H1N2、H3N2及H5N1亚型猪流感病毒进化及致病性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪流感是引起猪的高度接触性病毒病,对感染畜群造成巨大的经济损失,并具有重要的公共卫生意义。猪流感病原主要包括H1N1,H1N2,H3N2等亚型A型流感病毒。猪作为流感病毒的中间宿主,具有混合器作用,人、禽流感病毒可以在其体内重组产生新病毒。开展猪流感流行病学检测及致病分离株的演化规律具有重要意义。
     本研究先后在上海、河南、山东、湖北、江苏、广东等省市采集猪鼻拭子5886份和血清5788份。血清样品检测结果如下:H1阳性率40%(2323份),H3阳性率90%(5240份),H5阳性率0.086%(5份),H9阳性率0.138%(8份)。猪鼻拭子样品同时接种MDCK和SPF鸡胚进行病毒分离,共分离到4株H1N2,6株H3N2和1株H5N1流感病毒。结果表明当前我国不同地区猪群中普遍存在H1和H3亚型猪流感流行。
     为了解我国猪流感病毒分子进化变异情况,本研究挑选H1N2代表毒株Swine/Guangdong/1/2006 (SwGD1/06)和H3N2代表毒株Swine/Guangdong/1/2006(SwGD1/05)进行基因组测定分析。结果表明SwGD1/06(H1N2)可能来源于北美猪群中流行的H1N2亚型猪流感病毒;而SwGD1/05(H3N2)可能能来源于在北美人群中流行的H3N2亚型流感病毒。分别用106 EID50剂量H1N2和H3N2分离病毒对H1、H3、H5、H9抗体皆为阴性的35日龄仔猪进行感染实验,结果是感染后第1、3、5、7d能从猪鼻拭子中重新分离到H1N2和H3N2病毒,其中第3d病毒含量最高;其它脏器没有分离到病毒。临床症状轻微,没有猪只死亡。结果表明单纯H1N2或H3N2流感病毒能在不引起临床症状的情况下感染易感猪只,这说明我国流行的H1和H3流感病毒对猪致病性不强。
     为阐明H5N1亚型猪流感病毒跨种传播遗传基础,本研究筛选遗传关系相近(整个基因组只有23个氨基酸差异),对小鼠感染能力完全不同的的两株H5N1亚型流感病毒为模型病毒:DK/ZJ/52/00(DK52),对小鼠完全不感染;Swine/Fujian/1/04(FJ1),对小鼠有致病性且引起小鼠死亡。建立了FJ1和DK52的反向遗传操作系统,分别以FJ1和DK52为背景,利用反向遗传技术在293T细胞上救获单基因替换重组的16个病毒。这些病毒分别以106EID50剂量鼻腔感染小鼠,结果发现:DK52的PA和M基因分别替换FJ1相应基因,使RFJ1在小鼠肺脏感染能力降低103.21倍(病毒滴度(LgEID50)由原来的4.71变为1.5);反之FJ1的PA和M基因分别替换DK52的相应基因,使RDK52的致病性由不感染变为感染(肺脏病毒滴定结果为LgEID50,1.5)。其它单基因替换重组病毒没有改变这两株病毒对小鼠感染能力。结果表明M和PA基因影响FJ1和DK52在小鼠肺脏中的复制能力。
     为进一步确定PA和M基因如何影响对FJ1和DK52对小鼠感染能力,我们把M和PA两个基因同时替换,发现以DK52的PA和M替换FJ1的PA和M基因后,使RFJ1/DK52PA+M不能在小鼠肺脏中复制;反之,以FJ1的PA和M替换DK52的PA和M基因后,导致RDK52/FJ1PA+M能感染小鼠并在肺脏中复制,病毒滴度达到2.5LgEID50。结果表明M和PA基因协同作用影响FJ1和DK52对小鼠感染能力。
     在此基础上,我们分析FJ1和DK52两株病毒的PA和M基因氨基酸,发现PA(54、330,384,459)和M2(26)基因分别有4个和1个位点氨基酸不同。为进一步确定PA和M2的哪一个位点氨基酸对小鼠感染能力起作用,分别对PA和M2的两个位点进行点突变,利用反向遗传操作系统救获4个点突变病毒。突变病毒对小鼠感染结果发现:PAI54V(54位由I变为V)可使RFJ1在小鼠肺脏中复制能力降低103。21倍(LgEID50由原来的4.71变为1.5),反之,PAV54I(54位由V变为I)可使RDK52对小鼠由不感染变为感染(肺脏病毒滴定结果为LgEID50,1.5);同样,M2S26L(26位由S变为L)可以使FJ1感染小鼠能力降低103。21倍(LgEID50由原来的4.71变为1.5),反之M2L26S(26位由L变为S)可以可使RDK52对小鼠由不感染变为感染(肺脏病毒滴定结果为LgEID50,1.5)。但是PA的330,384,459位氨基酸的改变没有影响病毒致病性。结果表明PA基因的54位和M2基因的26位氨基酸协同作用影响FJ1和DK52对小鼠感染能力。
     本研究系统研究了中国部分地区猪流感病毒流行的亚型和生物学特性,结果表明:中国目前猪群中主要流行H1和H3亚型流感毒株,而且H1和H3呈普遍感染状态;H1N2和H3N2可能分别来源于北美H1N2亚型猪流感病毒和北美H3N2亚型人流感病毒;H1N2和H3N2流感病毒可以在不引起临床症状情况下感染猪并且病毒能在上呼吸道中大量复制,这对阐明猪流感病毒感染致病机制具有一定的理论意义,同时对猪流感临床诊断具有一定的现实指导作用。利用反向遗传操作和定点突变技术发现PA的54位和M2的26位氨基酸协同影响FJ1和DK52对小鼠感染能力,这为阐明H5N1亚型流感病毒跨种间传播的分子遗传机制提供重要的理论和实验依据。因此本研究具有重要的兽医指导意义和重要的人类公共卫生意义。
Swine influenza is a highly infectious viral disease of pigs causing considerable economic impact. Three different subtypes-H1N1, H3N2 and H1N2 are circulating in swine worldwide. Pig as an intermediate host posed significance in producing a new viruses. Therefore, it has great significance to make clear which subtypes of influenza are ciculating and its pathgencity in China.
     To learn about regularity of veterinary epidemiology and pathogenicity of SIV, Firstly, we collected 5886 nasal swabs and 5788 serum samples of pigs in part of China, including Shanghai、Henan、Shandong、hubei、Jiangsu、Guangdong province. The result of antibody titers of 5788 serum samples was as follows: H1 positive percentage was 40%, H3 positive percentage was 90%, H5 positive percentage was 0.086%, H9 positive percentage was 0.138%. Four H1N2 subtype, six H3N2 subtype and one H5N1 subtype influenza isolates were isolated by inoculation of Madin-Darby canine kidney(MDCK) cells with nasal swabs, and no viruse isolated in SPF embryonated eggs, this results demonstrated that MDCK cell line was more sensitive than SPF embryonated eggs on isolating SIV; The results demonstrated that H1 and H3 subtype is the primary circulating isolates among pigs in China. And then swine/Guangdong/1/2006(H1N2)(SwGD1/06)and Swine/Guangdong/1/2005(H3N2)(SwGD1/05)were selected to be sequenced and compared with sequences available in GenBank, and making phylogenetic trees of the complete genes. The results of analysis indicated that SwGD1/06 (H1N2) probably origins from H1N2 swine influenza viruses circulated in North America, while SwGD1/05(H3N2) probably come from H3N2 human influenza viruses circulated in North America. Finally , to study the pathogencity of the two viruses to pigs, we selected pigs whose antibody was negative to H1、H3、H5、H9 standard antigens as experiment animal. Challenged with 106EID50 H1N2 and H3N2 viruses respectively, we could reisolate viruses from nasal swabs on first、third、fifth、seventh day post infection, respectively, and the viruses titer was highest on the third day post infection, but we could not reisolate viruses from any other organs of infected pigs. The results indicated that H1N2 and H3N2 viruses could replicate in pig’s upper respiratory tract without clinical symptoms.
     To demonstrate the molecular basis of cross-species transmission of H5N1 swine influenza viruses, we selected two isolates DK/ZJ/52/00(DK52)、Sw/FJ/1/01(FJ1)as model viruses, whose inheritance was closest, there were only 23 amimo acids difference between the complete genomes of the two strains: DK52 viruses could not replicate in the lungs of mice, however FJ1 viruses could replicate in the lungs of mice and also led mice to die. We established eight-plasmid reverse genetics system of the two viruses(RDK52、RFJ1) to evaluate the pathogenicity differences of the two viruses by BALB/C mice model. We rescued 16 single gene reassortant viruses by transfected 293 Tcell on the background of FJ1 and DK52, respectively. The results of infection of mice with 106EID50 18 viruses respectively was that PA and M gene of DK52 viruses dramatically attenuated the RFJ1(Lg EID50, 4.71 versus 1.5 ), respectively, and making RFJ1/DK52PA and RFJ1/DK52M couldnot kill mice ; on the other hand, PA and M gene of FJ1 viruses causes RDK52 viruses to replicate in the lungs of mice (LgEID50, 0, versus1.5), respectively. And other genes could not change the pathogenicity of the reassortmant viruses. This result indicated that PA and M genes could affect the replication ability of FJ1 and DK52 viruses in mice.
     Furtherly, we replaced M and PA genes at the same reassorments viruses using an eight-plasmid reverse genetics system, results of infection with PA and M genes substitutation viruses had shown that M and PA gene of DK52 viruses together can completely change the pathogenicity of the RFJ1 viruses, making RFJ1 could not replicate in the lungs of mice at all; on the other hand, M and PA gene of FJ1 viruses together could make RDK52 viruses replicate in the lungs of mice(LgEID50, 2.5), therefore it was concluded that M and PA gene cooperate to affect the replication ability of FJ1 and DK52 viruses in mice.
     Comparing Amino acid sequence of PA and M genes between FJ1 and DK52 viruses, we finded that there were only four and one amino acids differences in PA(54,330,384,459) and M2(26) genes, respectively.To elucidate the molecular basis of the virulence and replication discrepancy between the FJ1 and DK52 viruses, we generated four mutant viruses. A I-to-V (PAI54V) substitution at position 54 in PA resulted in marked attenuation of RFJ1 virus (LgEID50,4.71 versus 1.5); However, a V-to-I (PAV54I) substitution at position 54 in PA enabled DK52 to replicate in lungs of mice, although viruses titer was very low (Lg EID50, 1.5). M gene acted as PA, a P-to-L (M2S26L) substitution at position 26 in M2 resulted in marked attenuation of RFJ1 virus (LgEID50,4.71 versus 1.5); a L-to-S (M2L26S) substitution at position 26 in M2 enabled DK52 to replicate in lungs of mice, although viruses titer is very low (Lg EID50, 1.5). However, changes of amino acids in position 330,384,459 of PA gene couldnot affect the the pathogenicity of FJ1 and DK52 viruses in mice. It was clear that amino acids at position 54 of PA and position 26 of M2 cooperate to affect the pathogenicity of FJ1 and DK52 viruses in mice.
     In summary, we investigate the epidemiology of swine influenza viruses among pigs in part of China, the results indicated that H1 and H3 subtype was currently the primary circulating isolates among pigs in China; the results of pigs challenged with H1N2 and H3N2 virusses demonstrated that H1N2 and H3N2 virusses could replicate in pig’s upper respiratory tract without clinical symptoms, therefore this study possesed great significance in veterinary epidemiology and pathogenicity of H1N2 viruses in pigs. Using reverse genetics, we demonstrated that amino acids at position 54 of PA gene and at position 26 of M2 gene cooperate to affect the pathogenicity of FJ1 and DK52 viruses in mice, this result can provided powerful proof to explain why H5N1 influenza viruses acrossed species transmiting to human. Therefore this study posed significance in human public health.
引文
1. 陈化兰,于康震.(1999).一株鹅源高致病性禽流感病毒分离株血凝素基因的分析.中国农业科学, 32.87-92
    2. 陈化兰,马文军.(2000).表达禽流感病毒血凝素基因的重组禽痘病毒的构建.中国农业科学, 33:86-90.
    3. 李泽君,焦培荣,于康震等.( 2003). 15 株 H5N1 亚型禽流感病毒中国大陆分离质生物学特性的研究.中国畜牧兽医学会家畜传染病学分会成立 20 周年庆典暨第十次学术研讨会.禽流感研究论文专集. 10:163-168.
    4. 李泽君.(2004). H5N1 亚型禽流感病毒跨越禽-哺乳动物种间屏障的遗传变异机制[博士学位论文].哈尔滨:中国农业科学院哈尔滨兽医研究所.
    5. 李泽君,焦培荣,于康震等.(2005).H5N1亚型高致病性禽流感病毒A/goose/Guangdong/1/96株反向基因操作系统的建立.中国农业科学, 38:1686-1690.
    6. 焦培荣,李泽君,侯勇跃等.四株 H5N1 亚型禽流感病毒对小鼠致病性的研究. (2003).中国畜牧兽医学会家畜传染病学分会成立 20 周年庆典暨第十次学术研讨会.禽流感研究论文专集.10:183-187.
    7. 唐秀英,田国斌,赵传删等.中国禽流感流行株的分离鉴定.中国畜禽传染病, 1998,20:1-5.
    8. Amonsin, A., S. Payungporn, et al. (2006). "Genetic characterization of H5N1 influenza A viruses isolated from zoo tigers in Thailand." Virology 344(2): 480-91.
    9. Ayora-Talavera, G., J. M. Cadavieco-Burgos, et al. (2005). "Serologic evidence of human and swine influenza in Mayan persons." Emerg Infect Dis 11(1): 158-61.
    10. Banks, J., E. S. Speidel, et al. (2001). "Changes in the haemagglutinin and the neuraminidase genes prior to the emergence of highly pathogenic H7N1 avian influenza viruses in Italy." Arch Virol 146(5): 963-73.
    11. Baum, L. G. and J. C. Paulson (1990). "Sialyloligosaccharides of the respiratory epithelium in the selection of human influenza virus receptor specificity." Acta Histochem Suppl 40: 35-8.
    12. Beare, A. S. and R. G. Webster (1991). "Replication of avian influenza viruses in humans." Arch Virol 119(1-2): 37-42.
    13. Bender, C., H. Hall, et al. (1999). "Characterization of the surface proteins of influenza A (H5N1) viruses isolated from humans in 1997-1998." Virology 254(1): 115-23.
    14. Bergmann, M., A. Garcia-Sastre, et al. (2000). "Influenza virus NS1 protein counteracts PKR-mediated inhibition of replication." J Virol 74(13): 6203-6.
    15. Bornholdt, Z. A. and B. V. Prasad (2006). "X-ray structure of influenza virus NS1 effector domain." Nat Struct Mol Biol 13(6): 559-60.
    16. Bosch, F. X., M. Orlich, et al. (1979). "The structure of the hemagglutinin, a determinant for the pathogenicity of influenza viruses." Virology 95(1): 197-207.
    17. Bosch, F. X., W. Garten, et al. (1981). "Proteolytic cleavage of influenza virus hemagglutinins: primary structure of the connecting peptide between HA1 and HA2 determines proteolytic cleavability and pathogenicity of Avian influenza viruses." Virology 113(2): 725-35.
    18. Bridgen, A. and R. M. Elliott (1996). "Rescue of a segmented negative-strand RNA virus entirely from cloned complementary DNAs." Proc Natl Acad Sci U S A 93(26): 15400-4.
    19. Brown, I. H., P. A. Harris, et al. (1998). "Multiple genetic reassortment of avian and human influenza A viruses in European pigs, resulting in the emergence of an H1N2 virus of novel genotype." J Gen Virol 79 ( Pt 12): 2947-55.
    20. Butler, D. (2006). "Alarms ring over bird flu mutations." Nature 439(7074): 248-9.
    21. Castrucci, M. R., I. Donatelli, et al. (1993). "Genetic reassortment between avian and humaninfluenza A viruses in Italian pigs." Virology 193(1): 503-6.
    22. Castrucci, M. R., L. Campitelli, et al. (1994). "Antigenic and sequence analysis of H3 influenza virus haemagglutinins from pigs in Italy." J Gen Virol 75 ( Pt 2): 371-9.
    23. Chan, M. C., C. Y. Cheung, et al. (2005). "Proinflammatory cytokine responses induced by influenza A (H5N1) viruses in primary human alveolar and bronchial epithelial cells." Respir Res 6: 135.
    24. Chen, G. W., S. C. Chang, et al. (2006). "Genomic signatures of human versus avian influenza A viruses." Emerg Infect Dis 12(9): 1353-60.
    25. Chen, H., G. Deng, et al. (2004). "The evolution of H5N1 influenza viruses in ducks in southern China." Proc Natl Acad Sci U S A 101(28): 10452-7.
    26. Chen, H., G. J. Smith, et al. (2005). "Avian flu: H5N1 virus outbreak in migratory waterfowl." Nature 436(7048): 191-2.
    27. Chen, H., Y. Li, et al. (2006). "Properties and dissemination of H5N1 viruses isolated during an influenza outbreak in migratory waterfowl in western China." J Virol 80(12): 5976-83.
    28. Chen, W., P. A. Calvo, et al. (2001). "A novel influenza A virus mitochondrial protein that induces cell death." Nat Med 7(12): 1306-12.
    29. Chen, Z., Y. Li, et al. (1999). "Influenza A virus NS1 protein targets poly(A)-binding protein II of the cellular 3'-end processing machinery." EMBO J 18(8): 2273-83.
    30. Cheon, D. S., C. Chae, et al. (1997). "Detection of nucleic acids of porcine reproductive and respiratory syndrome virus in the lungs of naturally infected piglets as determined by in-situ hybridization." J Comp Pathol 117(2): 157-63.
    31. Cheung, C. Y., L. L. Poon, et al. (2002). "Induction of proinflammatory cytokines in human macrophages by influenza A (H5N1) viruses: a mechanism for the unusual severity of human disease?" Lancet 360(9348): 1831-7.
    32. Choi, Y. K., J. H. Lee, et al. (2004). "H3N2 influenza virus transmission from swine to turkeys, United States." Emerg Infect Dis 10(12): 2156-60.
    33. Choi, Y. K., S. M. Goyal, et al. (2002). "Detection and subtyping of swine influenza H1N1, H1N2 and H3N2 viruses in clinical samples using two multiplex RT-PCR assays." J Virol Methods 102(1-2): 53-9.
    34. Ciampor, F., C. A. Thompson, S. Grambas, and A. J. Hay. (1992). Regulation of pH by the M2 protein of influenza A viruses. Virus Res. 22:247–258.
    35. Ciampor, F., Bayley, P. M., Nermut, M. V et al. (1992). Evidence that the amantadine-induced, M2-mediated conversion of influenza A virus hemagglutinin to the low pH conformation occurs in an acidic trans Golgi compartment. Virology.188:14–24.
    36. Claas, E. C., A. D. Osterhaus, et al. (1998). "Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus." Lancet 351(9101): 472-7.
    37. Claas, E. C., J. C. de Jong, et al. (1998). "Human influenza virus A/HongKong/156/97 (H5N1) infection." Vaccine 16(9-10): 977-8.
    38. Claas, E. J., A. E. Osterhaus, R., Van Beek, J. C et al. (1998). Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. Lancet, 351:472-477.
    39. Compans, R. W., and P. W. Choppin. (1975). Reproduction of myxoviruses, In H. Fraenkel-Conrat, and R. R. Wagner (ed.), Comprehensive virology, vol. IV. Plenum Press, New York, N.Y. 179-252.
    40. Connor, R. J., Y. Kawaoka, et al. (1994). "Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates." Virology 205(1): 17-23.
    41. Connor, R. J., Y. Kawaoka, R. G. Webster et al. (1994). Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates. Virology. 205:17-23.
    42. Couceiro, J. N. S. S., J. C. Paulson, and L. G. Baum. (1993). Influenza virus strains selectively recognize sialylogosaccharides on human respiratory epithelium: the role of the host cell in selection of hemagglutinin receptor specificity. Virus Res. 29:155-165.
    43. Couceiro, J. N., J. C. Paulson, et al. (1993). "Influenza virus strains selectively recognize sialyloligosaccharides on human respiratory epithelium; the role of the host cell in selection of hemagglutinin receptor specificity." Virus Res 29(2): 155-65.
    44. Crescenzo-Chaigne, B., N. Naffakh, et al. (1999). "Comparative analysis of the ability of the polymerase complexes of influenza viruses type A, B and C to assemble into functional RNPs that allow expression and replication of heterotypic model RNA templates in vivo." Virology 265(2): 342-53.
    45. Cross, G. M. (1987).The status of avian influenza in poultry in Australia. In Proceedings of the Second International Symposium on Avian Influenza. p.96-103.
    46. Dacso, C. C., R. B. Couch, et al. (1984). "Sporadic occurrence of zoonotic swine influenza virus infections." J Clin Microbiol 20(4): 833-5.
    47. Daly, C., and N. C. Reich. (1993). Double-stranded RNA activates novel factors that bind to the interferon-stimulated response element. Mol. Cell. Biol. 13:3756–3764.
    48. Dauber B, Heins G, Wolff T. (2004). The influenza B virus nonstructural NS1 protein is essential for efficient viral growth and antagonizes beta interferon induction. J Virol. 78:1865-72.
    49. de Jong, J. C., K. Bijlsma, et al. (1993). "Detection, typing, and subtyping of enteric adenoviruses
    40 and 41 from fecal samples and observation of changing incidences of infections with these types and subtypes." J Clin Microbiol 31(6): 1562-9.
    50. de Jong, J. C., M. F. Paccaud, et al. (1988). "Isolation of swine-like influenza A(H1N1) viruses from man in Switzerland and The Netherlands." Ann Inst Pasteur Virol 139(4): 429-37.
    51. de Jong, M. D., C. P. Simmons, et al. (2006). "Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia." Nat Med 12(10): 1203-7.
    52. de Jong, M. D., V. C. Bach, et al. (2005). "Fatal avian influenza A (H5N1) in a child presenting with diarrhea followed by coma." N Engl J Med 352(7): 686-91.
    53. de la Luna, S., P. Fortes, A. Beloso, and J. Ortín. Influenza virus NS1 protein enhances the rate of translation initiation of viral mRNAs(1995). J. Virol. 69:2427-2433.
    54. Dea, S., R. Bilodeau, et al. (1992). "Antigenic variant of swine influenza virus causing proliferative and necrotizing pneumonia in pigs." J Vet Diagn Invest 4(4): 380-92.
    55. Dea, S., R. Bilodeau, R. Sauvageau, C et al. (1992). Antigenic variant of swine influenza virus causing proliferative and necrotizing pneumonia in pigs. J. Vet. Diagn. Invest. 4:380-392.
    56. Der S.D., Zhou A., Williams B.R et al. (1998). Identification of genes differentially regulated by interferon alpha, beta, or gamma using oligonucleotide arrays, Proc. Natl. Acad. Sci. U. S. A. 95: 15623– 15628.
    57. Desphande, K. L., Fried, V. A., Ando, M et al. (1987). Glycosylation affects cleavage of an H5N2 influenza virus hemagglutinin and regulates virulence. Proc. Natl. Acad. Sci. USA 84:36-40.
    58. Donatelli, I., L. Campitelli, et al. (1991). "Detection of two antigenic subpopulations of A(H1N1) influenza viruses from pigs: antigenic drift or interspecies transmission?" J Med Virol 34(4):248-57.
    59. Donelan, N. R., C. F. Basler, et al. (2003). "A recombinant influenza A virus expressing an RNA-binding-defective NS1 protein induces high levels of beta interferon and is attenuated in mice." J Virol 77(24): 13257-66.
    60. Donelan, N., Basler, C. F., and Garc?a-Sastre. A. (2003). A recombinant influenza A virus expressing an RNA-binding defective NS1 protein induces high levels of IFN-β and is attenuated in mice. J. Virol. 77:13257–13266
    61. Drolet, R., R. Larochelle, et al. (2003). "Detection rates of porcine reproductive and respiratory syndrome virus, porcine circovirus type 2, and swine influenza virus in porcine proliferative and necrotizing pneumonia." Vet Pathol 40(2): 143-8.
    62. Eckroade, R. J., and Bachin L. A. S. (1987).Avian influenza in Pennsylvania: the beginning. In Proceedings of the Second International Symposium on Avian Influenza. 22-23.
    63. Elton D, Simpson-Holley M, Archer K et al. (2001). Interaction of the influenza virus nucleoprotein with the cellular CRM1-mediated nuclear export pathway. J Virol. 75:408-19.
    64. Enami M. (1997). Structure and function of influenza virus NS1 and NS2 proteins. Nippon Rinsho. 55:2605-9.
    65. Enami, K., Sato, T. A., Nakada., S et al. (1994). Influenza virus NS1 protein stimulates translation of the M1 protein. J. Virol. 68:1432-1437.
    66. Enami, M., and K. Enami. (2000). Characterization of influenza virus NS1 protein by using a novel helper-virus-free reverse genetic system. J. Virol. 74:5556-5561.
    67. Enami, M., W. Luytjes, et al. (1990). "Introduction of site-specific mutations into the genome of influenza virus." Proc Natl Acad Sci U S A 87(10): 3802-5.
    68. Ferko, B., J. Stasakova, et al. (2004). "Immunogenicity and protection efficacy of replication-deficient influenza A viruses with altered NS1 genes." J Virol 78(23): 13037-45.
    69. Fernandez-Sesma, A., S. Marukian, et al. (2006). "Influenza virus evades innate and adaptive immunity via the NS1 protein." J Virol 80(13): 6295-304.
    70. Fish, E. W., S. Faccidomo, et al. (2004). "Anxiolytic-like effects of escitalopram, citalopram, and R-citalopram in maternally separated mouse pups." J Pharmacol Exp Ther 308(2): 474-80.
    71. Fodor E, Devenish L, Engelhardt OG et al. (1999). Rescue of influenza A virus from recombinant DNA. J Virol. 73:9679-82.
    72. Fodor, E., L. Devenish, et al. (1999). "Rescue of influenza A virus from recombinant DNA." J Virol 73(11): 9679-82.
    73. Fodor, E., Crow, M., Mingay, L. J et al. (2002). Brownlee. A single amino acid mutation in the PA subunit of the influenza virus RNA polymerase inhibits endonucleolytic cleavage of capped RNAs. J. Virol. 76:8989-9001.
    74. Fortes, P., A. Beloso, and J. Ortin. (1994). Influenza virus NS1 protein inhibits pre-mRNA splicing and blocks mRNA nucleocytoplasmic transport. EMBO J. 13:704-712.
    75. Fouchier, R. A., P. M. Schneeberger, et al. (2004). "Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome." Proc Natl Acad Sci U S A 101(5): 1356-61.
    76. Fouchier, R. A., Schneeberger, P. M., Rozendaal, F. W et al. (2004). Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatel case of acute respiratory distress syndrome. Proc Nat1 Acad Sci U S A. 101:1356-61.
    77. Stark, G.R., Kerr, I.M., Williams, B.R et al. (1998). How cells respond to interferons, Annu. Rev. Biochem. 67: 227– 264.
    78. Gabriel, G., B. Dauber, et al. (2005). "The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host." Proc Natl Acad Sci U S A 102(51): 18590-5.
    79. Galarza J. M., Sowa, A ., Hill, V. M et al. (1992). Influenza A virus NP protein expressed in insect cells by a recombinant baculovirus is associated with a protein kinase activity and possesses single-stranded RNA binding activity. Virus Res. 24:91-106.
    80. Gambaryan, A., Tuzikov, A et al. (2006). "Evolution of the receptor binding phenotype of influenza A (H5) viruses." Virology 344(2): 432-8.
    81. Gamblin, S. J., L. F. Haire, et al. (2004). "The structure and receptor binding properties of the 1918 influenza hemagglutinin." Science 303(5665): 1838-42.
    82. Garc?′a-Sastre A., Durbin, R.K., Zheng, H et al. (1998). The role ofinterferon in the tropism of influenza virus, J. Virol. 72 : 8550–8558.
    83. Garcia, M., J. M. Crawford, et al. (1996). "Heterogeneity in the haemagglutinin gene and emergence of the highly pathogenic phenotype among recent H5N2 avian influenza viruses from Mexico." J Gen Virol 77 ( Pt 7): 1493-504.
    84. Garcia, M., Crawford, J. M., Latimer, J. W et al. (1996). Heterogeneity in the hemagglutinin gene and emergence of the highly pathogenic phenotype among recent H5N2 avian influenza viruses from Mexico. J. Gen. Virol. 77:1493-1504.
    85. Garcia-Sastre, A. (2001). "Inhibition of interferon-mediated antiviral responses by influenza A viruses and other negative-strand RNA viruses." Virology 279(2): 375-84.
    86. Garcia-Sastre, A., Egorov, A et al. (1998). "Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems." Virology 252(2): 324-30.
    87. Garcia-Sastre, A., Durbin, R. K et al. (1998). "The role of interferon in influenza virus tissue tropism." J Virol 72(11): 8550-8.
    88. Garten, W., and H.-D. Klenk.(1999). Understanding influenza virus pathogenicity. Trends Microbiol. 7:99-100.
    89. Geiss, G. K., Salvatore, M., Tumpey, T et al. (2002). Cellular transcriptional profiling in influenza A virusinfected lung epithelial cells: the role of the nonstructural NS1 protein in the evasion of the host innate defense and its potential contribution to pandemic influenza. Proc. Natl. Acad. Sci. USA. 99:10736–10741.
    90. Gonzalez S, Ortin J. (1999). Characterization of influenza virus PB1 protein binding to viral RNA: two separate regions of the protein contribute to the interaction domain. J Virol. 73:631-7
    91. Grambas, S., and A. J. Hay. (1992). Maturation of influenza A virus hemagglutinin—estimates of the pH encountered during transport and its regulation by the M2 protein. Virology. 190:11–18.
    92. Grambas, S., M. S. Bennett, and A. J. Hay. (1992). Influence of amantadine resistance mutations on the pH regulatory function of the M2 protein of influenza A viruses. Virology 191:541–549.
    93. Griffin, J. A., S. Basak, and R. W. Compans. (1983). Effects of hexose starvation and the role of sialic acid in influenza virus release. Virology 125:324-334
    94. Guan, Y., Shortridge, K. F., Krauss, S et al. ( 1999). Molecular characterization of H9N2 influenza viruses: were they the donors of the "internal" genes of H5N1 in Hong Kong? Proc. Natl. Acad. Sci. USA 96:9363-9367.
    95. Guan, Y., Shortridge, K. F., Krauss, S et al. 2000). H9N2 influenza viruses possessing H5N1-like internal genomes continue to circulate in poultry in southeastern China(. J. Virol. 74:9372-9380.
    96. Guan, Y., L. L. Poon, et al. (2004). "H5N1 influenza: a protean pandemic threat." Proc Natl Acad Sci U S A 101(21): 8156-61.
    97. Haines, D. M., E. H. Waters, et al. (1993). "Immunohistochemical detection of swine influenza A virus in formalin-fixed and paraffin-embedded tissues." Can J Vet Res 57(1): 33-6.
    98. Harvey, R., Martin, A. C. R., Zambon M et al. (2004). Restrixtions to the adaption of influenza A virus H5 hemagglutinin to the human host. J. Virol. 78(1):502-507.
    99. Hatada E., R. Fukuda, (1973). Binding of influenza Avirus NS1 protein to dsRNA in vitro, J. Gen. Virol. 3325– 3329.
    100. Hatada E., S. Saito, R. Fukuda, (1999). Mutant influenza viruses with a defective NS1 protein cannot block the activation of PKR in infected cells, J. Virol. 73 : 2425–2433
    101. Hatada, E., S. Saito, et al. (1999). "Mutant influenza viruses with a defective NS1 protein cannot block the activation of PKR in infected cells." J Virol 73(3): 2425-33.
    102. Hatada, E., Saito, S., Okishio, N et al. (1997). Binding of the influenza virus NS1 protein to model genome RNAs. Virology 78:1059–1063
    103. Hatada, E., T. Takizawa, and R. Fukuda. (1992). Specific binding of influenza A virus NS1 protein to the virus minus-sense RNA in vitro. J. Gen. Virol. 73:17–25.
    104. Hatta M, Kawaoka Y. (2005). Clue to the molecular mechanism of virulence of highly pathogenic H5N1 avian influenza viruses isolated in 2004. Uirusu.55(1):55–61.
    105. Hatta, M., G. Neumann, et al. (2001). "Reverse genetics approach towards understanding pathogenesis of H5N1 Hong Kong influenza A virus infection." Philos Trans R Soc Lond B Biol Sci 356(1416): 1841-3.
    106. Hatta, M., P. Gao, et al. (2001). "Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses." Science 293(5536): 1840-2.
    107. Hatta, M., P. Gao, P. Halfmann, and Y. Kawaoka.( 2001). Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science, 293:1840-2.
    108. Hay, A.J. The virus genome and its replication. In “Textbook of influenza (1998)(Nicholson, K.G. Webster, R.G., and Hay, A.J., Eds.) Blackwell Science Ltd., London.p43-53
    109. Heinen, P. P., A. P. van Nieuwstadt, et al. (2001). "Analysis of the quality of protection induced by a porcine influenza A vaccine to challenge with an H3N2 virus." Vet Immunol Immunopathol 82(1-2): 39-56.
    110. Hinshaw, V. S., R. G. Webster, and B. Turner. (1980). The perpetuation of orthomyxoviruses and paramyxoviruses in Canadian waterfowl. Can. J. Microbiol. 26:622-629.
    111. Hinshaw, V. S., Webster, R. G., Naeve, C.W et al. (1983). Altered tissue tropism of human-avian reassortant influenza viruses. Virology . 128:260-3.
    112. Hinshaw, V. S., Bean, W. J., Webster, R. G et al. (1980). Genetic reassortment of influenza A viruses in the intestinal tract of ducks. Virology.102:412-419.
    113. Hiromoto Y, Saito T, Lindstrom S et al. (2000).Characterization of low virulent strains of highly pathogenic A/Hong Kong/156/97 (H5N1) virus in mice after passage in embryonated hens' eggs. Virology . 272:429-37.
    114. Hirst, G. K. (1941). Agglutination of red cells by allantoic fluid of Chicken embryos infected with influenza virus.Science.94:22-23.
    115. Hoffmann, E., Stech, J., Krauss, S et al. (2000). Characterization of the influenza A virus gene pool in avian species in southern China: was H6N1 a derivative or a precursor of H5N1? J. Virol.74:6309-6315.
    116. Hoffmann, E., Neumann, G., Kawaoka, Y et al. (2000). A DNA transfection system for generation of influenza A virus from eight plasmids.Natl. Acad. Sci. U. S. A. 97: 6108-6113
    117. Holsinger, L. J., Nichani, D., Pinto, L. H et al. (1994). Influenza A virus M2 ion channel protein: a structure-function analysis. J. Virol. 68:1551–1563.
    118. Holsinger, L. J., Shaughnessy, M. A., Micko, A et al.(1995). Analysis of the posttranslational modifications of the influenza virus M2 protein. J. Virol. 69:1219–1225.
    119. Honda, A., Mizumoto, K., and A. Ishihama. (1999). Two separate sequences of PB2 subunit constitute the RNA cap-binding site of influenza virus RNA polymerase. Genes Cells.4:475-485.
    120. Hooper, P. T., Russell, G. W., Selleck, P. W et al. (1995). Observations on the relationship in Chickens between the virulence of some avian influenza viruses and their pathogenicity for various organs. Avian Dis. 39:458-464
    121. Horimoto, T. and Y. Kawaoka (2001). "Pandemic threat posed by avian influenza A viruses." Clin Microbiol Rev 14(1): 129-49.
    122. Horimoto, T. and Y. Kawaoka. (2001). Pandemic threat posed by influenza A virus. Clinical microbiology reviews.14:129-149.
    123. Horimoto, T., Rivera, E., Pearson, H et al. (1995). Origin and molecular changes associated with emergence of a highly pathogenic H5N2 influenza virus in Mexico. Virology,213:223-230.
    124. Huarte, M., Falcon, A., Nakaya, Y et al. (2003). Threonine 157 of Influenza Virus PA Polymerase Subunit Modulates RNA Replication in Infectious Viruses. J. Virol. 77: 6007-6013
    125. Hulse DJ, Perez DR, Webster RG. (2004). Molecular determinants of the pathogenicity of H5N1 influenza viruses in chickens. International Congress Series,1263:114–117.
    126. Ilyushina NA, Govorkova EA, Webster RG. (2005). Detection of amantadine-resistant variants among avian influenza viruses isolated in North America and Asia. Virology,341 (1):102-6.
    127. Isaacs A., J. Lindenmann, (1957).Virus interference: 1. The interferon, Proc. R. Soc. London, Ser. B,147: 258– 267.
    128. Ito, T., Couceiro, J. S., Kelm, S et al. (1998). Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. J. Virol. 72:7367-7373.
    129. Jason Paragas, Julie Talon, Robert E et al. Influenza B and C Virus NEP (NS2) Proteins Possess Nuclear Export Activities(2001). J. Virol. 7375-7383
    130. Kandun, I. N., H. Wibisono, et al. (2006). "Three Indonesian clusters of H5N1 virus infection in 2005." N Engl J Med 355(21): 2186-94.
    131. Kaplan, M., and W. I. Beveridge. (1972). WHO coordinated research on the role of animals in influenza epidemiology: introduction. Bull. W. H. O.,47:439-448.
    132. Karasin, A. I., J. Landgraf, et al. (2002). "Genetic characterization of H1N2 influenza A viruses isolated from pigs throughout the United States." J Clin Microbiol 40(3): 1073-9.
    133. Karin M., Ben-Neriah Y.(2000). Phosphorylation meets ubiquitination: the control of NF-kappaB activity, Annu. Rev. Immunol. 18: 621– 663.
    134. Katz JM, Lu X, Tumpey TM et al. (2000). Molecular correlates of influenza A H5N1 virus pathogenesis in mice.J Virol. 74:10807-10.
    135. Katze, M. G., Y. He, et al. (2002). "Viruses and interferon: a fight for supremacy." Nat Rev Immunol2(9): 675-87.
    136. Kaverin NV, Rudneva IA, Ilyushina NA et al. (2004).Structural differences among hemagglutinins of influenza A virus subtypes are reflected in their antigenic architecture: analysis of H9 escape mutants. J Virol,78:240-9.
    137. Kaverin, N. V., Gambaryan, A. S., Bovin, N. V et al. (1998). Postreassortment changes in influenza A virus hemagglutinin restoring HA-NA functional match. Virology, 244:315-321
    138. Kaverin, N. V., and H. D. Klenk.(1999). Strain-specific differences in the effect of influenza A virus neuraminidase on vector-expressed hemagglutinin. Arch. Virol. 144:781-78
    139. Kawaoka, Y., S. Krauss, et al. (1989). "Avian-to-human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics." J Virol 63(11): 4603-8.
    140. Keawcharoen, J., A. Amonsin, et al. (2005). "Characterization of the hemagglutinin and neuraminidase genes of recent influenza virus isolates from different avian species in Thailand." Acta Virol 49(4): 277-80.
    141. Kida, H., T. Ito, et al. (1994). "Potential for transmission of avian influenza viruses to pigs." J Gen Virol 75 ( Pt 9): 2183-8.
    142. Kimura, K., A. Adlakha, et al. (1998). "Fatal case of swine influenza virus in an immunocompetent host." Mayo Clin Proc 73(3): 243-5.
    143. Klenk, H. D. and R. Rott (1988). "The molecular biology of influenza virus pathogenicity." Adv Virus Res 34: 247-81.
    144. Kobasa, D., A. Takada, et al. (2004). "Enhanced virulence of influenza A viruses with the haemagglutinin of the 1918 pandemic virus." Nature 431(7009): 703-7.
    145. Krug, R. M., W. Yuan, et al. (2003). "Intracellular warfare between human influenza viruses and human cells: the roles of the viral NS1 protein." Virology 309(2): 181-9.
    146. Kundin, W. D. (1970). "Hong Kong A-2 influenza virus infection among swine during a human epidemic in Taiwan." Nature 228(5274): 857.
    147. Larochelle, R., R. Sauvageau, et al. (1994). "Immunohistochemical detection of swine influenza virus and porcine reproductive and respiratory syndrome virus in porcine proliferative and necrotizing pneumonia cases from Quebec." Can Vet J 35(8): 513-5.
    148. Lee, D. C., C. Y. Cheung, et al. (2005). "p38 mitogen-activated protein kinase-dependent hyperinduction of tumor necrosis factor alpha expression in response to avian influenza virus H5N1." J Virol 79(16): 10147-54.
    149. Lee, M. S., P. C. Chang, et al. (2001). "Identification and subtyping of avian influenza viruses by reverse transcription-PCR." J Virol Methods 97(1-2): 13-22.
    150. Li, K. S., Y. Guan, et al. (2004). "Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia." Nature 430(6996): 209-13.
    151. Li, S., J. Y. Min, et al. (2006). "Binding of the influenza A virus NS1 protein to PKR mediates the inhibition of its activation by either PACT or double-stranded RNA." Virology 349(1): 13-21.
    152. Li, Z., H. Chen, et al. (2005). "Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model." J Virol 79(18): 12058-64.
    153. Li, Z., Y. Jiang, et al. (2006). "The NS1 gene contributes to the virulence of H5N1 avian influenza viruses." J Virol 80(22): 11115-23.
    154. Lipatov, A. S., S. Andreansky, et al. (2005). "Pathogenesis of Hong Kong H5N1 influenza virus NS gene reassortants in mice: the role of cytokines and B- and T-cell responses." J Gen Virol86(Pt 4): 1121-30.
    155. Liu, J., H. Xiao, et al. (2005). "Highly pathogenic H5N1 influenza virus infection in migratory birds." Science 309(5738): 1206.
    156. Lu, Y., M. Wambach, et al. (1995). "Binding of the influenza virus NS1 protein to double-stranded RNA inhibits the activation of the protein kinase that phosphorylates the elF-2 translation initiation factor." Virology 214(1): 222-8.
    157. Ludwig, S., X. Wang, et al. (2002). "The influenza A virus NS1 protein inhibits activation of Jun N-terminal kinase and AP-1 transcription factors." J Virol 76(21): 11166-71.
    158. Maines, T. R., X. H. Lu, et al. (2005). "Avian influenza (H5N1) viruses isolated from humans in Asia in 2004 exhibit increased virulence in mammals." J Virol 79(18): 11788-800.
    159. Mase, M., N. Tanimura, et al. (2006). "Recent H5N1 avian influenza A virus increases rapidly in virulence to mice after a single passage in mice." J Gen Virol 87(Pt 12): 3655-9.
    160. Massin, P., S. van der Werf, et al. (2001). "Residue 627 of PB2 is a determinant of cold sensitivity in RNA replication of avian influenza viruses." J Virol 75(11): 5398-404.
    161. Matrosovich, M. N., S. Krauss, et al. (2001). "H9N2 influenza A viruses from poultry in Asia have human virus-like receptor specificity." Virology 281(2): 156-62.
    162. Matrosovich, M. N., T. Y. Matrosovich, et al. (2004). "Human and avian influenza viruses target different cell types in cultures of human airway epithelium." Proc Natl Acad Sci U S A 101(13): 4620-4.
    163. Matrosovich, M., A. Tuzikov, et al. (2000). "Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals." J Virol 74(18): 8502-12.
    164. Matrosovich, M., N. Zhou, et al. (1999). "The surface glycoproteins of H5 influenza viruses isolated from humans, chickens, and wild aquatic birds have distinguishable properties." J Virol 73(2): 1146-55.
    165. Mensik, J. and J. Pokorny (1971). "Development of antibody response to swine influenza virus in pigs. I. The influence of experimental infection of pregnant sows on serum antibody production by their progeny during postnatal development." Zentralbl Veterinarmed B 18(3): 177-89.
    166. Min, J. Y. and R. M. Krug (2006). "The primary function of RNA binding by the influenza A virus NS1 protein in infected cells: Inhibiting the 2'-5' oligo (A) synthetase/RNase L pathway." Proc Natl Acad Sci U S A 103(18): 7100-5.
    167. Naeve, C. W., V. S. Hinshaw, et al. (1984). "Mutations in the hemagglutinin receptor-binding site can change the biological properties of an influenza virus." J Virol 51(2): 567-9.
    168. Naffakh, N., P. Massin, et al. (2000). "Genetic analysis of the compatibility between polymerase proteins from human and avian strains of influenza A viruses." J Gen Virol 81(Pt 5): 1283-91.
    169. Nardelli, L., S. Pascucci, et al. (1978). "Outbreaks of classical swine influenza in Italy in 1976." Zentralbl Veterinarmed B 25(10): 853-7.
    170. Nemeroff, M. E., S. M. Barabino, et al. (1998). "Influenza virus NS1 protein interacts with the cellular 30 kDa subunit of CPSF and inhibits 3'end formation of cellular pre-mRNAs." Mol Cell 1(7): 991-1000.
    171. Neumann, G., T. Watanabe, et al. (1999). "Generation of influenza A viruses entirely from cloned cDNAs." Proc Natl Acad Sci U S A 96(16): 9345-50.
    172. Nicholls, J. M., M. C. Chan, et al. (2007). "Tropism of avian influenza A (H5N1) in the upperand lower respiratory tract." Nat Med 13(2): 147-9.
    173. Noble, S., M. S. McGregor, et al. (1993). "Antigenic and genetic conservation of the haemagglutinin in H1N1 swine influenza viruses." J Gen Virol 74 ( Pt 6): 1197-200.
    174. Obenauer, J. C., J. Denson, et al. (2006). "Large-scale sequence analysis of avian influenza isolates." Science 311(5767): 1576-80.
    175. Olsen, C. W. (2000). "DNA vaccination against influenza viruses: a review with emphasis on equine and swine influenza." Vet Microbiol 74(1-2): 149-64.
    176. Olsen, C. W., L. Brammer, et al. (2002). "Serologic evidence of H1 swine Influenza virus infection in swine farm residents and employees." Emerg Infect Dis 8(8): 814-9.
    177. Olsen, S. J., K. Ungchusak, et al. (2005). "Family clustering of avian influenza A (H5N1)." Emerg Infect Dis 11(11): 1799-1801.
    178. Peiris, J. S., W. C. Yu, et al. (2004). "Re-emergence of fatal human influenza A subtype H5N1 disease." Lancet 363(9409): 617-9.
    179. Pinckney, R. D., D. S. Lindsay, et al. (1994). "Evaluation of the safety and efficacy of vaccination of nursing pigs with living tachyzoites of two strains of Toxoplasma gondii." J Parasitol 80(3): 438-48.
    180. Raymond, F. L., A. J. Caton, et al. (1986). "The antigenicity and evolution of influenza H1 haemagglutinin, from 1950-1957 and 1977-1983: two pathways from one gene." Virology 148(2): 275-87.
    181. Reid, A. H. and J. K. Taubenberger (2003). "The origin of the 1918 pandemic influenza virus: a continuing enigma." J Gen Virol 84(Pt 9): 2285-92.
    182. Renshaw, H. W. (1975). "Influence of antibody-mediated immune suppression on clinical, viral, and immune responses to swine influenza infection." Am J Vet Res 36(1): 5-13.
    183. Rimmelzwaan, G. F., J. C. de Jong, et al. (2001). "Antigenic and genetic characterization of swine influenza A (H1N1) viruses isolated from pneumonia patients in The Netherlands." Virology 282(2): 301-6.
    184. Rogers, G. N. and B. L. D'Souza (1989). "Receptor binding properties of human and animal H1 influenza virus isolates." Virology 173(1): 317-22.
    185. Rogers, G. N. and J. C. Paulson (1983). "Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin." Virology 127(2): 361-73.
    186. Rogers, G. N., J. C. Paulson, et al. (1983). "Single amino acid substitutions in influenza haemagglutinin change receptor binding specificity." Nature 304(5921): 76-8.
    187. Salomon, R., J. Franks, et al. (2006). "The polymerase complex genes contribute to the high virulence of the human H5N1 influenza virus isolate A/Vietnam/1203/04." J Exp Med 203(3): 689-97.
    188. Schnell, M. J., T. Mebatsion, et al. (1994). "Infectious rabies viruses from cloned cDNA." EMBO J 13(18): 4195-203.
    189. Scholtissek, C., H. Burger, et al. (1983). "Genetic relatedness of hemagglutinins of the H1 subtype of influenza A viruses isolated from swine and birds." Virology 129(2): 521-3.
    190. Scholtissek, C., S. Ludwig, et al. (1993). "Analysis of influenza A virus nucleoproteins for the assessment of molecular genetic mechanisms leading to new phylogenetic virus lineages." Arch Virol 131(3-4): 237-50.
    191. Scholtissek, C., W. Rohde, et al. (1978). "On the origin of the human influenza virus subtypesH2N2 and H3N2." Virology 87(1): 13-20.
    192. Schultz, U., W. M. Fitch, et al. (1991). "Evolution of pig influenza viruses." Virology 183(1): 61-73.
    193. Seal, B. S., D. J. King, et al. (1995). "Characterization of Newcastle disease virus isolates by reverse transcription PCR coupled to direct nucleotide sequencing and development of sequence database for pathotype prediction and molecular epidemiological analysis." J Clin Microbiol 33(10): 2624-30.
    194. Seo, S. H., E. Hoffmann, et al. (2002). "Lethal H5N1 influenza viruses escape host anti-viral cytokine responses." Nat Med 8(9): 950-4.
    195. Seo, S. H., E. Hoffmann, et al. (2004). "The NS1 gene of H5N1 influenza viruses circumvents the host anti-viral cytokine responses." Virus Res 103(1-2): 107-13.
    196. Seong, B. L. and G. G. Brownlee (1992). "A new method for reconstituting influenza polymerase and RNA in vitro: a study of the promoter elements for cRNA and vRNA synthesis in vitro and viral rescue in vivo." Virology 186(1): 247-60.
    197. Shaw, M., L. Cooper, et al. (2002). "Molecular changes associated with the transmission of avian influenza a H5N1 and H9N2 viruses to humans." J Med Virol 66(1): 107-14.
    198. Sheerar, M. G., B. C. Easterday, et al. (1989). "Antigenic conservation of H1N1 swine influenza viruses." J Gen Virol 70 ( Pt 12): 3297-303.
    199. Shinya, K., M. Ebina, et al. (2006). "Avian flu: influenza virus receptors in the human airway." Nature 440(7083): 435-6.
    200. Shinya, K., M. Hatta, et al. (2005). "Characterization of a human H5N1 influenza A virus isolated in 2003." J Virol 79(15): 9926-32.
    201. Shinya, K., S. Hamm, et al. (2004). "PB2 amino acid at position 627 affects replicative efficiency, but not cell tropism, of Hong Kong H5N1 influenza A viruses in mice." Virology 320(2): 258-66.
    202. Shope, R. E. (1931). "The Etiology of Swine Influenza." Science 73(1886): 214-215.
    203. Shortridge, K. F., Zhou, N. N et al. (1998). "Characterization of avian H5N1 influenza viruses from poultry in Hong Kong." Virology 252(2): 331-42.
    204. Smeenk, C. A. and E. G. Brown (1994). "The influenza virus variant A/FM/1/47-MA possesses single amino acid replacements in the hemagglutinin, controlling virulence, and in the matrix protein, controlling virulence as well as growth." J Virol 68(1): 530-4.
    205. Smith, G. J., T. S. Naipospos, et al. (2006). "Evolution and adaptation of H5N1 influenza virus in avian and human hosts in Indonesia and Vietnam." Virology 350(2): 258-68.
    206. Stevens, J., A. L. Corper, et al. (2004). "Structure of the uncleaved human H1 hemagglutinin from the extinct 1918 influenza virus." Science 303(5665): 1866-70.
    207. Stevens, J., O. Blixt, et al. (2006). "Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus." Science 312(5772): 404-10.
    208. Suarez, D. L., D. A. Senne, et al. (2004). "Recombination resulting in virulence shift in avian influenza outbreak, Chile." Emerg Infect Dis 10(4): 693-9.
    209. Subbarao, E. K., W. London, et al. (1993). "A single amino acid in the PB2 gene of influenza A virus is a determinant of host range." J Virol 67(4): 1761-4.
    210. Subbarao, K., A. Klimov, et al. (1998). "Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness." Science 279(5349): 393-6.
    211. Talon, J., C. M. Horvath, et al. (2000). "Activation of interferon regulatory factor 3 is inhibitedby the influenza A virus NS1 protein." J Virol 74(17): 7989-96.
    212. Tan, S. L. and M. G. Katze (1998). "Biochemical and genetic evidence for complex formation between the influenza A virus NS1 protein and the interferon-induced PKR protein kinase." J Interferon Cytokine Res 18(9): 757-66.
    213. To, K. F., P. K. Chan, et al. (2001). "Pathology of fatal human infection associated with avian influenza A H5N1 virus." J Med Virol 63(3): 242-6.
    214. Twu, K. Y., D. L. Noah, et al. (2006). "The CPSF30 binding site on the NS1A protein of influenza A virus is a potential antiviral target." J Virol 80(8): 3957-65.
    215. Ungchusak, K., P. Auewarakul, et al. (2005). "Probable person-to-person transmission of avian influenza A (H5N1)." N Engl J Med 352(4): 333-40.
    216. Van Reeth, K., V. Gregory, et al. (2003). "Protection against a European H1N2 swine influenza virus in pigs previously infected with H1N1 and/or H3N2 subtypes." Vaccine 21(13-14): 1375-81.
    217. van Riel, D., V. J. Munster, et al. (2006). "H5N1 Virus Attachment to Lower Respiratory Tract." Science 312(5772): 399.
    218. Vincent, L. L., B. H. Janke, et al. (1997). "A monoclonal-antibody-based immunohistochemical method for the detection of swine influenza virus in formalin-fixed, paraffin-embedded tissues." J Vet Diagn Invest 9(2): 191-5.
    219. Wang, X., M. Li, et al. (2000). "Influenza A virus NS1 protein prevents activation of NF-kappaB and induction of alpha/beta interferon." J Virol 74(24): 11566-73.
    220. Webby, R. J., S. L. Swenson, et al. (2000). "Evolution of swine H3N2 influenza viruses in the United States." J Virol 74(18): 8243-51.
    221. Webster, R. G. and R. Rott (1987). "Influenza virus A pathogenicity: the pivotal role of hemagglutinin." Cell 50(5): 665-6.
    222. Webster, R. G. and W. G. Laver (1972). "Studies on the origin of pandemic influenza. I. Antigenic analysis of A 2 influenza viruses isolated before and after the appearance of Hong Kong influenza using antisera to the isolated hemagglutinin subunits." Virology 48(2): 433-44.
    223. Webster, R. G., M. Yakhno, et al. (1978). "Intestinal influenza: replication and characterization of influenza viruses in ducks." Virology 84(2): 268-78.
    224. Wells, D. L., D. J. Hopfensperger, et al. (1991). "Swine influenza virus infections. Transmission from ill pigs to humans at a Wisconsin agricultural fair and subsequent probable person-to-person transmission." JAMA 265(4): 478-81.
    225. Wentworth, D. E., M. W. McGregor, et al. (1997). "Transmission of swine influenza virus to humans after exposure to experimentally infected pigs." J Infect Dis 175(1): 7-15.
    226. Xu, C., W. Fan, et al. (2004). "Isolation and identification of swine influenza recombinant A/Swine/Shandong/1/2003(H9N2) virus." Microbes Infect 6(10): 919-25.
    227. Yamada, S., Y. Suzuki, et al. (2006). "Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptors." Nature 444(7117): 378-82.
    228. Yuen, K. Y., P. K. Chan, et al. (1998). "Clinical features and rapid viral diagnosis of human disease associated with avian influenza A H5N1 virus." Lancet 351(9101): 467-71.
    229. Zhou, J. Y., H. G. Shen, et al. (2006). "Characterization of a highly pathogenic H5N1 influenza virus derived from bar-headed geese in China." J Gen Virol 87(Pt 7): 1823-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700