杨志刚.横风下高速列车非定常空气动力特性研究[J].铁道学报,2008,30(6):109-114
    [102]Baker C. J.. The simulation of unsteady aerodynamic cross wind forces on trains[J]. Journal of Wind Engineering and Industrial Aerodynamics,2010,98:88-99.
    [103]卜继玲.动车组系统动力学与结构可靠性[M].北京:中国铁道出版社,2009:10-12
    [104]中华人民共和国国家标准GB5599-85.铁道车辆动力学性能评估和试验鉴定规范[S].北京:中国标准出版社,1986.
    [105]中华人民共和国国家标准GB/T(送审稿).高速动车组全车试验规范[S].北京:中国标准出版社,2008.
    [106]任尊松,车辆系统动力学[M],北京,中国铁道出版社,2007
    [107]张卫华.机车车辆运行动态模拟研究[D].成都:西南交通大学,1996.
    [108]曾庆元,向俊,周智辉等.列车脱轨分析理论与应用[D].长沙:中南大学出版社,2006.
    [109]翟婉明.车辆-轨道耦合动力学[M].第三版.北京:科学出版社,2007.
    [110]薛弼一.脱轨机理及试验研究[D].成都:西南交通大学,1998.
    [111]向俊.列车脱轨机理与脱轨分析理论研究[D].长沙:中南大学,2006.
    [112]陈锐林.强风作用下列车脱轨分析[D].长沙:中南大学,2008.
    [113]向俊,周智辉,曾庆元.列车脱轨研究最新进展[J],铁道科学与工程学报2005,2(5).1-8
    [114]翟婉明.货物列车动力学性能评定标准的研究与建议方案(待续)——防脱轨安全性评定标准[J].铁道车辆,2002,40(1):13-18.
    [115]翟婉明,陈果.根据车轮抬升量评判车辆脱轨的方法与准则[J].铁道学报,2001,23(2):17-26.
    [116]陈光雄,鲍维千.缓和曲线上周期性线路不平顺对车辆脱轨的影响[J].铁道车辆,2000,38(4):1-5.
    [117]Ikemori M, Sugiyama T. A study of track maintenance for derailment due to the interaction betwen track and vehicles[R]. JRR RTRI Quarterly Reports,1978.
    [118]Shust W C, Thompson R, Elkim J A. Controled wheel climb derailment tests using a force measuring whelset and AAR's track loading vehicle[A]. Proceedings of 12th International Wheelset Congress[C]. Qingdao:1998
    [119]吴光勇.货车在小半径曲线上脱轨安全性的研究[J].中国铁道科学,1986,7(2):51-66.
    [120]李富达,黄建苒,樊建民等.小半径曲线上棚车脱轨安全性研究[J].中国铁道科学,1986,7(2):35-50.
    [121]中国铁道部科学研究院,北京铁路局,京津城际铁路公司.京津城际铁路联调调试及试运行总报告[R].北京:中国铁道部科学研究院,2009.
    [122]中国铁道部科学研究院,北京铁路局,京津城际铁路公司.武广客运专线联调联试及运行试验总报告[R].北京:中国铁道部科学研究院,2009.
    [123]卜继玲.动车组系统动力学与结构可靠性[M].北京:中国铁道出版社,2009:10-12
    [124]缪炳荣,方向华等,SMPACK动力学分析基础教程[M].成都:西南交通大学出版社,2008
    [125]缪炳荣,罗仁等,SIMPACK动力学分析高级教程[M].北京:西南交通大学出版社,2010
    [126]郗艳红,毛军,李明高等.高速列车侧风效应的数值模拟[J].北京交通大学学报,2010,34(1):14-18
    [127]陈果,翟婉明等.车辆脱轨安全限值的调整与改进建议[J].中国机械工程,2002,13(8):22-25
    [128]任尊松,徐宇工,王璐雷等.强侧风对高速列车运行安全性影响研究[J].铁道学报,2006,28(6):46-50.
    [129]宋洋,任尊松.强侧向风作用下的高速列车动力学性能研究[J].铁道车辆,2006,44(10):4-7.
    [130]毛军,马小云,郗艳红等.基于流动模拟和动力学仿真的高速列车横风运行稳定性研究[J].北京交通大学学报,2011,35(155):44-48.
    [131]吴相庭.结构风压和风振计算[J].上海:同济大学出版社,1985
    [132]王之宏.风荷载的模拟研究[J].建筑结构学报.1994,15(1):44-52
    [133]马卫华,罗世辉,宋荣荣.横风对高速动车组直线运行动力学性能的影响,重庆工学院学报(自然科学),2009,23(3):1-5
    [134]今井俊昭.对铁道强风管制风速评定的探讨.铁道综研报告—环境防灾技术特集,1997,10
    [135]Matschke G, Schulte-Werning B. Measures and Strategies to Minimize the Effect of Strong Cross Winds on High Speed Trains. Proceedings of WCRR Word Congress of Railway Research, Florence, Italy,1997,Vol.E,569-575
    [136]马淑红马韫娟.瞬时风速对高速列车安全运行的影响及其控制[J].铁道工程学报,2009,1:11-16
    [137]曾广勇.兰新线大风地区挡风墙的勘测与设计.路基工程.1998,(6):24-29
    [138]马淑红,马韫娟,李建群等.京津城际CRH动车组大风天气条件下安全行车技术标准参数研究[J].铁道技术监督.2009,37(2):7-12
    [139]董锡明.高速动车组工作原理与结构特点[M],北京,中国铁道出版社,2007,P225)
    [140]武青海,列车空气动力学数值仿真研究[D],北京,铁道部科学研究院,2002
    [141]Bruce R. Munson, Donald F. Young, Theodore H. Okiishi. Fundamentals of Fluid Mechanics (4th Edition)[M]. P583. New Jersey, USA. John Wiley & Sons, Inc.,2002.
    [142]张成春.旋成体仿生非光滑表面流场控制减阻研究[D].吉林:吉林大学,2007.
    [143]严隽耄,傅茂海等.车辆工程(第三版)[M].北京:中国铁道出版社,2008
    [144]黄学辉.转向架对高速列车气动特性影响的研究[D].成都:西南交通大学,2008.
    [145]周光垌,严宗毅,许世雄等.流体力学[M].北京:高等教育大学,2008.
    [146]P Rollet-Miet, D Laurence, J Ferziger. LES and RANS of turbulent flow in tube bundles. International Journal of Heat and Fluid Flow,1999,20(3):214-254
    [147]Guerri O, K Bouhadef, et al. Turbulent flow simulation of the NREL S809 airfoil. Wind Engineering.2006,30(4):287-302
    [148]Wilcox D C. Turbulence Modeling for CFD. DCW Industries, Inc., La Canada,California, 1998
    [149]Menter F R. Multiscale model for turbulent flows. 24th Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics,1993
    [150]Menter F R. Two-equation Eddy-viscosity Models for Engineering Applications. AIAA. J., 1994,32(8):1598-1605
    [151]ANSYS Inc. Turbulence and Wall Function Theory. ANSYS Inc.,2005
    [152]Pietro Catalano and Marcello Amato. An Evaluation of RANS Turbulence Modelling for aerodynamic applications. Aerospace Science and Technology,2003,7:493-509
    [153]Menter F R, Langtry R, Hansen T. CFD Simulation of Turbomachinery Flows-Verfication, Validation and Modeling. European Congress on Computational Methods in Applied Sciences and Engineering,2004,1-14
    [154]Reichel C and K Strohmeier. Application of models for laminar to turbulent transition to flow around a circular cylinder. Denver. CO. United States.2005,4:7-11
    [155]ANSYS Inc. Innovative Turbulence Modeling: SST model in ANSYS CFX. ANSYS Inc., 2005
    [156]Lien F S, Kalitzin G and Durbin P A. RANS modeling for compressible and transitional flows. Center for Turbulence Research Proceedings of the Summer Program,1998,267-286
    [157]张红杰,马晖扬,童秉纲.高超声速复杂流场中湍流模式应用的评估.空气动力学学报,2001,19(2):210-216.
    [158]黄本才,汪丛军.结构抗风分析原理及应用(第二版)[M].上海:同济大学出版社,2008.
    [159]张兆顺,崔桂香,许春晓.湍流大涡数值模拟的理论和应用[M].北京:清华大学出版社,2008.
    [160]http://zh.wikipedia.org/wiki/File:CRH 20100216.jpg
    [161]吴子牛.计算流体力学基本原理.北京:科学出版社,2001
    [162]伍荣林,王振羽.风洞设计原理[M].北京:北京航空学院出版社,1985.
    [163]南车青岛四方机车车辆股份有限公司.CRH2动车组气动性能风洞试验报告[R],2010.11
    [164]http://www.cardc.cn/show wt detail.asp?wt id=2
    [165]周立.流线型地铁列车头车设计及其气动性能分析[D].南京,东南大学,2006
    [166]周宇,钱炜祺,邓有奇等k-ω SST两方程湍流模型中参数影响的初步分析[J].空气动力学学报,2010,28(2):213-217
    [167]中华人民共和国建设部,国家质量监督检验检疫总局.GB50009-2001建筑结构荷载规范[S].北京:中国建筑工业出版社,2002:72-73
    [168]Joseph A Schetz,高速列车空气动力学[J].力学进展,2003,33(3):404-423
    [169]陈晓春,王元.绕钝体分离流动的非定常数值模拟研究[J].空气动力学学报,2007,25(4):513-520
    [170]陈晓春.基于并行计算的大涡模拟方法及其工程应用基础研究[D].西安, 西安建筑科技大学,2004.
    [171]F. Nicoud, F. Ducros. Subgrid-scale stress modeling based on the square of the velocity gradient tensor[J]. Flow, Turbulence and Combustion.1999,62(3):183-200.
    [172]CD-adapco. STAR-CCM+USER GUIDE[R].2009, Version 5.02:2301-2311.
    [173]朱伟亮,基于大涡模拟的CFD入口条件及脉动风压模拟研究[D],北京,北京交通大学,2011
    [174]Menter R. Zonal two equation k-w turbulence models for aerodynamics flows [R]. AIAA-93-2906,1993.
    [175]刘加利,于梦阁,张继业等.基于大涡模拟的高速列车横风运行安全性研究[J].铁道学报,2011,33(4):13-21
    [176]杨志刚,马静,陈羽等.横风中不同行驶工况下高速列车非定常空气动力特性[J]铁道学报,2010,32(2):18-23
    [177]池茂儒,张卫华,曾京等.蛇行运动对铁道车辆平稳性的影[J]振动工程学报, 2008,21(6):639-643
    [178]戚振宕.高速列车明线会车气动特性研究[D].西南交通大学,成都,2010
    [179]李雪冰.高速列车交会时的气流诱发振动研究[D].成都,西南交通大学,2009
    [180]贾春泽,高速列车交会安全性研究[D],北京,北京交通大学,2008.6
    [181]中国铁道部标准TB/T 2360-93.铁道机车动力学性能试验鉴定方法及评定标准[S].北京1994.
    [182]翟婉明.车辆-轨道耦合动力学研究的新进展[J].中国铁道科学,2002,23(2):1-14
    [183]曾宇清,王卫东,舒兴高,等.车辆脱轨安全评判的动态限度[J].中国铁道科学,1999,20(4):70-77
    [184]中国标准出版社,95J01-L,高速试验列车动力车强度及动力学性能规范[S],1995
    [185]俞展猷.防脱轨性能的评定[J].机车电传动,1999(5):1-4,24
    [186]Nasu M, Kikuchi Y. Influence of ground and roadbed condition upon derailment of trains during the great Hanshin-Awaji Earthquake [J]. JSCE,1999(3):77-82
    [187]李佳圣.列车侧风效应的数值模拟研究[D],成都,西南交通大学,2004
    [188]周劲松.高速列车运行平稳性及控制研究[D].上海:上海交通大学,2005
    [189]姚志远,汪凤泉,刘艳.工程结构模态的连续型随机子空间分解识别方法.东南大学学报(自然科学版),2004,(03):96-99
    [190]Official Journal of the European Union. COMMISSION DECISION of 21 February 2008, concerning a technical specification for interoperability relating to the'rolling stock'sub-system of the trans-European high-speed rail system. L 84/194,2008.3.26
    [191]王厚雄,高注,王蜀东等.挡风墙高度的研究[J].中国铁道科学,1990,11(1):14-22.
    [192]许志峰.挡风墙的疏透度对列车运行安全的影响研究[D].兰州,兰州大学,2010.
    [193]Quinn,A.D. An Investigation of the Wind-induced Rolling Moment on a Commercial Vehicle in the Atmospheric Boundary Layer. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering,2007,21(11):1367-1379
    [194]Coleman,S.A.Experimental Study of the Aerodynamic Behavior of High Sided Lorries in Cross Winds.Journal of Wind Engineering and Industrial Aerodynamics,1994,54(3):401-429
    [195]Baker,C.J. Behaviour of Road Vehicles in Unsteady Cross Winds. Journal of Wind Engineering and Industrial Aerodynamics,1993,49(1):439-448
    [196]Colelman, S.A Reduction of Accident Risk for High Sided Road Vehicles in Cross Winds. Journal of Wind Engineering and Industrial Aerodynamics,1992,44(4):2685-2695
    [197]Humphreys,N.D. Forces on Vehicles in Cross Winds from Moving Model Tests. Journal of Wind Engineering and Industrial Aerodynamics,1992,44(4):2673-2684
    [198]Baker, C.J. Problems of Road Vehicles in Cross Winds. Highways and Transportation, 1991,38(5):8-9
    [199]Baker, C.J. Wind Tunnel Tests to Obtain Train Aerodynamic Drag Coefficients. Journal of Wind Engineering and Industrial Aerodynamics,1991,38(1):23-28
    [200]Baker,C.J. Assessment of Wind Tunnel Testing Techniques for Ground Vehicles in Cross Winds. Journal of Wind Engineering and Industrial Aerodynamics,1990,33(1):429-438
    [201]Brockie, N.J.W. Aerodynamic Drag of High Speed Trains. Journal of Wind Engineering and Industrial Aerodynamics,1990,34(3):273-290
    [202]Baker,C.J. High Sided Road Vehicles in Cross Winds. Journal of Wind Engineering and Industrial Aerodynamics,1990,34(3):273-290
    [203]Coleman, S.A. High Sided Road Vehicles in Cross Winds. Journal of Wind Engineering and Industrial Aerodynamics,1990,36(2):1383-1392
    [204]Tatsuo Noguchi. Minimizing the effect of natural disasters. Japan Railway & Transport Review.2000(3):52-59
    [205]盛其平.高速铁路上的横风问题[J].铁道标准设计,2006,(4):19-21
    [206]刘凤华.加筋土式挡风墙优化研究[J].铁道工程学报,2006,(1):96-99
    [207]刘凤华.挡风墙气动外形及位置优化[D].长沙,中南大学.2006
    [208]张健.铁路防风栅抗风性能风洞试验研究与分析[J].铁道科学与工程学报,2007,4(1):13-17
    [209]董香婷,党向鹏.风障对横风作用下列车行车安全影响的数值模拟研究[J],铁道学报,2008,30(5):36-40
    [210]郑继平.南疆线桥梁挡风墙结构性能研究[D].成都,西南交通大学,2009
    [211]陈懋章.粘性流体力学[M].北京,高等教育出版社,2004
    [212]凌国平,方健雯.速度-涡量法数值求解具有表面吹吸圆柱的绕流问题[J],应用数学和力学,2002,23(9):968-974.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700