一株H5N1亚型禽流感病毒的生物学特性及其感染性克隆的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文对1株H5N1亚型的禽流感病毒中国大陆分离株进行了分子遗传衍化、生物学特性的研究并以该病毒为基础建立了反向遗传操作系统。
    首先,对此株病毒进行全基因组序列的测定、并与1996—2004年的东亚不同地区H5N1亚型HPAI代表株基因组的8个基因序列比较进行了分子遗传衍化的分析,结果表明此毒株各基因(除NA基因外)的核苷酸序列的同源性及分子进化关系与中国广东1996、1997年分离到的GGD/1/96、GGD/3/97两个H5N1亚型禽流感毒株亲缘关系较近,而与香港1997年禽流感事件的H5N1亚型代表株CHK/220/97﹑HK/483/97﹑HK/486/97的亲缘关系相对较远。因此,可以推测本实验毒株DSH/8/01很可能是由中国华南地区的早期的H5N1亚型禽流感毒株变异衍化而来,为一株GGD/1/96-like的H5N1亚型禽流感的病毒。
    其次,通过此毒株对鸡的致病性试验发现:其EID50为10-8.33/0.1ml,感染鸡的IVPI为3.00、鸡的鼻腔感染平均死亡时间为3.82天、鸡的静脉接种的平均死亡时间为1.00天,故此毒株为高致病力禽流感病毒毒株。此株病毒经鼻腔接种感染后,病毒在鸡的不同组织器官中的病毒含量有所不同,在肺组织中的病毒含量最高高达6.98㏒10EID50/0.1ml,其它依次为心肌、法氏囊、肾脏、脑组织、脾脏、肝脏,而仅有个别鸡可从小肠分离到病毒,胰腺中分离不到病毒。由此可见,此株高致病力禽流感病毒对鸡具有广泛的组织嗜性。
    第三,通过此毒株对小鼠的致病性试验发现:此毒株不仅对鸡具有高致病力,而且其可感染小鼠,并表现一定的致病性。此毒株在大剂量攻毒(50微升106、105EID50)时,小鼠表现出明显的临床症状(皮毛卷曲,弓背团缩,嗜睡等)、体重显著下降,甚至引起小鼠死亡,故对小鼠有较高的致病性。小剂量50微升104~101EID50攻毒时,小鼠体重变化基本上不明显。另外,此毒株MLD50为104.16EID50,故其对小白鼠表现为中等致病力。从此毒株感染小鼠的组织嗜性试验结果来看,经鼻腔接种感染小鼠后,禽流感病毒在肺脏中一直保持较高的含量;在脑中病毒的含量次之,并随时间的增加有所增高;在肾脏﹑脾脏﹑肝脏、心脏、血液可分离到病毒但含量并不高;小肠、胰腺几乎分离不到病毒。因此。此株H5N1亚型禽流感病毒经鼻腔感染小鼠后,病毒可通过呼吸系统侵入其他大部分组织器官,并可突破血脑屏障侵入大脑组织,最终引起小鼠死亡。这些结果表明对禽类有高致病力的H5N1亚型禽流感病毒,经哺乳动物体内复制增殖后,对哺乳动物的致病性有明显的差异。同时,也证明H5N1禽流感病毒可以直接对哺乳动物发病,甚至死亡。因此,可推测本实验毒株DSH/8/01具有潜在的感染人的可能性。
    
    最后,应用8质粒反向遗传操作系统救获出了具有感染性的重组病毒粒子,为进一步对此毒株进行反向遗传操作奠定了实验基础。
    总之,本研究对此株H5N1亚型高致病力禽流感病毒的生物学特性(包括分子生物学特性)进行了系统,并建立了此毒株的反向遗传操作系统,为今后进一步研究我国H5N1亚型禽流感病毒的致病机制、病毒的结构与功能、筛选新型疫苗毒株奠定实验和理论基础,同时也为我国H5N1亚型高致病力禽流感的遗传与衍化的研究提供了实验数据。
An H5N1 avian influenza virus (AIV) isolated from China was studied its molecular evolution and biological characteristics and established an eight-plasmid reverse genetics system for this virus in this paper.
    Firstly, this virus named as DSH/8/01(H5N1) was sequenced and molecular evolutionarily analyzed, which compared with fifteen H5N1 AIV isolated from different regions in East Asia during the period of 1996 to 2004.DNA sequence analysis of these viruses genes showed that this virus excluded from NA gene in this study was closely related with GGD/3/97and GGD/1/96,which isolated from gooses in Guangdong, China in 1996 and 1997.But, it was comparatively far related with CHK/220/97,HK/483/97 and HK/486/97,which isolated from chickens and human in HongKong during the 1997 outbreak of AIV. Therefore, I suppose that DSH/8/01 in this study possibly came from early H5N1 AIV in Southern China, which is a GGD/1/96-like virus.
    Following intravenous or intranasal inoculation, this virus was highly pathogenic and replicated to high titers in chickens. Fifty percent of Egg Infective Doses (EID50), Intravenous Pathogenecity index (IVPI) to chicken of this virus, Mean Death Time to chicken of intranasal and intravenous inoculated virus were 10-8.33/0.1ml, 3.00,3.82days and 1.00 day respectively. This virus titer of chicken’s lung was most high, which was 6.98(log10EID50/0.1ml). The replicated virus also was isolated from the heart muscle, bursa of Fabricius, kidney, brain, spleen, liver in chickens, whereas only a few chickens’ intestine can isolated this virus and chickens’ pancreas cannot. Accordingly, this virus is a H5N1 Highly Pathogenic Avian Influenza Virus.
    This virus intranasal inoculated BALB/c mice experiment showed that it had had evident pathogenicity to mice. The majority of mice infected intranasally with 106 to 105EID50 of this virus showed clinical signs, more significant weight loss, even led to death. Whenas, mice infected intranasally with 104 to 101EID50 of this virus had no significant weight loss. 50% Lethal Doses to BALB/c mice (MLD50) of this virus was 104.16EID50.The highest virus titers in the mice’s tissue and organs were lung and brain, but This virus titer in the brain was higher on day 6 than on day 4.The replicated virus also was recovered from kidney, spleen, liver, the heart muscle and blood, whereas intestine and pancreas nearly can not isolated this virus. Thus, pathogenicity of this virus to chickens and mice was obviously
    
    
    different, and these test also proved that the virulence mechanism responsible for the lethality of influenza virus in birds also operates in mammalian host.
     I established an eight-plasmid reverse genetics system for this virus, and succeeded to rescue infectious AIV in order to research its structure and function and its pathogenicity mechanism for the future.
    In conclusion, the research is a good base for development of new-type AIV vaccine, the further study for the molecular evolution, structure, and function and pathogenicity mechanism of H5N1 AIV.
引文
Lois A., Zitow, Thomas Rowe, et al. Pathogenesis of avian influeza A (H5N1) viruses in ferrets. J.Virol.2002, 76:4420-4429.
    Jacuueline M.Katz.Molecula correlates of influenza A H5N1 virus pathogenesis in mice. J.Viriol.2000, 74:10807-10810.
    Terrence M.Tumpey, et al. Characteration of a highly pathogenic H5N1 influenza a virus isolated from duck meat.J.Virol.2002, 76:6344-6355.
    Lipatov AS, Krauss S.Neurovirulence in mice of H5N1 influenza virus genotypes isolated from Hong Kong poultry in 2001. J Virol.2003, 77(6): 3816-3823.
    Hiromoto, Y.T.Saito, et al. Characterication of low virulent strains of highly pathogenic A/Hongkong/156/97(H5N1) virus in mice after passage in embryonated hens, eggs. Virology 2000,272:429-437.
    Class.E.C, A.D.Osterhaus, et al. Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. Lancet 1998,351:472-477.
    Hatta M, Neumann G, et al. Reverse genetics approach towards understanding pathogenesis of H5N1 Hongkong influenza A virus infection. Philos Tans R Soclond B Biol Sci. Dec 29; 2001,356(1416): 1841-1843.
    Smeenk, C.A, and E.G.Brown.1994, The influenza virus variant A/FM/1/47-MA possesses single amino acid replacements in the hemagglutinin, controlling virulence, and in the Martrix protein, controlling virulence as well as growth. J.Virol.68: 530-534.
    Wharton S.A, et al. Structure, Function, and Antigenicity of the hemagglutinin of influenza virus. In: The Influenza Viruses.Edited by Krug R M. Yew York and London: Plenum Press, 1989,p153.
    Varghes J. N., et al. Structure of the influenza virus glycoprotion antigen neuraminidae at 2.9 ? resolutions. Nature, 1983,303: 35.
    Baigent, S. J. and J. W. McCauley.Glycosylation of hemagglution and stalk-length of neuraminidase combine to regulate the growth of avian influenza virus in tissue culture. Virus Research, 2001,79:177-185.
    Matrosovich M.N., A.Tuzikov, et al. Early alteration of the receptor-binding properties of H1, H2 and H3 avian influenza virus hamagglution after their introduction into mammal.J.Virol.2000, 74(18): 8502-8512.
    Matrosovich, M.N., N.N. Zhou, et al. The surface glycoprotion of H5 influenza virus isolated from humans, chickens, and wild aquatic birds have distinguishable properties.J.Virol.1999, 73(2): 1146-1155.
    
    Matrosovich M.N., N.S. Krauss.et al. H9N2 influenza A virus from poultryninin Asia have human virus–like receptor specificity. Virology, 2001,281:156-162.
    Bosch, F.X., W.Garten, H.D.Kelenk and R.Rott. Proteolytic cleavage of influenza virus hemagglutions primary structure of the connecting peptide between HA1 and HA2 determines proteolytic cleavability and pathogencity of avian influenza virus. Virology, 1981,113:725-735.
    Steinhauer, D.A.Role of hemagglution cleavage for the pathogenicity of influenza virus. Virology, 1999,258:1-20.
    Steinhauer, D.A.Structure and fuction of the hemagglution .In “Textbook of influenza (Nicholson, K.G. Webster, R.G., and Hay, A.J., Eds.) Blackwell Science Ltd., London.1998: p54-63.
    Colman, P.M., W.G.Laver, et al. The three –dimensional structrure of complex of influenza virus neuraminidase and an antibody. Nature, 1987,326:358-363.
    R Colman, P.M. Structure and fuction of the neuraminidase .In “Textbook of influenza (Nicholson, K.G. Webster, R.G., and Hay, A.J., Eds.) Blackwell Science Ltd., London.1998: p65-73.
    Hay, A.J.The virus genome and its replication. In “Textbook of influenza (Nicholson, K.G. Webster, R.G., and Hay, A.J., Eds.) Blackwell Science Ltd., London.1998: p43-53.
    Sumiyoshi H., Hoke C.H., et al. Infectious Japanese encephalitis virus RNA can be synthesized from in vitro-ligated cDNA templates. J Virol, 1992,66:5425-5431.
    Messerl M.Crnkovic I., et al. Cloning and mutagenesis of a herpesvirus genome as an infectious bacterial artificial?chromosome. Proc Natl Acad Sci USA, 1997,94:14759-14763.
    Zibert A. Maass G., et al. Infectious foot-and-mouth disease virus derived from a cloned full-length cDNA. J Virol, 1990,64:2467-2473.
    Enami M, Luytjes W., et al. Introduction of site-specific mutations into the genome of the influenza virus. Proc Natl Acad Sci USA, 1990,87(10): 3802-3805.
    Van Bokhoven H., Verver J., et al. Protoplasts transiently expressing the 200K coding sequence of cowpea mosaic virus B-RNA support replication of M-RNA. J Gen Virol, 1993,74:2233-2241.
    Kean K M, Wychowski C, et al. Highly infectious plasmids carrying poliovirus cDNA are capable of replication in transfected simian cells. J Virol, 1986,59:490-493.
    Weiland J. J., Dreher T. W. Infectious TYMV RNA from cloned cDNA: effects in vitro and in vivo of point substitutions in the initiation codons of two extensively overlapping ORFs. Nucleic Acids Res. 1989,17:4675-4687.
    Meulenberg J.J.M., Bos-de Ruijter J.N.A., et al. Infectious Transcripts from Cloned Genome-Length cDNA of Porcine Reproductive and Respiratory Syndrome Virus. J Virol, 1998,72: 380-387.
    Luytjes W., Krystal M, et al. Amplfication, expression, and packageing of foreign gene by influenza virus. Cell, 1989,59: 1107-1113.
    
    Zhang H, and G. M.Air.Expression of functional influenza virus A polymerase proteins and template from cloned cDNAs in recombinant vaccinia infected cells. Biochem Biophys Res Comun, 1994,20:95-101
    Seong BL, and G.G.Brownlee. A new method for reconstituting influenza polymerase and RNA in vitro: a study of the promoter elements for cRNA and vRNA synthesis in vitro and viral rescue in vivo. Virology, 1992,186:247-260
    Schnell M. J., Mebatsion T, et al. Infectious rabies viruses from cloned cDNA. EMBO J, 1994,13(18): 4195-4203
    Bridgen A., Elliott R. M.Rescue of a segmented negative-strand RNA virus entirely from cloned complementary DNAs. Proc Natl Acad Sci USA,1996,93(26):15400-15404
    Neumann G, Watanable T, et al. Generation of influenza A virus entirely from cloned DNAs. Proc Natl Acad Sci USA, 1999,96(16): 9345-9350
    Fang G, Weiser B, Visosky A, et al. PCR-mediated recombination: a general method applied to construct chimeric infectious molecular clones of plasma-derived HIV-1 RNA .Nat Med, 1999,5(2): 239-242.
    Muster T., Guinea R.et al. Cross-neutralizing activity against divergent human immunodeficiency virus type 1 isolates induced by the gp41 sequence ELDKWAS.J Virol.1994, 68:4031-4034
    Subbarao E. K., Kawaoka Y.et al. Rescue of an influenza A virus wild-type PB2 gene and a mutant derivative bearing a site-specific temperature-sensitive and attenuating mutation .J Virol.1993, 67:7223-7228.
    Ferbo B., Muster T.et al. Mucosal model of immunication against hhuman immunodeficiency virus type 1 with a chimeric influenza virus. J Virol.1995, 69:6678-6686.
    Lu XH, Cho D, et al. Pathogenesis of and immunity to a new influenza A (H5N1) virus isolated from duck meat. Avian Dis. 2003; 47(3 Suppl): 1135-1140.
    Tumpey TM, Suarez DL, et al. Evaluation of a high-pathogenicity H5N1 avian influenza A virus isolated from duck meat. Avian Dis. 2003; 47(3 Suppl): 951-955.
    Mukaigawa, J., and D. P. Nayak. Two signals mediate nuclear localization of influenza virus (A/WSN/33) polymerase basic protein 2. J. Virol. 1991,65:245–253.
    Sugimura T, Murakami Y, et al. The susceptibility of culture cells to avian influenza viruses. J Vet Med Sci. 2000,62(6): 659-660.
    Klingebory, B., Englund L., et al. 1985. An avian influenza A virus killing a mammalina species-the mink. Arch Virol 86: 347-351.
    Hatta M., Y. Asano, et al. Mapping of fuctional domains on influenza A virus RNA polymerase PB2 molecule using monoclonal antibodyes. Arch Virol.,2000,145:1947-1961
    
    Kilbourne E. D: 1987.Influenza. Plenum Press, New York. 24. Murphy B. R. and R. G. Webster: Influenza Viruses. In B. Fields (ed.). Virology. Reven Press New York, 1985 pp.1179-1240.
    Wiley, D. C. and J. J.Skehel.The structure and function of the haemagglutinin membrance glycoprotein of influenza virus. Annu. Rev.Biochem.1987, 56:365-394.
    R?hm, C., N. A. Zhou, et al. Characterization of a novel influenza hemagglutinin, H15: criteria for determinationof influenza A subtype. Virology 1996,217:508–516.
     Banks J, Speidel EC, et al. Phylogenetic analysis of H7 haemagglutinin subtype influenza A viruses. Arch Virol 2000,145: 1047–1058.
    Wagner R, Wolff T, et al. Interdependence ofhaemagglutinin glycosylation and neuraminidase as regulators of influenza virus growth: a study by reverse genetics. J Virol .2000,74: 6316–6323.
    Ito T., J. S. Couceiro, et al. Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. J. Virol. 1998,72:7367–7373.
    Ito T., O. T.Gorman, et al. Envolutionary analysis of the influenza A virus M gene with comparison of M1 and M2 protein. J Virol.1991, 65(10): 5491-5498.
    Pinto L. H., L. J.Hlsinger, et al. Influenza virus M2 peotein has ion channel activity. Cell, 1992,69:517-528.
    Zebedee S.L., Lamb R. A., et al. Influenza virus M2 protein: monoclonal antibody restriction of virus growth and detection of M2 in virions. J. Virol.1989, 62:2762~2772.
    Yasuda J., Bucher D. J., et al. Growth control of influenza A virus by M1 protein analysis of transfectant viruses carrying the chimeric M gene. J Virol.1994 68(2): 8141-8146.
    Yasuda J., J.Naado, et al. Molecular assembly of influenza virus association of the NS2 protein with virion maxtrin. Virology, 1993,196:249-255.
    Richardson J.C., R.K.Akkina.NS2 protein of influenza virus is foud in purified virus and phosphorylated in infected cell. Arch Virol, 1991,116:69-80.
    Ward A.C., L.A. Castelli, et al. Expression and analysis of the NS2 protein of influenza virus. Arch Virol.1995, 140:2067-2073.
    Shapiro G.L., and R. G.Krug.Influenza virus RNA replication in vitro. Synthesis of viral template RNAs and virion RNAs in the absence of an added prime. J Virol.1988, 62:2285-2290.
    Hinshaw V.S., R.G. Webster, et al. The perpetuation of orthomyxo viruses and paramyxo viruses in Canadian water fowl.Can.J.Microbiol.1980, 26:622-629.
    Donis R. O., W.J.Bean, et al. Distinct lineages of influenza virus H4 hemagglutinin genes in different regions of the world. Virology, 1989,169:408-417.
    Ito T., K.Okazaki, et al. Perpectutation of influenza A virus in Alaskan waterfowl reservoir. Arch Virol.1995, 140:1163-1172.
    
    Ito T., J.S. Couceiro, et al. Molecular basis for the generation in pigs of influenza A viruses withpandemic potential. J. Virol.1998, 72:7367–7373.
    Subbarao K., Klimov A., et al. Characterization of an avian influenza A (H5N1) viuse isolated from a child with a fatal respiratory illness. Science. 1998,297:393~396。
    Lamb R. A., and R. M. Krug. 1996.Orthomyxoviridae: the viruses and theirreplication, p. 1353–1395. In B. N. Fields, D. M. Knipe, and P. M. Howleyed.), Fields virology, 3rd ed. Lippincott-Raven, Philadelphia, Pa.
    Hoffmann E., G.Neumann, et al. A DNA transfection system for generation of influenza A virus from eight plasmids.Pro.Natl.Acad.Sci.U S A.2000, 97:6108-6113.
    Roebroek A.J., J.A.Schalken, et al. Evolutionary conserved close linkage of the c-fes/fps proto-oncogene and genetic sequences encoding a receptorlike protein. EMBO J.1986, 5:2197–2202.
    Young, J.F., and P.Palese.Evolution of human influenza A viruses in nature. Recombination contributes to genetic variation of H1N1 strains. Proc. Natl. Acad. Sci. USA, 1979, 76:6547–6551.
    O’Neill R. E., J. Talon, et al. The influenza virus NEP (NS2 protein) mediates the nuclear export of viral ribonucleoproteins. EMBO J. 1998,17:288–296.
    Easterday, B.C., V.S.Hinshaw, and D. A. Halvorson. 1997. Influenza, p.583–605. In B. W. Calnek, H. J. Barnes, C. W. Beard, L. R. McDougald, and Y. M. Saif (ed.), Diseases of poultry. Iowa State University Press, Ames.
    Senne DA; Suarez DL; et al. Molecular and biological characteristic of H5and H7 avain influenza virusesin live-bird markets of the northeastern Uited States 1994-2001.Avain Disease 2003, 47: 898-904
    Rohm C, Horimoto T, et al. Do haemagglutinin genes of highly pathogenic avian influenza viruses constitute unique phylogenetic lineages? Virology, 1995,209: 664–670.
    Foder E., L.Devenish, et al. Rescue of influenza A virus from recombinant DNA.J.Virol.1999, 73:3184-3189.
    Garcia M, Suarez DL, et al. Evolution of H5 subtype avian influenza A viruses in North America. Virus Res, 1997,51: 115–124.
    Van der Goot JA, de Jong MC, et al. Comparison of the transmission characteristics of low and high pathogenicity avian influenza A virus (H5N2). Epidemiol Infect. 2003 Oct; 131(2): 1003-1013.
    Paulson, J.C.Interactions of animal viruses with cell surface receptors, 1985,p. 131–219. In M. Connor (ed.), The receptors. Academic Press, Inc., Orlando, Fla.
    Webster R.G., Bean W.J., et al. Evolution and ecology of influenza A viruses. Microbiol. Rev.1992, 56, 152–179.
    Beare, A. S., and R. G. Webster.Replication of avian influenza viruses in humans. Arch. Virol.
    
    
    1991,119:37–42.
    Murphy, B.R., V.S.Hinshaw, et al. Virulence of avian influenza A viruses for squirrel monkeys. Infect. Immun. 1982,37:1119–1126.
    Gambaryan A.S., Yamnikova S.S., et al. Comparison of receptor specificity for influenza A viruses isolated from duck, chicken and human. Mol. Biol.2002, 36: 1–9.
    Harvey R, Martin AC, et al. Restrictions to the adaptation of influenza a virus h5 hemagglutinin to the human host. J Virol. 2004 Jan; 78(1): 502-7.
    Matrosovich MN, Matrosovich TY, et al. Human and avian influenza viruses target different cell types in cultures of human airway epithelium. Proc Natl Acad Sci U S A. 2004 Mar 30; 101(13): 4620-4.
    Ha Y; Stevens D.J; et al. X-ray structure of hemagglutinin of a potential H3 avain progenitor of the 1968 HongKong pandemic influenza virus. Virology 2003, 209-218.
    Watsuki-Horimoto K, Kanazawa R, et al. The index influenza A virus subtype H5N1 isolated from a human in 1997 differs in its receptor-binding properties from a virulent avian influenza virus. J Gen Virol. 2004 Apr; 85(Pt 4): 1001-1005.
    Webster R.G., Bean W.J., et al. Evolution and ecology of influenza A viruses. Microbi-ol. Rev.1992, 56(1): 152-179.
    Webster R.G., Kawaoka Y., et al. Molecular changes in A/Chicken/Pennsylvania/83 (H5N2) influenza virus associated with acqui-sition of virulence. Virology, 1986,149:165-173.
    Webster R. G., Reay P.A., et al. Protection against lethal influenza withNeuraminad-aseVirology.
    1988, 164:230-237.
    Wood G.W., McCauley J.W., et al. Deduced amino acid sequences at the heamagglutinin cleavage site of avian influenza A viruses of H5 and H7 subtypes. Arch.Virol.1993, 130:209-217.
    Xu X.Y., Subbarao K., et al. Genetic characterizaion of the pathogenic influenza A/Goose/Guangdong/1/96(H5N1) virus: similarity of its hemagglutinin gene to these of H5N1 viruses from the 1997 outbreaks in Hongkong. Virology.1999, 261. 15-19.
    Alexander D. J., Gough R. E., et al. Isolations of avian influenza virus from birds in Great Britain. Vet Res.1986, 118:537-538.
    Suzuki Y., Ito T., et al. Sialic acid species as a determinant of the host range of influenza viruses. J. Virol .2000,74, 11825–11831.
    Couceiro J.N.S.S., J.C.Paulson, et al. Influenza virus strains selectively recognize sialyloligosaccharides on human respiratory epithelium: the role of the host cell in selection of hemagglutinin receptor specificity. Virus Res.1993, 29:155–165.
    
    Xiuhua Lu, Terence M., et al. A mouse model for the evalution of pathogenesis and immunity to influenza A (H5N1) viruses isolated from humans.J.Virol.1999, 73:5903-5911.
    Peng Gao, Shinji Watanbe.et al. Biological heterogeneity, including systremic replication in mice, of H5N1 influenza A virus isolates from human in Hong Kong.J.Virol.1999, 73:3184-3189.
    Jody K.Stacey, Schultz-cherry.et al. Distinct pathogenesis of HongKong-origin H5N1 viruss in mice compared to that of other highly pathogenic H5 avian influenza viruses.J.Virol.2000, 74: 1443-1450.
    Shortridge KF. Poultry and the influenza H5N1 outbreak in Hong Kong, 1997: abridged chronology and virus isolation. Vaccine. 1999 Jul 30; 17 Suppl 1:S26-9.
    Kida H., R.Yangawa, et al. Duck influenza lacking evidence of disease signs and immune response.Infect.Immune.1980, 30:547-533.
    Webster R.G., M.A.Yakhwo, et al. Intestinal influenza replication and characterization of influenza viruses in ducks. Virology, 1978, 84:268-278.
    Ralf Wagner, Thorsten Wolff, et al. Interdependence of Hemagglutinin Glycosylation and Neuraminidase as Regulators of Influenza Virus Growth: a Study by Reverse GeneticsJ.Virol. 2000,74: 6316-6323.
    Connor, R.J., Y.Kawaoka, et al. Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates. Virology, 1994,205:17-23.
     Murphy, B.R., and R.G.Webster.1996.Orthomyxoviruses, p.1397–1445. In B.N.FieldsD.M. Knipe, and P. M. Howley (ed.), Fields virology, 3rded. Lippincott-Raven, Philadelphia, Pa.
    101 G.Neumann, M.Hatta, et al. Reverse genetics for the control of avian influenza. Avian Disease.2003, 47:882-887
    102 Gambaryan A.S., V.P.Marinina, et al. Effects of host-dependent glycosylation of hemagglutinin on receptor-binding properties on H1N1 human influenza A virus grown in MDCK cells and in embryonated eggs. Virology, 1998,247:170-177.
    103 Acland H.M., Silverman-Bachin L.A., et al. Lesions in broiler and layer chickens in an outbreak of highly pathogenic avian influenza virus infection. Vet Pathol. 1984,21:564-569
    104 Banks, E.S.Speidel, et al. Changes in the haemagglutinin and the neuraminidase genes prior to the emergence of highly pathogenic H7N1 avian influenza viruses in Italy Arch Virol (2001) 146: 963–973
    105 Aexander D.J.A reviews of avian influenza in different bird species. Vet Microbiol. 2000,74(1-2): 3-13.
    106 G.Neumann, Y.Kawaoka.Reverse genetics of influenza virus. Virology, 2001,287:243-250.
    107 李建伟.欧亚大陆H9N2亚型禽流感病毒分子衍化的研究。博士论文,东北农业大学,哈尔滨,
    
    
    2002,6。
    108 殷震,刘景华主编.动物病毒学(第二版).北京:科学出版社,1997.
    109 中国农业科学院哈尔滨兽医研究所(HVRI). 2001. 全国动物流感监测培训班. 中华人民共和国农业部畜牧兽医局(MOA)和世界卫生组织(WHO)联合主办,中国 哈尔滨.
    110 郭元吉,程小雯. 流行性感冒病毒及其实验技术(第1版). 北京.中国三峡出版社, 1997
    111 卢圣栋.现代分子生物学实验技术. 北京: 高等教育出版社.1993.
    112 J.萨姆布鲁克等著,金冬雁等译.分子克隆实验操作指南(第二版).北京:科学出版社.1998.
    113 J.萨姆布鲁克等著,黄培堂等译.分子克隆实验操作指南(第三版).北京:科学出版社.2002.
    114 B.W.卡尔尼克 主编,高福,苏敬良 主译.禽病学(第十版)。北京,中国农业大学出版社,1999.
    115 焦培荣,李泽君.四株H5N1亚型禽流感病毒对小鼠致病性的研究.中国畜牧兽医学会家畜传染病学分会第十次学术研讨会论文集,2002,10.
    116 李泽君,焦培荣.十五株H5N1亚型高致病力禽流感中国大陆分离株的生物学特性的研究.中国畜牧兽医学会家畜传染病学分会第十次学术研讨会论文集,2002,10.
    117 陈化兰,于康震,等.H5和H7亚型禽流感病毒HA基因的RT-PCR扩增及克隆,中国畜禽传染病,1997,19(2):16-18.
    118 于康震,陈化兰,等.97香港禽流感,中国畜禽传染病,1998,20(3):187-191.
    119 H.Chen, G.Deng, Z.Li, Y.Li, and G.Tian, P.Jiao.An important piece of the puzzle: The evolution of H5N1 influenza viruses in duck in southern China.Proc Natl Acad Sci USA. (Accepted).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700