重型半挂厢式货车高速侧风气动稳定性分析与优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国内高等级公路的快速发展以及汽车工业的飞速进步,车辆实际行驶速度的不断提高,消费者对车辆的性能品质提出了越来越高的要求。车辆以较高车速行驶时,若受到较高风速的侧风作用,其燃油经济性、操纵稳定性以及乘坐舒适性均会有较大的影响,极端的情况下还会使车辆偏离正常的行驶方向甚至发生侧倾、侧滑等,导致严重的安全问题。同时,对重型半挂厢式货车而言,其自身的特征(长宽比大、车身高度及重心位置高)以及设计的轻量化趋势都会加剧重型半挂厢式货车的侧风敏感性。因此,开展重型半挂厢式货车在高速侧风作用下的气动稳定性研究对于提高重型半挂厢式货车的燃油经济性、操作稳定性、行驶安全性和乘坐舒适性具有重要的理论指导意义和工程应用价值。
     针对重型半挂厢式货车本身的结构特点及工作环境,本文旨在研究重型半挂厢式货车自然侧风及环境侧风作用下的气动特性,建立重型半挂厢式货车的多体动力学模型,分析及评价重型半挂厢式货车侧风作用下的直线行驶能力,优化重型半挂厢式货车侧风作用下的气动特性及直线行驶能力,为提高车辆侧风作用下的气动稳定性提供可靠的理论依据及有效的研究方法。为此目的,以国际上的通用标模——MIRA阶梯背模型及本校风洞使用的调校模型为基础,对其自然侧风作用下的气动特性进行数值模拟研究和风洞试验验证,得出适用于车辆自然侧风数值模拟的湍流模型及数值模拟方法:将此湍流模型及数值模拟方法应用于重型半挂厢式货车不同车速及不同风速作用下气动特性的模拟计算,再次通过风洞试验验证其正确性,并在此基础上研究了附加装置对重型半挂厢式货车侧风气动特性的影响:采用STAR-CD动网格技术对重型半挂厢式货车环境侧风(超车和会车工况)作用下的气动特性进行了深入研究:对重型半挂厢式货车目然侧风作用下的侧倾、侧滑行车安全进行了分析,并建立重型半挂厢式货车ADAMS动力学模型,对自然侧风作用下空载重型半挂厢式货车的侧偏性能进行分析和评价;利用优化拉丁超立方抽样方法和Kriging模型构建近似模型.对影响重型半挂厢式货车气动稳定性的导流罩形状主要参数进行优化研究。本文的主要研究内容如下
     1.对自然侧风作用下车辆气动特性模拟的三种方法及湍流模型进行研究。结果表明:方法三及Realizablek-ε湍流模型能很好地模拟稳态和非稳态自然侧风下车辆的气动特性:风洞六分力测量试验及粒子图像测速(PIV)试验很好地验证了湍流模型和方法的正确性
     2.对重型半挂厢式货车目然侧风作用下气动特性进行分析。结果表明:重型半挂厢式货车的气动力、气动力矩和流场在不同侧风作用下均会发生显著改变;通过风洞六分力测量试验及表面压力测量试验再次证明方法三及Realizable k-ε湍流模型能很好地模拟重型半挂厢式货车稳态和非稳态侧风作用下的气动特性,重型半挂厢式货车侧风作用下气动特性的变化是引起车辆侧风下行驶特性改变的重要因素;附加装置对重型半挂厢式货车侧风作用下的气动阻力特性能起到较好的改善作用。
     3.对重型半挂厢式货车超车和会车复杂行驶工况下的气动特性进行分析。结果表明:在超车、会车过程中,随着两车相对速度的增加,车辆受到的气动力不断增大;在超车、会车过程中车辆周围的流场产生相互干涉,作用于车身上的瞬时气动压力在整个过程中迅速变化。
     4.对空载重型半挂厢式货车侧风作用下的行车安全性进行研究。结果表明:侧风风级在9级以下重型半挂厢式货车侧倾的可能性不大;在冰路面上行驶时,5级侧风就会使以80km/h行驶的重型半挂厢式货车发生侧滑;当侧风风级达到7级时,80km/h的行驶车速就使得车辆的侧向偏移值超出安全的范围。
     5.对空载重型半挂厢式货车侧风作用下的气动稳定性进行分析及优化:结果表明:重型半挂厢式货车导流罩的安装,改变了车辆的气动特性,并影响其行驶特性,这对车辆的燃油经济性和行驶安全性均会产生影响。因此,以重型半挂厢式货车导流罩外形参数为设计变量,重型半挂厢式货车侧风作用下的气动阻力及侧向偏移为设计目标,基于优化拉丁超立方抽样方法进行试验设计;并以试验设计方案为基础构建Kriging近似模型,经验证构建的近似模型可以很好的替代直接数值模拟:以Kriging近似模型为基础根据不同的优化目标采用不同的遗传算法进行优化设计。优化结果表明,与安装初始导流罩的重型半挂厢式货车相比以重型半挂厢式货车侧风作用下的气动阻力为优化目标优化导流罩后,重型半挂厢式货车气动阻力最大降低了11.5%:以重型半挂厢式货车侧风作用下的侧向偏移为优化目标优化导流罩后,重型半挂厢式货车侧向偏移最大降低了10.05%:而以重型半挂厢式货车侧风作用下的气动阻力以及侧向偏移同时作为优化目标优化导流罩后,重型半挂厢式货车气动阻力最大降低了6.23%,侧向偏移最大降低了4.67%。
     综上所述,本文系统地对车辆高速侧风下的气动稳定性进行了深入细致的研究,对车辆高速侧风气动稳定性研究提供了可供参考的研究思路及方法
With the rapid development of domestic high-grade highways, soaring progress of the automotive industry and continuous increasement of vehicle running speed, higher and higher requirements are proposed on the performance of vehicles. If the vehicle subjects to high speed crosswinds while traveling at a high speed, its fuel economy, handling stability, driving safety and ride comfort will be significantly reduced. In extreme cases. it will lead to the vehicle's deviation from the normal driving direction or even rollover. side slip, etc., triggering serious security-problems. In the meantime, for a tractor-trailer vehicle, however, its characteristics (large aspect ratio, high body height and center of gravity) and the light weight trend of vehicle design will exacerbate the vehicle's crosswind sensitivity. Therefore, carrying out studies about the aerodynamic stability of the tractor-trailer vehicle under high-speed crosswind condition significant theoretical guidance and engineering application value on improving the vehicle's fuel economy, driving safety and ride comfort.
     Considering structural features and working environment of the tractor-trailer vehicle, this paper intends to focus on the aerodynamic characteristics of the tractor-trailer vehicle under natural crosswinds and environmental crosswinds conditions, establish the multi-body dynamics models. analyze and evaluate its straight driving ability in the crosswind, optimize the aerodynamic characteristics and the straight driving ability, and then provide reliable theoretical basis and effective research methods for the improvement of the vehicle's aerodynamic stability under crosswind condition. For this purpose, this paper, based on the notchback MIRA model universally applied in the whole world and the adjustable model used in the wind tunnel in Hunan Universitv. conducts a numerical simulation research on the aerodynamic characteristics of the vehicle under crosswind condition and wind tunnel test verification. and obtains a turbulence model and a method of the numerical simulations for the vehicle in natural crosswind condition. By using the above mentioned model and method. a simulated calculation is carried out on aerodynamic characteristics of tractor-trailer vehicle under different conditions of running speed and wind speed followed by another wind tunnel test to verity its correctness. and further the effect of additional features on aerodvnamic characteristics of tractor trailer vehicle is taken into account. Intensive research is made on the aerodynamic characteristics of tractor-trailer vehicle in environmental winds (in working conditions of overtaking and passing each other) by applying the technique of STAR-CD moving mesh. Safe driving for the tractor-trailer vehicle in the crosswind is studied and further the ADAMS multi-body dynamics model is established to carry out analysis and evaluation of empty tractor-trailer vehicle's cornering performance under the action of crosswind. By utilizing Optimal Latin Hypercube sampling method and Kriging model to construct approximate model, this paper also conducts optimized research about the main parameters of wind deflector's shape, which has great effect on the aerodynamic stability of tractor-trailer vehicle. The main research contents are as follows.
     1. Through the research of turbulence models and three simulation methods for vehicle aerodynamic characteristics under the condition of crosswind, we find that the third method and Realizable k-ε turbulence model can simulate vehicle's aerodynamic characteristics very well under the action of steady and unsteady natural crosswind respectively:that wind tunnel six component measurement test and particle image velocimetry (PIV) test confirm the correctness of the proposed turbulence model and simulation method.
     2. Analysis results of tractor-trailer vehicle's aerodynamic characteristics under crosswind condition show that the aerodynamic forces. moments and flow fields of tractor-trailer vehicle will be changed significantly under different crosswind conditions. Wind tunnel six component measurement test and surface pressure measurement test once again verify that the third method and Realizable k-e turbulence model can simulate tractor-trailer vehicle's aerodynamic characteristics very well under the steady and unsteady crosswind conditions and that the change aerodynamic characteristics under crosswind condition is the key factor for the change of running characteristics under the same condition. The result also suggests that the drag force can be reduced by the additional devices obviously.
     3. The analysis results of tractor-trailer vehicle's aerodvnamic characteristics under the working condition of overtaking and passing indicate that, in the process of overtaking and passing. with the increase of the relative velocity of two vehicles. the aerodynamic force is increased constantly; flow field around the vehicle in the process of overtaking and passing will generate mutual interference. causing the changes of turbulence. producing transient aerodynamic pressure distribution in the body of vehicle. and the pressure distribution will change rapidly in the process.
     4. The safe driving research about the empty tractor-trailer vehicle suggest that the rollover is not likely to occur under strong gale; when driving on the ice load, the side slip may happen on condition that the running speed exceeds80km/h under breeze; and when under moderate gale, the lateral displacement value will exceed out of safety range at the very speed.
     5. The research results of aerodynamic stability of empty tractor-trailer vehicle under crosswind condition show that, the installation of wind deflector for tractor-trailer vehicle changes the aerodynamic characteristics and driving characteristics of the vehicle, and exerts an influence on fuel economy and driving safety. Therefore, taking the shape parameters of tractor-trailer vehicle's wind deflector as design variables and the aerodynamic drag and lateral displacement of tractor-trailer vehicle under crosswind condition as design objectives. This paper applies Optimal Latin Hypercube sampling method to carry out the Design of Experiment (DOE). Based on the database of DOE. the Kriging approximate model is constructed and the fitting precision of the Kriging model is examined. Then, the Genetic Algorithms are used to optimize the shape of the wind deflector on the basis of Kriging model according to different optimization objectives. Optimization results show that after the optimization of wind deflector by taking aerodynamic drag of tractor-trailer vehicle under crosswind condition as the optimal objective, the aerodynamic drag of tractor-trailer vehicle installed with optimal wind deflector reduces by up to11.5%compared with that of tractor-trailer vehicle installed with the initial wind deflector:after the optimization by taking lateral displacement of tractor-trailer vehicle under crosswind condition as the optimal objective, the lateral displacement of tractor-trailer vehicle installed with optimal wind deflector is maximum10.05%lower:after the optimization by taking both aerodynamic drag and lateral displacement as optimal objectives at the same time, the aerodynamic drag of tractor-trailer vehicle installed with optimal wind deflector is maximum6.23%lower, and the lateral displacement maximum4.67%
     In conclusion. this paper systematically conducts an intensive study on the aerodynamic stability of vehicles in high-speed crosswinds and contributes valuable reference for thinking and approaches to the research on this subject.
引文
[1]谷正气.汽车空气动力学.北京:人民交通出版社,2005
    [2]大洋网.狂风大作虎门大桥四空载货车相继掀翻http://gd.dayoo.com/gb/ content/2004-08/12/content 1675141.htm,2004-08-12
    [3]环球网.加拿大强风暴掀翻货车http://world.huanqiu.com/roll/2008-06/ 137116.html,2008-06-11
    [4]新浪视频博客.大风翻车+雷击建筑+美国怪象频传http://video.sina. com.cn /v/b/20261466-1228985265.html,2009-04-29
    [5]京沪高速铁路技术研究总体组.京沪高速铁路侧向风、强降雨对行车的影响及安全限值的调查研究.北京:铁道科学研究院,2002
    [6]乌鲁木齐铁路局科委.兰新复线防风安全工程.中国铁路,1995,35(10):30243
    [7]王夫亮.侧风作用下的汽车气动特性研究:[吉林大学博士学位论文].吉林长春:吉林大学,2009
    [8]Andrew Chadwick, Kevin Garry and Jeff Howell. Transient Aerodynamic Characteristics of Simple Vehicle Shapes by the Measurement of Surface Pressure. SAE Paper,2001-01-0876
    [9]Dominy R. G. and Ryan A. Improved Wind Tunnel Configuration for the Investigation of Aerodynamic Cross Wind Gust Response. SAE Paper, 1999-01-0808
    [10]Ryan A. and Dominy R. G. Wake Surveys Behind a Passenger Car Subjected to a Transient Cross-Wind Gust. SAE Paper,2000-01-0874
    [11]傅立敏.汽车空气动力学.北京:机械工业出版社,1998
    [12]Paerber, H A. Das Autobuch. Offenburg:Burda,1956,231
    [13]W.Kamm and C.Schmid. Automobile Testing. Spring. Berlin,1938
    [14]W.Kamm. Lehrstuhl und Forshungsinstitut fur Kraftsfahrtwesen und Fahrzeug-motoren, Prospectus. Technische Hochshule. Stuttgart,1967
    [15]J.Andreau. Wind Tunnel Test and Body Design. J.Soc.Automot.Engrs.29,1931
    [16]Kamm W. Vehicle Characteristics Affecting Directional Stability of Motor Vehicles. Auto Technishe Zeitung,1958,60(6):65-71
    [17]D. H. Iacovoni. Vehicle-Driver Simulation for a Cross-Wind Disturbance Condi-tion. SAE Paper,670609
    [18]William K. Cary III, Drew Landman and Richard Wood. Experimental Investigation of Wake Boards for Drag Reduction on an Ahmed Body. SAE Paper,2006-01-3530
    [19]Grotewohl A. Investigating the Effects of Crosswind on Passenger Vehicles (Part 1). MIRA Trans 3/68 from ATZ,1967,69(11):377-381
    [20]杨尊正,邹仲贤译.A.J.赛伯-里尔斯基著.汽车空气动力学.北京:人民交通出版社,1984,162-163,192-193
    [21]黄泰明.复杂行驶工况下汽车高速气动特性研究:[湖南大学硕士学位论文].湖南长沙:湖南大学,2008
    [22]杨滨徽.隧道内复杂工况下汽车高速气动特性研究:[湖南大学硕士学位论文].湖南长沙:湖南大学,2010
    [23]Richard H. Klein and Jeffrey R.. Hogue Effects of Crosswinds on Vehicle Response-Full-Scale Tests and Analytical Predictions. SAE Paper,800848
    [24]David H. Weir, Richard H. Klein and John W. Zellner. Crosswind Response and Stability of Car Plus Utility Trailer Combinations. SAE Paper,820137
    [25]M. A. Jacobson. Accident Avoidance-Crosswind Sensitivity of Some Stream-lined Cars. SAE Paper,856047
    [26]Garry K.P. and Cooper K.R.. Comparison of Quasi-Static and Dynamic Wind Tunnel Measurements on Simplified Tractor-Trailer Models. Journal of Wind Enginee-ring and Industrial Aerodynamics,1986,22:185-194
    [27]Yasushi Yoshida, Shinri Muto and Tetsuo Imaizumi. Transient Aerodynamic Forces and Moments on Models of Vehicles Passing Through Cross-Wind. SAE Paper,770391
    [28]Nobuo Kobayashi and Minoru Yamada. Stability of a One Box Type Vehicle in a Cross-Wind--An Analysis of Transient Aerodynamic Forces and Moments. SAE Paper,881878
    [29]F.N.Beauvais. Aerodynamic Inputs to a Parked Vehicle by a Passing Bus. SAE Paper,700037
    [30]Robert K.Heffley. Aerodynamic of Passenger Vehicles in Close Proximity to Tucks and Buses. SAE Paper,730235
    [31]S.R.Ahmed and W.H.Hucho.The Calculation of the Flow Field Past a Van with the Aid of a Panel Method. SAE Paper,770390
    [32]Nobuo Kobayashi and Yoshinori Sasaki. Aerodynamic Effects of an Overtaking Ariticulated Heavy Goods Vehicle on Car Trailer-An Analysis to Improve Controllability. SAE Paper,871919
    [33]A.R.Macklin, K.P.Garry and J.P.Howell. Comparing Static and Dynamic Testing Techniques for the Crosswind Sensitivity of Road Vehicles. SAE Paper,960674
    [34]Roger Macklin, Kevin Garry and Jeff Howell. Assessing the Effects of Shear and Turbulence During the Dynamic Testing of the Crosswind Sensitivity of Road Vehicles. SAE Paper,970135
    [35]Antonello Cogotti. Ground Effect of a Simplified Car Model in Side-Wind and Turbulent Flow. SAE Paper,1999-01-0652
    [36]Bogdan Marcu and Fred Browand. Aerodynamic Forces Experienced By a 3-Vehicle Platoon in a Crosswind. SAE Paper,1999-01-1324
    [37]Katsunori Fujihashi and Kenji Okumura. Analysis of Vehicle Stability in Cross-Winds. SAE Paper,2000-05-0255
    [38]Walid A.H.Oraby and David A.Crolla. Passenger Car Stability Under Random Wind Excitation. SAE Paper,2001-01-0133
    [39]J.Bettle, A.G.L.Holloway and J.E.S.Venart. A Computational Study of the Aerodynamic Forces Acting on a Tractor-Trailer Vehicle on a Bridge in Cross-Wind. Journal of Wind Engineering and Industrial Aerodynamics,2003,91: 573-592
    [40]Magnus Juhlin and Peter Eriksson. A Vehicle Parameter Study on Crosswind Sensitivity of Buses. SAE Paper,2004-01-2612
    [41]M.A.El-Nashar, M.B.Abdelhady, Walid Abdel Hady Oraby, etal. Enhanced Vehicle Lateral Stability in Crosswind by Limited State Kalman Filter Four Wheel Steering System. SAE Paper,2007-01-0841
    [42]William R.Blythe. Tractor-Trailer Response to High Crosswinds, Analysis by Simulation. SAE Paper,2007-01-4255
    [43]Emmanuel Guilmineau and Francis Chometon. Experimental and Numerical Analysis of the Effect of Side Wind on a Simplified Car Model. SAE Paper, 2007-01-0108
    [44]Alexis Scotto d'Apollonia, Stephane Contini, Fabrice Mathey, etal. Large Eddy Simulation of a Semi Realistic Vehicle Shape under Crosswind Conditions.3rd European Automotive CFD Conference (EACC 2007), Frankfurt, Germany, 2007, July:11-24
    [45]Makoto Tsubokura, Takuji Nakashima, Takeshi Ikenaga, etal. HPC-LES for the Prediction of Unsteady Aerodynamic Forces on a Vehicle in a Gusty Cross-flow Condition. SAE Paper,2008-01-3001
    [46]Hassan Hemida and Sinisa Krajnovic. LES Study of the Influence of a Train-Nose Shape on the Flow Structure Under Cross-Wind Conditons. Journal of Fluids Engineering,2008,130:091101-1-091101-12
    [47]Nazli E.Kahveci. Adaptive Steering Control for Uncertain Vehicle Dynamics with Crosswind Effects and Steering Angle Constraints. Proceedings of the 2008 IEEE International Conference on Vehicular Electronics and Safty, Columbus, OH, USA,2008, September
    [48]Emmanuel Guilmineau and Francis Chometon. Effect of Side Wind on a Simplified Car Model:Experimental and Numerical Analysis. Journal of Fluids Engineering,2009,131:021104-1-021104-12
    [49]Makoto Tsubokura, Kaito Takahashi, Tomofuyu Matsuuki, etal. HPC-LES for Unsteady Aerodynamics of a Heavy Duty Truck in Wind Gust-1st Report: Validation and Unsteady Flow Structures. SAE Paper,2010-01-1010
    [50]Takuji Nakashima, Makoto Tsubokura, Takeshi Ikenaga, etal. HPC-LES for Unsteady Aerodynamics of a Heavy Duty Truck in Wind Gust-2nd Report: Coupled Analysis with Vehicle Motion. SAE Paper,2010-01-1021
    [51]Kenji Okumura and Toshihiko Kurlyama.Transient Aerodynamic Simulation in Crosswind and Passing an Automobile.SAE Paper,970404
    [52]L.Tsuei, J.K.Hedrick and O.Savas.A Wind Tunnel Investigation of the Transient Aerodynamic Effects on a Four-Car Platoon during Passing Maneuvers.SAE Paper,2000-01-0875
    [53]R.J.Corin, L.He and R.G.Dominy. A CFD Investigation into the Transient Aerodynamic Forces on Overtaking Road Vehicle Models. Journal of Wind Engineering and Industrial Aerodynamics,2008,96:1390-1411
    [54]Dominy R.G.. A Technique for the Investigation of Transient Aerodynamic Forces on Road Vehicle in Crosswinds. Proceedings of the Institution of Mechanical Engineers,1991
    [55]Docton M.K.R. and Dominy R.G.. The Simulation of Transient Cross-Winds on Passenger Vehicles. MIRA International Conference on Vehicle Aerodynamics. Birmingham:U.K.Press,1994
    [56]Anthony Ryan and R.G.Dominy. The Aerodynamic Forces Induced on a Passenger Vehicle in Response to a Transient Cross-Wind Gust At a Relative Incidence of 30Md. SAE Paper,980392
    [57]Dominy R.G. and Anthony Ryan. An Improved Wind Tunnel Configuration for the Investigation of Aerodynamic Crosswind Gust Response. SAE Paper, 1999-01-0808
    [58]Minato Kiyoyuki, Ryu Hano and Kobayashi Toshio. Flow Visualization Using the Laser Light Sheet Method and Its Digital Image Processing. SAE Paper, 910314
    [59]Chometon F. and Gillieron P.. Analysis of Unsteady Wakes by Image Processing in Automotive Aerodynamics. Tokyo:International Congress Flucome,1997
    [60]Chometon F., Strzelecki A., V.Ferrand, etal. Experimental Study of Unsteady Wakes Behind an Oscillating Car Model. SAE Paper,2005-01-0604
    [61]Patrick G. and Christophe Noger. Contribution to the Analysis of Transient Aerodynamic Effects Acting on Vehicles. SAE Paper,2004-01-1311
    [62]C.Noger, C.Regardin and E.Szechenyi. Investigation of the Transient Aerodynamic Phenomena Associated with Passing Manoeuvres. Journal of Fluids and Structures,2005,21:231-241
    [63]谷正气.气动侧力对汽车性能的影响研究.湖南大学学报,1993,20(2):68-72
    [64]Gu Zhengqi, etal. Computer Predicting of Automobile Security in Side Winds. Proceedings of the 1st International Forum of Automobile and Traffic Security at Changsha, IFATS-1, Nov.2000,58-64
    [65]方刚.高速汽车气动特性的研究与分析:[湖南大学硕士学位论文].湖南长沙:湖南大学,2000
    [66]Gu Zhengqi, etal. A New Kinetics Model for Automobiles Driving Stability in Side Winds. GAMM2001, ZurichSwitzerland. Feb,2001
    [67]方刚,谷正气.侧风对高速行驶汽车操纵稳定性影响的初探.湖南大学学报(自然科学版),2001,28(4):59-63
    [68]Gu Zhengqi, Fang Gang and Wu Jun. Investigation of the Transient State Steering Stability of High-Speed Vehicle in Side Winds.Vehicle Design,2001, 26(5):562-572
    [69]罗煜峰.虚拟环境下高速汽车侧风稳定性研究:[湖南大学硕士学位论文].湖南长沙:湖南大学,2002
    [70]Gu Zhengqi, Luo Yufeng and W.Seemann. The Performance of a Vehicle with Four Wheel Steering Control in Crosswind. Jounal of Vehicle Autonomous Systems,2003,1(2):256-269
    [71]董涵.侧风环境下高速汽车稳定性研究与分析:[湖南大学硕士学位论文].湖南长沙:湖南大学,2003
    [72]海贵春,谷正气.非稳态侧向风对高速汽车操纵稳定性的影响研究.科学技术与工程,2004,(7):637-639
    [73]Gu Zhengqi and Hai Guichun. Research on the Transient State Steering Stability in Side Winds for High-Speed Vehicle Using ADAMS. SAE Paper, 2005-01-0982
    [74]罗荣峰,谷正气.侧风对大桥上行驶车辆稳定性影响的计算机仿真.计算机仿真,2005,22(1):238-240
    [75]罗荣峰.高速汽车侧风稳定性及其影响参数研究:[湖南大学硕士学位论文].湖南长沙:湖南大学,2005
    [76]周伟,谷正气.超车情况下外流场计算仿真分析与研究.汽车工程,2005,27(3):344-346
    [77]海贵春,谷正气,王和毅等.侧风对汽车高速行驶性能影响的仿真研究.湖南大学学报(自然科学版),2006,33(2):40-43
    [78]谷正气,周宇奎,海贵春等.主动四轮转向系统对高速汽车侧风稳定性的控制研究.湖南大学学报(自然科学版),2006,33(1):51-54
    [79]Gu Zhengqi and He Yibin. Numerical Simulation Analysis of Side Aerodynamic Force of Car in the Course of Passing Heavy Goods Vehicle (HGV). SAE Paper, 2007-01-3460
    [80]谷正气,姜波,何忆斌等.基于SST湍流模型的超车时汽车外流场变化的仿真分析.汽车工程,2007,29(6):494-496
    [81]谷正气,赵荣远,杨易等.基于多体动力学的悬架优化对汽车侧风稳定性的影响与研究.科技导报,2008,26(8):48-51
    [82]谷正气,赵荣远,杨易等.汽车气动造型在侧风稳定性中的应用研究.湖南大学学报(自然科学版),2008,35(9):44-47
    [83]龚旭,谷正气,李振磊等.轿车侧风状态下气动特性计算方法研究.汽车工程,2010,32(1):13-16
    [84]郭孔辉,林柏忠.高速汽车侧风响应仿真与影响侧风稳定性的结构参数分析.吉林工业大学学报,1994,24(4):1-7
    [85]刘顺航.复数车辆并排行驶流场特性的研究:[吉林大学硕士学位论文].吉林长春:吉林大学,2005
    [86]贺宝琴.复数车辆超车过程中的气动干扰特性研究:[吉林大学硕士学位论文].吉林长春:吉林大学,2005
    [87]王夫亮,傅立敏.侧风对轿车气动特性影响的数值模拟研究.哈尔滨工业大学学报,2006,38(8):1255-1258
    [88]傅立敏,扶原放.轿车外流场车轮转动时侧风效应的数值模拟研究.公路交通科技,2006,23(2):147-150
    [89]扶原放.轿车超过大型运输车的数值模拟研究:[吉林大学博士学位论文]. 吉林长春:吉林大学,2006
    [90]李玉虎.会车过程的空气动力特性研究:[吉林大学硕士学位论文].吉林长春:吉林大学,2006
    [91]张英朝.轿车大客车会车时的气动特性研究:[吉林大学硕士学位论文].吉林长春:吉林大学,2006
    [92]胡兴军.车辆超车与会车时气动特性的动态模拟研究:[吉林大学博士学位论文].吉林长春:吉林大学,2006
    [93]张英朝,傅立敏.简单外形汽车隧道中会车过程的瞬态空气动力学数值模拟.吉林大学学报(工学版),2006,36(3):302-306
    [94]吴允柱.汽车超车过程的气动特性研究:[吉林大学博士学位论文].吉林长春:吉林大学,2008
    [95]王夫亮,胡兴军,杨博等.侧风对轿车气动特性影响的稳态和动态数值模拟对比研究.汽车工程,2010,32(6):478-481
    [96]郑昊,康宁,蓝天.侧风环境下行驶的直背式轿车气动力计算.航空动力学报,2007,22(11):1858-1862
    [97]郑昊,康宁,蓝天.两车间距对超车过程轿车气动特性的影响.北京航空航天大学学报,2008,34(4):460-464
    [98]江浩,余卓平.集装箱半挂车在侧风作用下操纵稳定性分析.同济大学学报,2001,29(12):1451-1455
    [99]庞加斌,王达磊,陈艾荣等.桥面侧风对行车安全性影响的概率评价方法.中国公路学报,2006,16(4):59-64
    [100]陈晓冬.大跨桥梁侧风行车安全分析:[同济大学博士学位论文].上海:同济大学,2007
    [101]许振华,吴宪,于晓军.燃料电池汽车侧风稳定性预测.计算机辅助工程,2008,17(1):25-29
    [102]高广军,田红旗,张健.横风对双层集装箱平车运行稳定性的影响.交通运输工程学报,2004,4(2):45-48
    [103]周丹,张健.横风对双层集装箱平车气动特性的影响.铁道机车车辆,2004,24(3):17-20
    [104]田红旗,苗秀娟,高广军.强横风环境下棚车侧壁外形气动性能.交通运输工程学报,2006,6(3):5-8
    [105]何华,田红旗,熊小慧等.横风作用下敞车的气动性能研究.中国铁道科学,2006,27(3):73-77
    [106]周丹,田红旗,杨明智等.强侧风下客车在不同路况运行的气动性能比较.中南大学学报(自然科学版),2008,39(3):554-558
    [107]Vehicle Aerodynamics Terminology, Soc.Automot.Eng.(Detroit), SAE Interna-tion Report J1594,1987
    [108]王福军.计算流体动力学分析—CFD软件原理与应用.北京:清华大学出版社,2004,7-10,116-126
    [109]Marzio Piller, Enrico Nobile and J.Tomas. DNS Study of Turbulent Transport at Low Prandtl Numbers in a Channel Flow. Journal of Fluid Mechanics,2002, 458:419-441
    [110]J.G.Wissink. DNS of Separating low Reynolds Number Flow in a Turbine Cascade with Incoming Wakes, International Journal of Heat and Fluid Flow, 2003,24(4):626-635
    [111]V.Michelassi, J.G.Wissink and W.Rodi. Direct Numerical Simultaion, Large Eddy Simulation and Unsteady Reynolds-Averaged Navier-Stokes Simulations of Periodic Unsteady Flow in a Low-Pressure Turbine Cascade:A Comparison. Journal of Power and Energy,2003,217(4):403-412
    [112]V.Stephane. Local Mesh Refinement and Penalty Methods Dedicated to the Direct Numerical Simultaion of Incompressible Multiphase Flows. Proceedings of the ASME/JSME Joint Fluids Engineering Conference,2003,1299-1305
    [113]M.B.Abbott and D.R.Basco. Computational Fluid Dynamics-An Introduction for Engineers. Longman Scientific and Technical, Harlow, England,1989
    [114]P,Rollet-Miet, D.Laurence and J.Ferziger. LES and RANS of Turbulent Flow in Tube Bundles. International Journal of Heat and Fluid Flow,1999,20(3):241-254
    [115]H.K.Versteeg and W.Malalasekera. An Introduction to Computational Fluid Dynamics:The Finite Volume Method.Wiley. New York,1995
    [116]B.E.Launder and D.B.Spalding. Lectures in Mathematical Models of Turbulence. London:Academic press,1972
    [117]V.Yakhot and S.A.Orzag. Renormalization Group Analysis of Turbulence:Basic Theory Scient Comput.1,1986,3-11
    [118]T.H.Shih, W.W.Liou, A.Shabbir, etal. A New k-εEddy Viscosity Model for High Reynolds Number Turbulent Flows. Compute Fluids,1995,24(3):227-238
    [119]彭亚美.中气轿车气动特性模型风洞试验研究:[湖南大学硕士学位论文].湖南长沙:湖南大学,2010
    [120]Aerodynamic Testing of Road Vehicles:Closed-Test-Section Wind Tunnel Boundary Interference. Soc.Automot.Eng.(Detroit), SAE Information Report J2085,1993
    [121]E.Mercker and J.Wiedemann. Comparison of Different Ground Simulation Techniques for Use in Automotive Wind Tunnels. Soc.Automot.Eng.(Detroit), SAE Paper 900321,1990
    [122]A.Berndsson, W.T.Eckert and E.Mercker. The Effect of Ground Plane Boundary Layer Control on Automotive Testing in a Wind Tunnel. Soc.Automot.Eng. (Detroit), SAE Paper 880248,1988
    [123]Emmanuel Guilmineau and Francis Chometon. Numerical and Experimental Analysis of Unsteady Separated Flow Behind an Oscillating Car Model. SAE Paper,2008-01-0738
    [124]王瑞金,张凯,王刚Fluent技术基础与应用实例.北京:清华大学出版社,2007,205-506
    [125]胡兴军,张英朝,李胜,林有志等.基于微分雷诺应力湍流模型的车辆气动特性的数值模拟.吉林大学学报(工学版),2008,38(3):504-507
    [126]Emmanuel Guilmineau. Computational Study of Flow Around a Simplified Car Body, S0167-6105. Journal of Wind Engineering and Industrial Aerodynamics, 2008,96:1207-1217
    [127]Aerodynamic Testing of Road Vehicles-Open Throat Wind Tunnel Adjustment. Surface Vehicle Information Report, SAE J2071 Revised JUN94
    [128]朱自强.应用计算流体力学.北京:北京航空航天大学出版社,1998
    [129]赵维义.PIV测量舰船空气尾流场.实验流体力学,2007,21(1):31-35
    [130]杨永东,武杰.悬停旋翼桨尖涡的试验研究.实验流体力学,2008,22(3):36-39
    [131]风能中国.风能基础http://windpower-china.cn/node/74,2007-11-21
    [132]海贵春.基于多体动力学的高速汽车侧风稳定性研究:[湖南大学硕士论文].长沙:湖南大学,2005
    [133]Christophe Bonnet and Hans Fritz. Fuel Consumption Reduction in a Platoon: Experimental Results With Two Electronically Coupled Trucks at Close Spacing. SAE Paper,2000-01-3056
    [134]STAR-CD Tutorials Version 3.26. Computational Dynamics Limited,2005,557-601
    [135]余志生.汽车理论第四版.北京:机械工业出版社,2006,98-98
    [136]陈家瑞,马天飞.汽车构造.第五版.北京:人民交通出版社,2006
    [137]王保亮.大型散装物料半挂运输车虚拟样机分析:[广西大学硕士学位论文].南宁:广西大学,2007,28-30
    [138]罗金桥.重型载重汽车操纵稳定性与行驶系结构分析:[武汉理工大学硕士 学位论文].武汉:武汉理工大学,2006,40-41
    [139]陈军MSC.ADAMS技术与工程分析实例.北京:中国水利水电出版社,2008,157-158
    [140]E. Kesseler and W.J. Vankan. Multidisciplinary Design Analysis and Multi-objective Optimization Applied to Aircraft Wing. Journal WSEAS Transactions on Systems and Control,2006,1(2)
    [141]Ramesh Padmanaban, Radha Krishnan and Malik Kayupov. Multi-Disciplinary Optimization of a Sport Utility Vehicle. SAE Paper,2004-05AE-271
    [142]S. Pierret. Multi-objective and Multi-Disciplinary Optimization of Three-dimensional Turbomachinery Blades.6th World Congresses of Structural and Multidisciplinary Optimization,2005, May 30-June 03, Brazil
    [143]A.S. Hedayat, N.J.A. Sloane and John Stufken. Orthogonal Arrays:Theory and Applications. New York:Springer-Verlag,1999
    [144]张志红,何桢,郭伟.在响应曲面方法中三类中心复合设计的比较研究.沈阳航空工业学院学报,2007,24(1):87-91
    [145]M.D. McKay, R.J. Beckman and W.J. Conover. A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code. Technometrics,1979,21:239-245
    [146]Nestor V. Queipo, Raphael T. Haftka, Wei Shyy, etal. Surrogate-based Analysis and Optimization. Progress in Aerospace Sciences,2005,41:1-28
    [147]Stephen Leary, Atul Bhaskar and Andy Keane. Optimal Orthogonal-Array-based Latin Hypercubes. Journal of Applied Statistics,2003,30(5):585-598
    [148]Michael Stein. Large Sample Properties of Simulations Using Latin Hypercube Sampling. Technometrics,1987,29(2):143-151
    [149]Man Mohan Rai and Nateri K. Madavan. Aerodynamic Design Using Neural Net-works. AIAA Journal,2000,38(1):173-182
    [150]MM Rai, NK Madavan and FW Huber. Improving the Unsteady Aerodynamic Performance of Transonic Turbines Using Neural Networks. In:Proceedings of the 38th AIAA Aerospace Sciences Meeting and Exhibit. Reno,2000, AIAA, 2000-0169
    [151]J.-C. Jouhaud, P. Sagaut, M. Montagnac and J. Laurenceau. A Surrogate-Model based Multidisciplinary Shape Optimization Method with Application to a 2D Subsonic Airfoil. Computers & Fluids,2007,36:520-529
    [152]Nateri K. Madavan, Man Mohan Rai and Frank W. Huber. Neural Net-Based Redesign of Transonic Turbines for Improved Unsteady Aerodynamic Perform-ance. In:AIAA/SAE/ASME/ASEE 35th Joint Propulsion Conference,1999, AIAA 99-0559
    [153]Papila Nilay, Shyy Wei, Griffin Lisa, etal. Shape Optimization of Supersonic Turbines Using Global Approximation Methods. Journal of Propulsion and Power,2002,18(3):509-518
    [154]Rajkumar Vaidyanathan, P. Kevin Tucker, Nilay Papila, etal. CFD Based Optimization for a Single Element Rocket Injector.41st Aerospace Sciences Meeting and Exhibit, Reno,2003, AIAA 2003-296
    [155]Rajkumar Vaidyanathan, Tushar Goel, Wei Shyy, etal. Global Sensitivity and Trade-Off Analyses for Multi-Objective Liquid Rocket Injector Design. Proceedings of the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Fort Lauderdale,2004, AIAA2004-4007
    [156]Hyoung-Seog Chung and Juan J. Alonso. Comparison of Approximation Models with Merit Functions for Design Optimization. In:Proceedings of the 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Long Beach,2000, AIAA2000-4754
    [157]Douqlas C. Montgomery and Raymond H. Myers. Response Surface Methodology:Process and Product Optimization Using Designed Experiment. New York:Wiley,1995
    [158]G.E.P. Box and Norman R. Draper. A Basis for the Selection of a Response Surface Design. Journal of the American Statistical Association,1959,54(287): 622-654
    [159]Dale B. McDonald, Walter J. Grantham, Wayne L. Tabor, etal. Response Surface Model Development for Global and Local Optimization Using Radial Basis Functions. In:Proceedings of the 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Long Beach,2000, AIAA 2000-4776
    [160]Timothy W. Simpson, Timothy M. Mauery, John J. Korte, etal. Kriging Models for Global Approximation in Simulation-Based Multidisciplinary Design Optimization. AIAA Journal,2001,39(12):2233-2241
    [161]雷英杰MATLAB遗传算法工具箱及应用.西安:西安电子科技大学出版社,2005
    [162]赵满平,张庆民.基于遗传算法的斗轮堆取料机变幅机构的优化设计.中国工程机械学报,2009,7(1):77-79
    [163]Hong Chen, Ryozo Ooka and Shinsuke Kato. Study on Optimum Design Method for Pleasant Outdoor Thermal Environment Using Genetic Algorithms and Coupled Simulation of Convection,Radiation and Conduction. Building and Environment,2008,43(1):18-31.
    [164]杜春江,钱林方,徐亚栋,陈龙淼.炮塔体结构分析与优化.系统仿真学报,2009,21(15):4899-4902
    [165]K. Deb. Multi-Objective Optimization using Evolutionary Algorithms. Wiley, Chichester, UK,2001
    [166]张超勇,李新宇,王晓娟等.基于滚动窗口的多目标动态调度优化研究.中国机械工程,2009,20(18):2190-2197
    [167]K.Deb, A.Pratap, S.Agarwal, etal. A Fast and Elitist Multiobjective Genetic Algorithm:NSGA-II. IEEE Transactions on Evolutionary Computation,2002, 6(2):182-197

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700