基于FPGA的超声流量测量系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超声波流量计作为无压损、易于安装维护的仪表在工业领域得到广泛的应用。尤其在天然气计量领域,虽然孔板流量计仍是最主要的手段,但超声波流量计具有无可动部件、无压损、测量精确度高等优点,它的潜力和后发优势是很明显的。随着相关标准的发布和实用问题的探索,超声波流量计一定会在这一领域广泛推广应用。
     本文将互相关时差法与脉冲压缩编码信号应用于超声流量测量系统的信号处理中。互相关时差法结合了传统时差法和相关法,继承了它们的优点,又克服了时差法触发时刻不容易确定、时间差难以直接精确测量,相关法被测对象不确定性、易受驻波影响等缺点。为了提高系统高精度,课题将雷达系统中常用的脉冲压缩信号应用于气体超声流量测量系统中。由于脉冲压缩信号具有足够大的脉冲宽度和带宽,因此信号能同时具有大的作用距离和高的距离分辨力,与原先使用的调幅信号和调频信号相比,脉冲压缩编码信号具有明显的优势。课题选用二进制移相键控编码信号以及线性调频信号进行气体超声流量测量系统的研究。
     硬件电路主要基于FPGA完成。电路主要包括发射模块、接收模块、存储模块以及一些辅助模块,可完成超声波的发射、接收、采样、存储以及上传等功能。其中发射模块基于DDS(直接数字合成)原理,产生不同带宽与时宽的脉冲压缩信号。
     课题实现了气体超声流量测量实验平台。数据采集使用NI6251数据采集卡,采集出的数据直接传送至PC机。上位机方面,课题基于LabVIEW软件完成上位机界面,上位机利用正交解调的计算方式实时在线处理数据,完成相关峰值以及延迟时间的计算。当实验平台完成后,课题对实验平台的性能进行了测试,测试结果证明实验平台能够正常工作,相关运算峰值位置的变化能够反映流量的大趋势。本文对测量误差进行了简要分析,并且提出了改进方案。
Ultrasonic flowmeter is applied widely in industrial measurement fields in that it has no pressure loss and can be installed and maintained with ease. In the field of natural gas measurement, although orifice meter is still the uppermost means, ultrasonic flowmeter has potential advantages for its merits like without mobile component, without pressure loss and high precision in measurement. With relevant standards promulgated and practicality explored, ultrasonic flowmeter will be extended applied in this filed in the future.
     The correlation time-difference method and the pulse compression signal are applied to the ultrasonic flow measurement system. Correlation time-difference method combines traditional time-difference method with the correlation method, and inherits their merits. The time-difference method’s springing time is difficult to be fixed, and the difference time is difficult to measure exactly. The correlation method’s object is uncertain, and it is easy to be influenced by standing wave. The new correlation time-difference method overcomes the shortcomings mentioned above. The pulse compression signal is applied to ultrasonic flow measurement system. As Pulse Compression signal has wide bandwidth in both time domain and frequency domain, it has high resolution in ultrasonic ranging and long propagation distance. Compared with AM signal and FM signal, the Pulse Compression signal has obvious advantages. This research chooses 2PSK and LFM signal for the research of ultrasonic flow measurement system.
     This research completes hardware circuit of ultrasonic flow measurement system based on FPGA. The hardware circuit includes transmitter module, receiver module, storage module and some assistant modules. It has the function of transmitting, receiving, sampling and storing the signals. Transmitter module which based on DDS can generate Pulse Compression signal with different time length and frequency bandwidth.
     Experimental platform is also completed. In the platform, signals are sampled by NI6251 and the results of sampling are sent to PC directly. This research also completes man-machine interface based on LabVIEW. The host computer adopts the method of quadrature demodulation to process real-time data and has the function of calculating the peak value and delay time. When the platform is completed, some tests are done for it. According to the results, the platform can operate normally, and the change of the position of peak value can reflect the general trend of change in flow rate. At the end of the paper, the causes of error are analyzed and some suggestions are given to the readers.
引文
[1]毛新业,气体超声波流量计.世界仪表与自动化,2001,5(7):50~52
    [2]杨建昌,王萍等,气体超声波流量计在天然气计量中的应用,油气储运,2002,21(9):35~37
    [3]毛新业,流量仪表的发展趋势及热点,世界仪表与自动化,2006,10(8):59~61
    [4]梁国伟,蔡武昌等,流量测量技术及仪表,北京:机械工业出版社,2002
    [5]蔡武昌,孙淮清等,流量测量方法和仪表的选用,北京:化学工业出版社,2001
    [6]祝海林,邹昊,管道流量非接触测量——方法与技术,北京:气象出版社,1999
    [7]J.克劳特克洛默,H.克劳特克洛默,超声检测技术,广州:广东科技出版社,1984
    [8]BSI, ISO/TR 12765-1999, Measurement of fluid flow in closed conduits-Methods using transit-time ultrasonic flowmeters, 1999-03-15
    [9]SBTS,GB/T 18604-2001,用气体超声流量计测量天然气流量,2001-12-30
    [10]郑玉龙,马福军,浅谈气体超声流量计技术现状及应用前景,油气田地面工程,2001,20(5)
    [11]毛新业,气体超声波流量计,自动化信息,2004,37(1):21~23
    [12]R. Motegi, S. Takeuchi, T. Sato, Widebeam Ultrasonic Flowmeter, Ultrasonics Symposium, 2000, pp.331~336.
    [13]日本电气测量仪表制造协会,JEMIS032-1987,超声波流量计的流量测量方法,3-12
    [14]蒲诚,超声波气体流量计伪码相关技术的研究,天津大学硕士学位论文,2005,12
    [15]黄建军,关于改进超声波流量计性能的研究,沈阳工业大学硕士学位论文,2002,3
    [16]吕清华,气体超声波流量计的研制,南京信息工程大学硕士学位论文,2005,5
    [17]N.Bignell, Ultrasonic Domestic Gas Meters-A Review, FLOMEKO2000
    [18]刘存,黄建军,时差法超声波流量计的几点改进,沈阳工业大学学报,2002,24(2):113~115
    [19]P.Brassier et al, High-Frequency Transducers and Correlation Method to Enhance Ultrasonic Gas Flow Metering, Flow Measurement and Instrumentation, 2001, 12: 201~211
    [20]吴晓庆,李艾华,李芳,基于互相关理论的时差法超声波流量检测系统,仪器仪表学报,2005,12(6):52~54
    [21]Mcshane J.L., Ultrasonic Flowmeter Basic, Instrumentation technology, 1971
    [22]刘欣荣,流量计,北京:水利水电出版社,1984
    [23]J.布利茨,超声技术及其应用,北京:海洋出版社,1992
    [24]同济大学声学研究室编,超声工业测量技术,上海:上海人民出版社,1977
    [25]费业泰,误差理论与数据处理,北京:机械工业出版社,1988
    [26]杨惠连,张涛,误差理论与数据处理,天津:天津大学出版社,1992
    [27]徐苓安,相关流量测量技术,天津:天津大学出版社,1988
    [28]M. S. Beck, Correlation in instruments: cross correlation flowmeters, J. Phys.E: Sci. Instrum., 1981, Vol. 14, pp.7~19
    [29]秦德培,大学物理学第三分册——波动学,重庆:重庆大学出版社,1996
    [30]林可祥,汪一飞,伪随机码的原理与应用,北京:人民邮电出版社,1978
    [31]李白男,伪随机信号及相关辨识,北京:科学出版社,1987
    [32]SensComp, Inc. Application Note-Ultrasonic Ceramic Transducers, 2003
    [33]稻叶保(日),振荡电路的设计与应用,北京:科学出版社,2004
    [34]程佩青,数字信号处理教程,北京:清华大学出版社,1995
    [35]陶亚雄,现代通信原理,北京:电子工业出版社,2003
    [36]张会生,现代通信系统原理,北京:高等教育出版社,2004
    [37]白居宪,低噪声频率合成,西安:西安交通大学出版社,1995
    [38]杨丽,李镇,孙厚军,基于FPGA的多波形信号发生器,无线电工程,2005,35(7):46~48
    [39]J.Vankka, Direct Digital Synthesizers Design and Applications, ISBN951-22-5232-5
    [40]王建新,张先萌,直接数字频率合成中相位截断误差分析,电子测量与仪器学报,1995,9(1):1~6
    [41]H.T.Nicholas, and H.samueli, An Analysis of the Output Spectrum of Direct Digital Frequency Synthesizers in the Presence of Phase-Accumulator Truncation, Proc.41st Annu.Frequency Contr.Symp., 1987, pp.495-502
    [42]Soenke Mehrgardt, Noise spectra of Digital sine-Generators Using the Table-Lookup Method, IEEE, T-ASSP, Vol.31, AUGUST 1983 NO.4
    [43]Edward M.Mattison and Laurence M.Coyle, Phase Noise in Direct Digital Synthesizers, 42nd Annu.Frequency Contr.Symp., 1988, pp.352-356
    [44]王建新,直接数字频率合成中幅度量化误差分析,数据采集与处理,1994,9(2):96~102
    [45]H.T.Nicholas, and H.samueli, and B.Kim, The Optimization of Direct DigitalFrequency Synthesizer in the Presence of Finite Word Length Effects Performance, Proc.42nd Anuu.Frequency Contr.Symp., 1988, pp.357-363
    [46]ALTERA, ACEX1K Programmable Logic Device Family Data Sheet, 2003
    [47]周巧娣,黄继业,刘敬彪,一种基于FPGA的正弦信号发生器的实验方法,实验室研究与探索,2003,22(4):82~83
    [48]薛文,DDS任意波形发生器的设计与实现,南京理工大学硕士学位论文,2004
    [49]康华光,电子技术基础——模拟部分(第四版),北京,高等教育出版社,1998
    [50]张国雄,金篆芷,测控电路,北京:机械工业出版社,2000
    [51]侯剑波,数字AGC电路设计,现代电子技术,2006,29(15):72~73
    [52]潘松,黄继业,EDA技术实用技术,北京:科学出版社,2002
    [53]王璟,戴娟,利用D/A转换技术实现可编程放大器,电子工程师,2000,26(6):43~44
    [54]邓湘,张宝芬,“西气东输”工程中的检测与自动化仪表技术,仪器仪表学报,2003,9(2),12~16
    [55]TI, Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences with the TM320DSP Family, SPRA291, 1997
    [56]W. Q. Yang, and M. S. Beck, An intelligent cross correlator for pipeline flow velocity measurement, Flow Meas. Instrum., 1997, Vol. 8, No. 2, pp.77~84
    [57]杨小牛,楼才义等,软件无线电原理与应用,电子工业出版社,2001
    [58]Hans-Jurgen Zepernick,and Adolf Filger,伪随机信号处理—理论与应用,电子工业出版社,2007
    [59]王念旭,DSP基础与应用系统设计,北京:北京航空航天大学出版社,2001
    [60]廖建国,李永等,线性调频(LFM)脉冲压缩雷达仿真研究,雷达与电子战,2008(3):23~32
    [61]祝海林,流量测量相关技术的历史与发展,工业仪表与自动控制,1995(2),7~9
    [62]徐群,两相流相关流量测试方法研究,南京理工大学硕士学位论文,2003
    [62]蒋学程,倪建乐,正确选用气体超声流量计,油气储运,2006,25(6):57~58
    [63]钱成文王惠智,国外天然气的计量与检定技术,油气储运,2005,24(6):38~42

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700