用户名: 密码: 验证码:
酿酒酵母遗传操作方法研究及乙醇发酵高产菌株构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着地球上化石能源(石油、煤炭、天燃气等)的日趋枯竭和全球环境保护意识的不断加强,用生物乙醇(也称燃料乙醇)取代部分汽油已经成为一项重要的可再生能源战略。由于技术上的原因,目前燃料乙醇的生产主要是通过酿酒酵母对淀粉质或糖质原料的发酵来实现。以淀粉质或糖质原料为碳源进行乙醇发酵,原料成本在生产总成本中占很大比例,这在一定程度上限制了燃料乙醇工业的发展。因此,提高酿酒酵母乙醇发酵过程中的原料利用率(糖-醇转化率)以及降低生产过程中的能耗(如:缩短发酵周期、采用浓醪发酵等)是关系到淀粉质及糖质原料乙醇发酵行业发展的重要课题。然而,酿酒酵母乙醇发酵的糖-醇转化率、发酵速率以及对乙醇的耐受力是受多基因调控的复杂遗传性状,很难通过传统的诱变育种、代谢工程以及针对特定基因或代谢途径的其它遗传操作方法进行改善。因此,采用全基因组系统工程的方法对酿酒酵母进行遗传改造无疑是解决上述问题的有效途径。
     本研究以YCplac33为载体,构建带有受半乳糖诱导启动子调控的HO基因的质粒YCplac33-GHK。将该质粒转入酿酒酵母菌株W303,通过半乳糖诱导HO基因转录来实现转化菌株交配型的转换。通过菌落PCR分析菌株的交配型,选择适当交配型的酵母菌株进行有性接合,获得多倍体菌株HLH33和HLH34。实验结果表明:在浓醪发酵中,菌株HLH33和HLH34分别比对照菌株W303的乙醇产量提高了1.29%和3.57%;酵母菌株的乙醇产量和对乙醇及高渗透压的抗性随染色体倍数的增加而提高和增强。
     用芬苯达唑(methyl benzimidazole-2-yl-carba-mate,MBC)处理多倍体菌株HLH34使之发生染色体缺失,得到一株乙醇发酵特性显著改善的非整倍体酵母菌株HLH34-M。实验结果表明:在浓醪发酵中,菌株HLH34-M与对照菌株W303相比,发酵终点残糖降低了58.70%,乙醇产量提高了5.33%。同时,菌株HLH34-M对乙醇及高渗透压的抗性明显增强。研究结果证明,非整倍体菌株可以显著地改善酿酒酵母的乙醇发酵生产特性。
     用常规重组DNA技术将编码全局转录因子的基因SPT15和SPT3分别克隆到载体YEplac195上,得到质粒YEplac195-SPT15和YEplac195-SPT3;采用PCR介导的定点诱变技术,获得SPT15的等位基因spt15( Phe177Ser、Tyr195His、Lys218Arg),并将其克隆到YEplac195载体上,得到质粒YEplac195-spt15;此外,分别将SPT15和SPT3以及spt15和SPT3共同克隆到YEplac195上,构建出质粒YEplac195-SPT15-SPT3和YEplac195-spt15-SPT3。上述所有质粒上的SPT15和spt15均由TEF1强启动子调控,而SPT3则由PGK1强启动子调控。将所构建的质粒分别转入菌株W303,并对转化子的乙醇发酵能力和乙醇及高渗透压的抗性进行考察。实验结果表明:与对照菌株W303相比,过量表达转录因子SPT15和spt15的菌株乙醇产量分别提高了1.14%和0.23%;共同过量表达SPT15和SPT3及共同过量表达spt15和SPT3的菌株乙醇产量分别提高了2.05%和1.70%;过量表达转录因子SPT3的菌株乙醇产量提高了1.25%,而且该菌株具有较强的乙醇及高渗透压的抗性。研究结果说明:在本研究实验条件下,对于SPT15和SPT3的遗传操作可在一定程度上提高酵母的乙醇发酵能力。
     在确定甲基磺酸乙酯(Ethyl methane sulphonate, EMS)最佳诱变剂量的基础上,对双倍体酵母菌株W303进行诱变,获得具有充分遗传多样性的菌株群;通过三轮有性重组进行基因组重排,构建出具有优良特性的酿酒酵母乙醇发酵菌株HLHS3-7。实验结果表明:在浓醪发酵中,菌株HLHS3-7比对照菌株W303的乙醇产量提高了8.88%,残糖降低了64.37%,发酵周期缩短了10小时,而且对乙醇及高渗透压的抗性显著增强。研究结果证明:本研究采用的策略是一种有效的酿酒酵母乙醇发酵菌株改造方法。
Due to the imminent decline in the availability of global fossil energy(oil,coal and natural gas)and increasing concern over the issue of environment protection, partial substitution of fossil fuel with bioethanol has become an important renewable energy strategy. For technical reasons, bioethanol production is mainly achieved at present through fermentation of starch- or sugar-based feedstock by Saccharomyces cerevisiae. The cost of feedstock accounts for a large portion of the total production cost in starch- or sugar-based ethanol fermentation, which, to a large extent, hampers the development of the bioethanol industry. Hence, increasing the sugar-ethanol conversion rate and reducing the energy consumption of the process (through shortening the cycle of fermentation and implementation of high gravity fermentation) are key subjects of starch- and sugar-based ethanol industry development. However, the sugar to ethanol conversion rate, the speed of fermentation and the ethanol tolerance are complex traits under the control of multiple genes, which are difficult to alter with classical breeding, metabolic engineering and other genetic manipulation methods with specific genes or pathways as targets. Therefore, employing the whole genome engineering approach will be an effective way to manipulate yeast strains.
     In this study, yeast shuttle vector YCplac33 was used to clone the HO gene under the control of a galactose inducible promoter, generating plasmid YCplac33-GHK. This plasmid was transformed into the strain W303. After inducted with galactose, the mating type of the cells carrying this plasmid was switched, which was verified by diagnostic PCR. Cells with appropriate mating type were selected and mated, producing polyploid yeast strains HLH33 and HLH34. At the end of high gravity fermentation, ethanol production of HLH33 and HLH34 improved by 1.29% amd 3.57%, compared to the reference strain W303. The results indicated that strains with increased ploidy produced more ethanol and exhibited enhanced ethanol and osmotic stress tolerance.
     Treatment of the polyploid strain HLH34 with methyl benzimidazole-2-yl-carba-mate (MBC) induced chromosome loss, resulting in the isolation of an aneuploid strain HLH34-M. The remaining sugar at the end of high gravity fermentation, decreased 58.70%, while the ethanol yield increased 5.33%, compared to the reference strain W303. Moreover, ethanol and osmotic stress tolerance of HLH34-M was significantly improved. These results demonstrated that manipulating yeast cell ploidy could improve its fermentation performance significantly.
     Using standard recombinant DNA technology, the SPT15 and SPT3 genes, encoding two general transcription factors, were each cloned into the YEplac195 vector, generating plasmid YEplac195-SPT15 and YEplac195-SPT3, respectively. A mutant allele of SPT15, spt15(Phe177Ser、Tyr195His、Lys218Arg) , was created by PCR mediated site-directed mutagenesis and coloned into the same vector, creating plasmid YEplac195-spt15. Two additional plasmids, YEplac195-SPT15-SPT3 and YEplac195-spt15-SPT3 were also constructed. In all plasmids constructed in this work, the SPT15/spt15 gene was always under the control of the strong TEF1 promoter, while the SPT3 gene was under the control of the strong PGK1 promoter. The plasmids were transformed into strain W303, then the fermentation performance, ethanol and osmotic stress tolerance tolerance of the tranformants were investigated. Overexpression of SPT15 and spt15 resulted in 1.14% and 0.23% increase in ethanol yield, respectively compared to the control strain W303; Cooverexpression of spt15 and SPT3 enhanced the strain’s ethanol yield 2.05%; On the other hand, cooverexpression of spt15 and SPT3 enhanced the strain’s ethanol yield 1.70%; Overexpression of SPT3 enhanced the strain’s ethanol yield 1.25%, and the strain’s ethanol and osmotic stress tolerance was better than other strain’s. These results indicated that, under our experimental condition, modulation of the expression level of the SPT15 and SPT3 gene could to some extent improve yeast strain’s fermentation performance.
     Diploid W303 strain were treated with Ethyl methane sulphonate (EMS) of experimentally determined optimal dose,generating a population of yeast cells with high level genetic variation; Genome shuffling was carried out within the mutagenised cell population via sexual recombination, which resulted in the isolation of the strain HLHS3-7. The results showed that, for strain HLHS3-7, the ethanol yield increased by 8.88% and the cycle of fermentation shortened 10 h, while the remaining sugar decreased by 64.37% at end of high gravity fermentation and ethanol and osmotic stress tolerance was significantly improved, compared to that of the control strain W303. These results demonstrated that the strategy employed in this work is valuable for creating yeast strains with desired multiplex traits.
引文
[1] Richard AK. The next oil crisis looms large and perhaps close. Science, 1998. 81:1128~1131
    [2]王凡强,许平,产乙醇工程茵研究进展,微生物学报,2006,46:673~675
    [3]贾树彪,李盛贤,吴国峰,新编酒精工艺学,北京:化学工业出版,2004
    [4]高寿清,燃料酒精发展的国际情况与分析,食品与发酵工业,2000,27:5 9~62
    [5] Jefries TW, Jin YS. Metabolic engineering for improved fermentation of pentoses by yeasts. Appl Microbial Biotechnol, 2004. 63:495~509
    [6] McCoy M. Biomass ethanol inches forward. Chemical and Engineering News, 1998. 29~32
    [7] Casey GP, Magnus CA. Ingledew WM. High gravity brewing: nutrient enhanced production of high concentrations of ethanol by brewing yeast. Biotechno1 Lett, 1983. (5):429~434
    [8] Thomas KC, Hynes SH, Jones AM et al. Production of fuel alcohol from wheat by VHG technology: effect of sugar concentration and fermentation temperature. Appl Biochem Biotechnol, 1993. 43:211~226.
    [9] Belli G, Gari E, Aldea M et al. Osmotic stress causes a G1 cell cycle delay and downregulation of Cln3/Cdc28 activity in Saccharomyces cerevisiae. Mol Microbiol, 2001. 39:1022~1035
    [10] Thatipamala R, Rohani S, Hill GA. Effects of high product and substrate inhibitions on the kinetics and biomass and product yields during ethanol batch fermentation. Biotechnol Bioeng, 1992. 40:289~297
    [11] Pham TK, Chong PK, Gan CS. Proteomic analysis of Saccharomyces cerevisiae under high gravity fermentation conditions. J Proemome Res, 2006. 5(12):3411~3419
    [12] Patkova J, Smogrovicova D, Bafrncova P et al. Changes in the yeast metabolism at very high-gravity wort fermentation. Folia Microbiol, 2000. 45(4):335~338
    [13] Devantier R, Scheithauer B, Villas-Boas SG et al. Metabolite profiling for analysis of yeast stress response during very high gravity ethanol fermentations. Biotechnology and Bioengineering, 2005. 90:703~714
    [14] Paolo G, Lisa S, Andrea M et al. Strategies and perspectives for geneticimprovement of wine yeasts. Appl Microbiol Biotechnol, 2005. 66:622~628
    [15] Zambonelli C. I lieviti selezionati Microbiologia e biotecnologia dei wini. Edagricole: Bologna, 1988. 123~136
    [16] Pretorius IS. Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking. Yeast, 2000. 16:675~629
    [17] Romano P, Soli MG, Suzzi G. Procedure for mutagenizing spores of Saccharomyces cerevisiae strain by a breeding program. Appl Environ Microbiol, 1983. 50:1064~1067
    [18] Taguchi S, Ozaki A, Mose H. Engineering of a cold adapted protease by sequential random mutagenesis and screening system. Appl Environ Microbiol, 1998. 64:492~495
    [19] Arensdorf JJ, Loomis AK, DiGrazia PM et al. Chemostat approach for the directed evolution of biodesulfurization gain-of-function mutants. Appl Environ Microbiol, 2002. 68:691~698
    [20] Levichkin IV, Shul’ga AA, Kurbanov FT et al. A new method of designing hybrid genes-the homolog recombination method. Mol Biol, 1995. 29:983~991
    [21] Stemmer WP. DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc Natl Acad Sci USA, 1994. 91:10747~10751
    [22] Stemmer WP. Rapid evolution of a protein in vitro by DNA shuffling. Nature, 1994. 370:389~391
    [23] Wayne MC, William EL, Michael JC et al. DNA shuffling method for generating highly recombined genes and evolved enzymes. Nat Biotechnol, 2001. 19:354~359
    [24] Joel RC, Michael HL, Palle S et al. Directed evolution of a fungal peroxidase. Nat Biotechnol, 1999. 17:349~384
    [25] Abecassis V, Pompon D, Truan G. High efficiency family shuffling based on multi-step PCR and in vivo DNA recombination in yeast: Statistical and functional analysis of a xombinatorial library between human cytochrome P450 1A1 and 1A2. Nucleic Acids Res, 2000. 28:88
    [26] Simon O, Lisbeth O, Jens N. Metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol R, 2000. 64:34~50
    [27] Gill RT. Enabling inverse metabolic engineering through genomics. Curr Opin Biotech, 2003. 14:484~490
    [28] Naumov GI, Kondrat’eva VI, Naumova ES. Methods for hybridization of homothallic yeast. Biotekhnologia, 1986. 6:33~36
    [29] Barre P, Vezinhet F, Dequin S et al. Genetic improvement of wine yeasts. Wine microbiology and biotechnology. Newark: Harwood Academic, 1993. 265~287
    [30] Marullo P, Bely M, Masneuf-Pomarede I et al. Inheritable nature of oenological traits is demonstrated by meiotic segregation of industrial wine yeast strains. FEMS Yeast Res, 2004. 4:711~719
    [31] Akada R. Genetically modified industrial yeast ready for application. J Biosci Bioeng, 2002. 94:536~544
    [32] Jon EN, Mark W, Lori G, et al. DNA shuffing of subgenomic sequences of subtilisin. Nature Biotechnol, 1999. 17:893~896
    [33] Stewart GG. The genetic manipulation of industrial yeast strains. Can J Microbiol, 1981. 27:973~990
    [34] Spencer JFT, Spencer DM. Hybridization of non-sporulating and weakly sporulating strains of brewers and distillers yeast. J Inst Brew, 1977. 83:287~289
    [35] Shodo H, Yuzuru I. Hiromi O et al. The breeding of cryophilic killer wine yeasts. Agric Biol Chem, 1981. 153:1327~1334
    [36] Seki T, Choi E, Tyu D. Construction of killer wine yeast strain. Appl Environ Microbiol, 1985. 49:1211~1215
    [37] Zhang YX, Perry K, Vinci VA et al. Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature, 2002. 415:644~646
    [38] Patnaik RS, Louie V, Gavrilovic K et al. Genome shuffling of Lactobacillus for improved acid tolerance. Nat Biotechnol, 2002. 20: 707~712
    [39] Dai MH, Copley SD. Genome Shuffling Improves Degradation of the Anthropogenic Pesticide Pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723. Appl Environ Microbiol, 2004. 70: 2391~2397
    [40] Hida H, Yamada T, Yamada Y. Genome shuffling of Streptomyces sp. U121 for improved production of hydroxycitric acid. Appl Microbiol Biotechnol, 2007. 73:1387~1393
    [41] Steinmeta LM, Sinha H, Tichaeds DR et al. Dissecting the architectrue of a quantitative trait locus in yeast. Nature, 2002. 416:326~330
    [42] Pretorius IS. Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking. Yeast, 2000. 16:675~729
    [43] Risch NJ. Searching for genetic determinants in the new millennium. Nature, 2000. 405:847~856
    [44] Cormack BP, Struhl K. The TATA-binding protein is required fortranscription by all three nuclear RNA polymerases in yeast cells. Cell, 1992. 69(4):685~696
    [45] Fan X, Shi H, Lis JT. Distinct transcriptional responses of RNA polymerases I, II and III to aptamers that bind TBP. Nucleic Acids Res, 2005. 33(3):838~845
    [46] Reeder RH. Regulation of RNA polymerase I transcription in yeast and vertebrates. Prog Nucleic Acid Res Mol Biol, 1999. 62:293~327
    [47] Hampsey M. Molecular genetics of the RNA polymerase II general transcriptional machinery. Microbiol Mol Biol Rev, 1998. 62(2):465~503
    [48] Geiduschek EP, Kassavetis GA. The RNA polymerase III transcription apparatus. J Mol Biol, 2001. 310(1):1~26
    [49] Spencer JV, Arndt KM. A TATA binding protein mutant with increased affinity for DNA directs transcription from a reversed TATA sequence in vivo. Mol Cell Biol, 2002. 22(24):8744~8755
    [50] Leng P, Philip EC, Alistair JPB. The TATA-binding protein (TBP) from the human fungal pathogen Candida albicans can complement defects in human and yeast TBPs. J Bacteriol, 1998. 180(7):1771~1776
    [51] Hahn S, Buratowski S, Sharp PA et al. Yeast TATA-binding protein TFIID binds to TATA elements with both consensus and nonconsensus DNA sequences. Proc Natl Acad Sci U S A, 1989. 86(15):5718~5722
    [52] Schmidt MC, Kao CC, Pei R et al. Yeast TATA-box transcription factor gene. Proc Natl Acad Sci U S A, 1989. 86(20):7785~7789
    [53] Lee M, Struhl K. Multiple functions of the nonconserved N-terminal domain of yeast TATA-binding protein. Genetics, 2001. 158(1):87~93
    [54] Kim JL, Nikoloc DB, Burley SK. Co-crystal structure of TBP recognizing the minor groove of a TATA element. Nature, 1993. 365(6446):520~527
    [55] Kim TK, Roeder RG. Involvement of the basic repeat domain of TATA-binding protein (TBP) in transcription by RNA polymerases I, II, and III. J Biol Chem, 1994. 269(7):4891~4894
    [56] Kou H, IrvinJD, Huisinga KL et al. Structural and functional analysis of mutations along the crystallographic dimer interface of the yeast TATA binding protein. Mol Cell Biol, 2003. 23(9):3186~3201
    [57] Coleman RA, Pugh BF. Slow dimer dissociation of the TATA binding protein dictates the kinetics of DNA binding. Proc Natl Acad Sci USA, 1997. 94(14):7221~7226
    [58] Jackson-Fisher AJ, Chitikila C, Mitra M et al. A role for TBP dimerization in preventing unregulated gene expression. Mol Cell, 1999. 3(6):717~727
    [59] Darst RP, Dasgupta A, Zhu C et al. Mot1 regulates the DNA binding activityof free TATA-binding protein in an ATP-dependent manner. J Biol Chem, 2003. 278(15):13216~13226
    [60] Goppelt A, Meisterernst M. Characterization of the basal inhibitor of class II transcription NC2 from Saccharomyces cerevisiae. Nucleic Acids Res, 1996. 24(22):4450~4455
    [61] Steffan JS, Keys DA,Vu L et al. Interaction of TATA-binding protein with upstream activation factor is required for activated transcription of ribosomal DNA by RNA polymerase I in Saccharomyces cerevisiae in vivo. Mol Cell Biol, 1998. 18(7):3752~3761
    [62] Grant PA, Duggan L, Cote J et al. Yeast gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes Dev, 1997. 11(13):1640~1650
    [63] Dudley AM, Rougeulle C, Winston F. The spt components of SAGA facilitate TBP binding to a promoter at a post-activator-binding step in vivo. Genes Dev, 1999. 13(22):2940~2945
    [64] Larschan E, Winston F. The Saccharomyces cerevisiae SAGA complex functions in vivo as a coactivator for transcriptional activation by Gal4. Genes Dev, 2001. 15(15):1946~1956
    [65] Bhaumik SR, Green MR. Differential requirement of SAGA components for recruitment of TATA-box-binding protein to promoters in vivo. Mol Cell Biol, 2002. 22(21):7365~7371
    [66] Eisenmann DM, Arndt KM, Ricupero SL et al. SPT3 interacts with TFIID to allow normal transcription in Saccharomyces cerevisiae. 1992. Genes Dev 6(7):1319~1331
    [67] Belotserkovskaya R, Sterner DE, Deng M et al. Inhibition of TATA-binding protein function by SAGA subunits Spt3 and Spt8 at Gcn4-activated promoters. Mol Cell Biol, 2000. 20(2):634~647
    [68] Simchen G, Winston F, Styles CA et al. Ty-mediated gene expression of the LYS2 and HIS4 genes of Saccharomyces cerevisiae is controlled by the same SPT genes. Proc Natl Acad Sci U S A, 1984. 81(8):2431~2434
    [69] Winston F, Chaleff DT, Valent B et al. Mutation affecting Ty-mediated expression of the HIS4 gene of Saccharomyces cerevisiae. Genetics, 1984. 107(2):179~197
    [70] Hirschhorn JN, Winston F. SPT3 is required for normal levels of a-factor and alpha-factor expression in Saccharomyces cerevisiae. Mol Cell Biol, 1988. 8(2):822~827
    [71] Winston F, Durbin KJ, Fink GR. The SPT3 gene is required for normaltranscription of Ty elements in Saccharomyces cerevisiae. Cell, 1984. 39(3 Pt 2):675~682
    [72] Laprade L, Boyartchuk VL, Dietrich WF et al. Spt3 plays opposite roles in filamentous growth in Saccharomyces cerevisiae and Candida albicans and is required for C. albicans virulence. Genetics, 2002. 161(2):509~519
    [73] Martinez E, Kundu TK, Fu J et al. A human SPT3-TAFII31-GCN5-L acetylase complex distinct from transcription factor IID. J Biol Chem, 1998. 273(37):23781~23785
    [74] Yu J, Madison JM, Mundlos S et al. Characterization of a human homologue of the Saccharomyces cerevisiae transcription factor spt3 (SUPT3H). Genomics, 1998. 53(1):90~96
    [75] Madison JM, Winston F. Identification and analysis of homologues of Saccharomyces cerevisiae spt3 suggest conserved functional domains. Yeast, 1998. 14(5):409~417
    [76] Alper H, Moxley J, Nevoigt E et al. Engineering yeast transcription machinery for improved ethanol tolerance and production. Science, 2006. 314:1565~1568
    [77] Hahn S. Structure and Mechanism of the RNA Polymerase II transcription machinery (Review). Nat Struct Mol Biol, 2004. 11:394~403
    [78] Hampsey M. Molecular Genetics of the RNA Polymerase II General Transcriptional Machinery. Microbiol Mol Biol Rev, 1998. 62(2): 465~503.
    [79] Kim JL, Nikoloc DB, Burley SK. Co-crystal structure of TBP recognizing the minor groove of a TATA element. Nature, 1993. 365(6446):520~527
    [80] Bai FW, Chen LJ, Zhang Z et al. Continuous ethanol production and evaluation of yeast cell lysis and viability loss under very high gravity medium conditions. Journal of Biotechnology, 2004. 110:287~293
    [81] Furukawa K, Obatah H, Kitano H et al. Effect of cellular inositol content on ethanol tolerance of Saccharomyces cerevisiae in sake brewing. J Biosci Bioeng, 2004. 98(2):107~113
    [82] Ogawa Y, Nitta A, Uchiyama H et al. Tolerance mechanism of the ethanol-tolerant mutant of sake yeast. J Biosci Bioeng, 2000. 90:313~320
    [83] Takagi H, Takaoka M, Kawaguchi A et al. Effect of L-Proline on Sake Brewing and Ethanol Stress in Saccharomyces cerevisiae. Appl Envir Microbiol, 2005. 71(12):8656~ 8662
    [84] Robinson KM, Schultz MC. Chromatin assembly in a crude fraction from yeast cells. Methods Mol Biol, 2006. 313:209~223
    [85] Geiger JH, Hahn S, Lee S et al. Crystal Structure of the YeastTFIIA/TBP/DNA Complex. Science, 1996. 272(5263):830~836
    [86] Huisinga KL, Pugh BF. A genome-wide housekeeping role for TFIID and a highly regulated stress-related role for SAGA in Saccharomyces cerevisiae. Mol Cell, 2004. 13:573~585
    [87] Lee TI, Causton HC, Holstege FCP et al. Redundant roles for the TFIID and SAGA complexes in global transcription. Nature, 2000. 405:701~704
    [88] Dujon B. The yeast genome project: what did we learn. Trends Genet, 1996. 12: 263~270
    [89] Sharp PM, Lloyd AT. Regional base composition variation along yeast chromosome III: evolution of chromosome primary structure. Nucleic Acids Res, 1993. 21: 179~183
    [90]酵母:一种模式生物, Online, Internet, Available http://www.biox.cn(www.chinagenenet.com), 2005
    [91] Goffeau A, Barrell BG, Bussey H et al. Life with 6000 genes. Science, 1996. 274: 563~567
    [92] Oliver SG. Yeast as a navigational aid in genome analysis. Microbiology, 1997. 143: 1483~1487
    [93] Haber JE. Mating-type gene switching in Saccharomyces cerevisiae. Trends Genet, 1992. 8:446~452
    [94] Herskowitz I. Life cycle of the budding yeast Saccharomyces cerevisiae. Microbiol Rev, 1988. 52:536~553
    [95] Strathern JN, Kucherlapati R, Smith GR. Control and execution of mating type switching in Saccharomy cescerevisiae. Genetic Recombination, 1989. 445~464
    [96] Bruhn L, Sprague GF. MCM1 point mutants deficient in expression of alpha-specific genes: residues important for interaction with alpha 1. Mol Cell Biol, 1994. 14:2534~2544
    [97] Hagen DC, Bruhn L, Westby CA et al. Transcription of alpha specific genes in Saccharomyces cerevisiae: DNA sequence requirements for activity of the coregulator. Mol Cell Biol, 1993. 13:6866~6875
    [98] Herschbach BM, Arnaud MB, Johnson AD. Transcriptional repression directed by the yeastα2 protein in vitro. Nature, 1994. 370:309~311
    [99] Keleher CA, Passmore S, Johnson AD. Yeast repressor alpha 2 binds to its operator cooperatively with yeast protein Mcm1. Mol Cell Biol, 1989. 9:5228~5230
    [100] Patterton HG, Simpson RT. Nucleosomal location of the STE6 TATA box and Mat alpha 2p-mediated repression. Mol Cell Biol, 1994. 14:4002~4010
    [101] Sprague GF, Herskowitz JI. Control of cell type in yeast by the mating type locus. J Mol Biol, 1981. 147:357~372
    [102] Tatchell K, Nasmyth KA, Hall BD et al. In vitro mutation analysis of the mating-type locus in yeast. Cell, 1981. 27:25~35
    [103] Goutte C, Johnson AD. a1 protein alters the DNA binding specificity of repressor. Cell, 1988. 52:875~882
    [104] Liras P, McCusker J, Mascioli D et al. Crystal structure of the MATa1/MATα2 homeodomain heteromer bound to DNA. Science, 1978. 270:262~269
    [105] Strathern J, Shafer B, Hicks J et al. a/α-specific repression by MATa2. Genetics, 1988. 120:75~81
    [106] Nasmyth K. Molecular analysis of a cell lineage. Nature, 1983. 302:670~676
    [107] Nasmyth K. The determination of mother cell-specific mating type switching in yeast by a specific regulator of HO transcription. EMBO J, 1987. 6:243~248
    [108] Bobola N, Jansen RP, Shin TH et al. Asymmetric accumulation of Ash1p in postanaphase nuclei depends on a myosin and restricts yeast mating-type switching to mother cells. Cell, 1996. 84:699~709
    [109] Sil A, Herskowitz I. Identification of asymmetrically localized determinant, Ash1p, required for lineage-specific transcription of the yeast HO gene. Cell, 1996. 84:711~722
    [110] Long RM, Singer RH, Meng X et al. Mating type switching in yeast controlled by asymmetric localization of ASH1 mRNA. Science, 1997. 277:383~387
    [111] Herskowitz I, Rine J, Strathern J N et al. The Molecular and Cellular Biology of the Yeast Saccharomyces cerevisiae. Plainview, NY: Cold Spring Harbor Lab Press, 1992. 583~656
    [112] Oshima Y, Hall MN, Linder P. The Early Days of Yeast Genetics. Plainview, NY: Cold Spring Harbor Lab Press, 1993. 291~304
    [113] Hicks JB, Strathern JN, Herskowitz I et al. DNA Insertion Elements, Plasmids and Episomes. Plainview, NY: Cold Spring Harbor Lab Press, 1977. 457~462
    [114] Dujon B. Group I introns as mobile genetic elements: Facts and mechanistic speculations—a review. Gene, 1989. 82:91
    [115] Chant J. Generation of cell polarity in yeast. Curr Opin Cell Biol, 1996. 8:557~565
    [116] Heude M, Fabre F. a/αcontrol of DNA repairs in the yeast Saccharomyces cerevisiae: genetic and physiological aspects. Genetics, 1993. 133:489~498
    [117] Haber JE. Uses and abuses of HO endonuclease. Methods in Enzymology, 2002. 350:141~164
    [118] Haber JE. A locus control region regulates yeast recombinationAnnu. Trends in Genetics, 1998. 14:317~321
    [119] Strathern JN, Shafer B, Hicks J. Genetic a/α-Specific repression by MATα2. 1988. 120:75~81
    [120] Meiron H, Nahon E, Raveh D. Identification of the heterothallic mutation in Ho-endonuclease of Saccharomyces cerevisiae using HO/ho chimeric genes. Curr Genet, 1995. 28:367~373
    [121] Jensen R, Sprague GF, Herskowitz I. Regulation of yeast mating-type interconversion: feedback control of HO gene expression by the mating-type locus. Proceedings of the National Academy of Sciences of the United States of America, 1983. 80:3035~3039
    [122] Jensen RE, Herskowitz I. Control of yeast cell type by the mating type locus: Positive regulation of theα-specific STE3 gene by the MATα1 product. Cold SpringHarb Symp Quant Bio. 1984. 49:97~104
    [123] Haber JE. Mating-type gene switching in Saccharomyces cerevisiae. Annu Rev Genet, 1998. 32:561~599
    [124] Royzman I, Orr-Weaver TL. S phase and differential DNA replication during Drosophila genesis. Genes Cells, 1998. 3:767~776
    [125] Ekino K, Hayashi H, Moriyama M et al. Engineering of polyploid Saccharomyces cerevisiae for secretion of large amounts of fungal glucoamylase. Applied and Environmental Microbiology, 2002. 11:5693~5697
    [126] Takagi A, Harashima S, Oshima Y. Construction and characterization of isogenic series of Saccharomyces cerevisiae polyploid strains. Applied and Environmental Microbiology, 1983. 45:1034~1040
    [127] Diiorio AA, Weathers PJ, Campbell DA. Comparative enzyme and ethanol production in an isogenic yeast ploidy series. Curr Genet, 1987. 12:9~14
    [128] Galitski T, Saldanha AJ, Styles CA et al. Ploidy regulation of gene expression. Science, 1999. 285:251~254
    [129] Holland EC, Hively WP, Gallo V et al. Modeling mutations in the G1 arrest pathway in human gliomas: overexpression of CDK4 but not loss of INK4a–ARF induces hyperploidy in cultured mouse astrocytes. Genes Dev, 1998. 12:3644~3649
    [130] Tubb RS. Hammond JRM. Yeast genetics. London: Elsevier Applied Science, 1987. 47~82
    [131] Vezinhet F, Bloodin B, Hallet JN. Chromosomal patterns and mitochondrial DNA polymorphism as tools for identification of enological strains of Saccharomyces cerevisiae. Appl Microbial Biotechnol, 1990. 32:568~571
    [132] Bidenne C, Blondin B, Dequin S et al. Analysisof the chromosomal DNA polymorphism of wine strains of Saccharomyces cerevisiae. Curr Genetics, 1992. 22:l~7
    [133] Tavares FCA, Kido EA, Vencovsky R. Recurrent selection in yeast. Yeast, 1988. 4 (Special Issue):477
    [134] Salmon JM. Enological fermentation kinetics of an isogenic ploidy series derived from an industrial Saccharomyces cerevisiae strain. Journal of Fermentation and Engineering, 1997. 83(3):253~260
    [135] Paquin C, Adams J. Frequency of fixation of adaptative mutations is higher in evolving diploid than haploid yeast populations. Nature, 1983. 302:495~500
    [136] Adams J, Puskas RS, Simlar J et al. Adaptation and major chromosomal changes in populations of Saccharomyces cerevisiae. Curr Genetics, 1992. 22:13~19
    [137] Takagi A, Harashima S, Oshima Y. Construction and characterization of isogenic series of Saccharomyces cerevisiae polyploid strains. Appl Environ Microbial, 1983. 45:1034~1040
    [138] Mayer VW, Aguilera A. High levels of chromosome instability in polyploids of Saccharomyces cerevisiae. Mut Res, 1990. 231:177~186
    [139] Yoshinobu T, Yukio T, Akira M et al. A novel method for breeding polyploid cells by heat-induced endomitotic diploidization in Saccharomyces cerevisiae. Biosci Biotech Biochem, 1993. 57:2063~2066
    [140] Wood JS. Genetic effects of methyl benzimidazole-2-yl-carbamate on Saccharomyces cerevisiae. Mol Cell Biol 1982. 2:1064~1079
    [141] Wood JS. Mitotic chromosome loss induced by methyl benzimidazole-2-yl-carbamate as a rapid mapping method in Saccharomyces cerevisiae. Mol Cell Biol, 1982. 2:1080~1087
    [142] Campbell D, Doctor JS, Feursanger J H et al. Differential mitotic stability of yeast disomes derives from triploid meiosis. Genetics, 1981. 98:239~255
    [143] Kong QX, Gu JG, Cao LM et al. Improved production of ethanol by deleting FPS1 and over-expressing GLT1 in Saccharomyces cerevisiae. Biotechnol Lett, 2006. 28:2033~2038
    [144] Kong QX, Cao LM, Zhang AL et al. Overexpressing GLT1 in gpd1Δmutant to improve the production of ethanol of Saccharomyces cerevisiae. Appl Microbiol Biotechno, 2007. l 73:1382~1386
    [145] Zhang AL, Kong QX, Cao LM et al. Effect of FPS1 deletion on the fermentation properties of Saccharomyces cerevisiae. Lett Appl Mivrobiol, 2007. 44:212~217
    [146]孔庆学,酿酒酵母遗传操作降低甘油合成提高乙醇产量的研究,[博士学位论文],天津;天津大学,2006
    [147]张爱利,利用基因工程技术限制酿酒酵母甘油生物合成提高乙醇发酵效率,[硕士学位论文],天津;天津大学,2005
    [148]许小菁,重组酿酒酵母乙醇高产菌株的构建及清洁发酵工艺研究,[博士学位论文],天津;天津大学,2007
    [149] Papworth C, Bauer JC, Braman J et al. Site-directed mutagenesis in one day with >80% efficiency[J]. Strategies, 1996. 9(3):3~4
    [150]董晓燕, 3,5-二硝基水杨酸法(DNS)测定还原糖,生物化学实验(工科类专业适用),北京:化学工业出版社,2003,34~37
    [151] Piper PW. The heat shock and ethanol stress response of yeast exhibit extensive similarity and functional overlap. FEMS Microbiol Lett, 1995. 134: 121~127
    [152] D’Amore T, Stewart GG. Ethanol tolerance of yeast. Enzyme. Microb. Technol, 1987. 9:322~330
    [153] Sharma SC. A possible role of trehalose in osmotolerance and ethanol tolerance in Saccharomyces cerevisiae. FEMS Microbiol Lett, 1997. 152: 11~15
    [154] Hallsworth JE. Ethanol-induced water stress in yeast. J Ferment Bioeng, 1998. 85:125~137
    [155] Kubota S, Takeo I, Kume K et al. Effect of ethanol on cell growth of budding yeast: genes what are important for cell growth in the presence of ethanol. Biosci Biotechnol Biochem, 2004. 68(4):968~972.
    [156] Kunkel TA. Rapid and efficient site-specific mutagenesis without phenotypic selection[j]. PNAS, 1985. 82(2):488~492
    [157] Vandeyar MA, Weiner MP, Hutton C et al. A simple and rapid method for the selection of oligodeoxynucleotide-directed mutants. Gene, 1988. 65(1):129~133
    [158] Sugimoto M, Esaki N, Tanaka H et al. A simple and efficient method for the oligonucleotide-directed mutagenesis using plasmid DNA template and phosphorothioate-modified nucleotide. Anal Biochem, 1989. 179(2):309~311
    [159] Guthrie C, Fink GR. Guide to yeast genetics and molecular and cell biology. Methods in enzymology. Part A.Elesevier academic press NK, 2004. 194: 277~278
    [160] Herman PK, Rine J. Yeast spore germination: a requirement for Ras protein activity during re-entry into the cell cycle. The EMBO Journal, 1997. 16: 6171~6181

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700