高速列车裙板气动载荷仿真识别及结构响应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速列车运行速度不断提升,由此而产生的空气动力学问题也日益突出,气动载荷对列车车体以及其附属装备的影响愈加明显。位于列车车下设备舱两侧的裙板是保护车下吊装设备,减少车身空气阻力的重要装备。我国高速列车运行时间较短,但已发现连接裙板与车身的支架出现疲劳开裂现象,对列车行驶造成了极大的安全隐患。因此对裙板所受气动载荷的作用方式和裙板及支架的结构响应进行研究分析对于解决裙板支架疲劳破坏问题、提高高速列车行驶安全性能具有重要意义。
     本文讨论了裙板支架承载的特点,确定气动载荷为引起裙板支架疲劳破坏的主要原因。通过对绕流问题基本算例的研究,探究了稳态条件下流体对固体产生非稳态影响的原理。计算结果表明:一定条件下,流体流经非流线形固体表面时边界层发生分离,不断脱落的涡团使得尾流处压力发生交替变化,对固体结构产生交变影响。
     以CRH3型高速列车为研究对象,建立了包括列车车外流场、设备舱内流场、裙板及其支架固体结构的流固耦合计算模型。对列车明线行驶以及强侧风环境中行驶两种典型运行工况下的流场进行了数值模拟计算,得到了不同工况下设备舱内外流场的分布情况,分析了不同位置的裙板所受气动载荷的产生原因及其变化规律。研究了列车行驶速度、强侧风风速对上述结果的影响。
     建立裙板及支架的有限元模型,将流场模拟所得裙板内外表面压力以外载荷的形式施加于裙板及支架的结构仿真计算中,对裙板及支架结构进行承载分析。得到了明线行驶工况、强侧风行驶工况下裙板及支架的应力分布及其变化情况。以裙板支架的筋板连接处为研究重点,分析了不同裙板、不同位置支架筋板连接处所受应力值及其变化规律的差异,以及工况参数对裙板及支架承载的影响。通过与实测结果进行对比,验证了仿真结果的正确性。
With the running speed promoting, aerodynamic problems of High-speed trains have become increasingly prominent and the influence of aerodynamic load on trains and their affiliated equipment has been more obvious. Skirt boards locate at both sides of the equipment cabin for protecting the equipment which is installed at the bottom of the car and reducing air drags. Although it has been such a short time since Chinese High-speed trains came into service, cracks have been found on supports which are used to connect the car and the skirt boards. And this phenomenon could cause hidden danger of High-speed trains. So it is significant to investigate the action mode of aerodynamic load to a skirt board and structures response for protecting supports of skirt boards from fatigue failure and improving safety performance of high-speed trains.
     Skirt board supports bearing characteristic is discussed. Aerodynamic load is considered to be the main factor that causes fatigue failure of skirt board supports. By studying a basic example, principle of unsteady influence from fluid to solid under steady boundary condition is explored. Result shows that boundary layer separates when fluid flows around a non-streamlined body. Vortex blob falls off the body and causes pressure changing in wake flow and alternating influence to solid.
     By selecting CRH3High-speed train as the research object, FSI calculation model is established. This model contains the fluid model of air outside the train and inside the equipment cabin and the structure model of the skirt boards and their supports. Flow condition is simulated under working conditions of High-speed trains running in open air and strong side-wind. Flow distribution of air inside and outside the equipment cabin is obtained. Cause and variation regulation of aerodynamic load to skirt boards is analyzed and Influence of trains speed and wind speed on simulation result is studied.
     Finally, finite element models of skirt boards and supports are built. To analysis structures response pressure at both sides of the skirt boards which was calculated in fluid simulation is applied. Stress distribution and variation regulation of skirt boards and their supports are obtained under different working condition. On the basis of key research on rid plates connection on skirt board supports, value and variation regulation of stress at different skirt boards and position is studied. The influence of working condition parameters(trains speed and wind speed) on structural response is analyzed. The results of simulation were tested by comparing with the measured results.
引文
[1]张卫华,王伯铭.中国高速列车的创新发展[J].机车电传动,2010,(1):8-13.
    [2]黄问盈,黄民.21世纪初铁道高速列车特色[J].铁道机车车辆,2009,29(2):23-30.
    [3]杜秋男,李瑞淳.高速高速列车裙板设计研究[J].铁道车辆,2008,46(6):8-13.
    [4]田红旗.中国列车空气动力学研究进展[J].交通运输工程学报,2006,6(1):1-9.
    [5]Joseph A.Schetz高速列车空气动力学[J].力学进展,2003,33(3):404-423.
    [6]Entry compression wave generated by a High-speed train entering a tunnel. Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B[J]. 1995,61(590):3720-3727.
    [7]Fujii, Kozo, Ogawa, Takanobu. Aerodynamics of High Speed Trains Passing by Each Other[J]. Computers and Fluids. 1995,24(8):897-908.
    [8]Baker C.J., Jones J., Lopez-Calleja F., Munday J.. Journal of Wind Engineering and Industrial Aerodynamics[J].2004, 92(7-8):547-563.
    [9]Baker C.J., The Simulation of Unsteady Aerodynamic Cross Wind Forces on Trains[J]. Journal of Wind Engineering and Industrial Aerodynamics. 2010, 98(2):88-99.
    [10]林荣生,胡竞嵘,王厚雄,田兴华.用风洞试验测定车辆的横风气动特性[J].铁道学报,1984,(6):104-108.
    [11]戴荣尧,王群,梁在潮,李谋恒.探讨通过水流模型试验进行高速列车空气动力学研究的可行性[J].中国铁道科学,1993,(14):50-57.
    [12]马启文,张松.准高速列车气动性能试验研究[J].西南交通大学学报,1997,32(3):266-270.
    [13]陈南翼,张健.高速列车空气阻力试验研究[J].铁道学报,1998,20(5):40-46.
    [14]田红旗.列车交会空气压力波研究及应用[J].铁道科学与工程学报,2004,1(1):83-89.
    [15]田红旗,周丹,许平.列车空气动力性能与流线型头部外形[J].中国铁道科学,2006,27(3):47-55.
    [16]田红旗,许平,梁习锋,刘堂红.列车交会压力波与运行速度的关系[J].中国铁道科学,2006,27(6):64-67.
    [17]梁习锋,曾剑明.高速列车表面压力分布的数值计算[J].铁道车辆,1997,35(5):10-12.
    [18]王开春,朱国林,郭应钧.高速列车绕流的数值模拟[J1.流体力学实验与测量,1997,1 1(2):78-84.
    [19]邱英政.高速列车交会压力波数值模拟计算与测试研究[D1.北京交通大学,2007
    [20]李雪冰.高速列车交会时的气流诱发振动研究[D].西南交通大学,2009
    [21]曹瑞.特殊环境下高速列车车体外表面的压力特性分析[D].北京.北京交通大学,2010
    [22]赵品.高速列车通过隧道时气动影响研究[D].西南交通大学,2010
    [23]郗艳红.高速列车侧风效应的数值模拟[J].北京交通大学学报,2010,34(1):14-19.
    [24]陈康.横风作用下200km/h动车组安全性研究[D].西南交通大学,2008
    [25]董亚男.高速列车在侧风环境中会车的空气动力特性模拟研究[D].北京交通大学,2008
    [26]李伟鹏.高速动车组隧道交会空气动力学数值模拟[D].大连交通大学,2011
    [27]崔涛,张卫华.侧风环境下列车高速通过站台的流固耦合振动[J].西南交通大学学报,2011,46(3):404-408.
    [28]邢景棠,周盛等.流固耦合力学概述[J].力学进展,1997,27(1):19-38.
    [29]C.W. Hirt, A.A.Amsden, J.L. Cook. An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds[J]. Journal of Computation Physics, 1974, (135):227-253.
    [30]A.Zilian, D.Dinkler, A.Vehre. Projection-based reduction of fluid-structure interaction systems using monolithic space-time modes[J]. Comput. Methods Appl. Mech. Engrg., 2009, (198): 3795-3805.
    [31]M.Fernandez, M.Moubachir. A newton method using exact jacobians for solving fluid-structure coupling[J],Comput. Struct, 2005, (83):127-142.
    [32]Mario Mellado, Rodolfo Rodriguez. Efficient Solution of Fluid-Structure Vibration Problems[J]. Applied Numerical Mathematics, 2001, (36): 389-400.
    [33]Damodar Maity, Sriman Kumar Bhattacharyya. A parametric study on fluid-structure interaction problems [J]. Journal of Sound and Vibration, 2003, (263):917-935.
    [34]O.Andrianarison, R.Ohayon. Compressibility and gravity effects in internal fluid-structure vibrations: Basic equations and appropriate variational formulations [J]. Comput. Methods Appl. Mech. Engrg.,2006, (195):1958-1972.
    [35]Delfim Soares Jr.. Fluid-structure interaction analysis by optimised boundary element—finite element coupling procedures [J]. Journal of Sound and Vibration, 2009, (322):184-195.
    [36]E.H.van Brummelen. Partitioned iterative solution methods for fluid-structure interaction [J]. Int. J. Numer. Meth. Fluids,2011, (65):3-27.
    [37]Sergey Perov, Eberhard Altstadt, Matthias Werner. Vibration analysis of the pressure vessel internals of WWER-1000 type reactors with consideration of fuid-structure interaction [J]. Annals of Nuclear Energy, 2000, (27):1441-1457.
    [38]Volker Carstens, Joachim Belz. Numerical Investigation of Nonlinear Fluid-Structure Interaction in Vibrating Compressor Blades [J]. Journal of Turbomachinery, 2001, (123):402-408.
    [39]V.Ostasevicius, R.Daukseviciusa, R.Gaidys, A.Palevicius. Numerical analysis of fluid-structure interaction effects on vibrations of cantilever microstructure [J]. Journal of Sound and Vibration,2007, (308):660-673.
    [40]悍伟君,段根宝.流固耦合振动有限元分析中的流体弱耦合项摄动法[J].交通部上海船舶运输科学研究所学报,1984,(1):16-25.
    [41]邢京堂.流固耦合振动分析的有限元与子结构一子区域方法的理论及数值计算研究[D].清华大学.1984
    [42]诸葛起,蔡亦钢,杨世超等.管路系统的流固耦合数学模型研究[J].科技通报,1987,3(3):25-26.
    [43]于海力.轴流叶轮机械二维叶栅非定常流动数值模拟[D].中国科学院研究生院,2003
    [44]肖军.压气机叶栅气固耦合的颤振分析研究[D].西北工业大学,2004
    [45]曹良.混流式水轮机流固耦合振动分析[D].昆明理工大学,2007
    [46]李华峰.空间结构数值风洞模拟与流固耦合风致响应[D].上海交通大学学,2008
    [47]施耀华.桥塔绕流与流固祸合的数值模拟[D].北京交通大学,2008
    [48]佟胜江.设备舱支架裂纹原因分析及改进措施[J].铁道车辆,2011,49(12):10-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700