家蚕生殖细胞发生与胚胎发育相关功能基因的蛋白质组研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
昆虫的生殖和胚胎发育是生命科学很重要的命题。家蚕是一种重要的经济昆虫和鳞翅目模式昆虫。了解家蚕的生殖和胚胎发育,对人类提高家蚕经济价值,利用自然界有益昆虫以及防治有害昆虫具有重要的理论意义和实用价值。随着家蚕基因组草图和精细图的完成,家蚕基因组研究进入后基因组时代,即以研究整个基因组的功能及生物学意义为目标。蛋白质组学是后基因组时代的研究热点。蛋白质作为基因表达的产物,生命过程的直接执行者,蛋白质组学成为基因功能注释很重要的方法。本研究用蛋白质组学方法研究了家蚕五龄期幼虫性腺蛋白质组表达谱与家蚕性连锁胚胎期致死突变体胚胎蛋白质组表达谱,通过生物信息学对鉴定蛋白的功能和调控路径进行了分析,挖掘其在生殖细胞发生和胚胎发育中的作用。本研究主要的内容和结果如下:
     (1)用shotgun的策略研究了家蚕P50品种五龄第5天幼虫精巢和卵巢组织的蛋白质组。分别以0.35%和0.49%的假阳性率(FDR)在精巢和卵巢中鉴定了285个和205个非冗余蛋白。通过对家蚕精巢和卵巢的蛋白质组表达谱比较,在鉴定的蛋白里面,有92个是精巢和卵巢共表达的,其余194个和113个分别为精巢和卵巢特异表达的。发现核糖体蛋白(Ribosomal proteins)是精巢和卵巢中鉴定最多的蛋白家族。核糖体是合成新蛋白的场所,暗示生殖细胞正在进行活跃的增殖和生长。根据多肽片段的光谱数目,Apolipophorin是精巢和卵巢中含量都较高的蛋白,暗示脂蛋白在精子和卵子发生过程中的重要作用。细胞视黄酸结合蛋白Cellular retinoic acid binding protein (CRABP)是家蚕精巢中丰度极高的蛋白。14-3-3epsilon protein是精巢中丰度较高的蛋白,暗示这些蛋白在精子形成过程中具有重要作用。发现多种30K蛋白家族成员在精巢中表达,暗示30K蛋白在家蚕精子形成过程中的作用。在卵巢中丰度较高的是微管蛋白(Tubulins),暗示微管蛋白在家蚕卵子发生过程中具有重要功能。对果蝇卵子发生过程的研究已揭示微管蛋白是卵母细胞确定、(胚胎发育)体轴建立以及运输母性RNA和蛋白所必需的,我们推测在家蚕卵子发生过程中可能也起这些重要功能。
     (2)一些在果蝇生殖细胞发育过程中很关键的基因蛋白也在家蚕中鉴定到同源蛋白。比如精巢中的减数分裂阻滞基因ALY与VISMAY,在卵巢中的胚胎发育形态素定位蛋白Exuperantia和Squid蛋白,表明家蚕和果蝇在精子分化和卵子发生等关键过程具有生物的保守性。
     (3)对精巢和卵巢共表达及特异表达蛋白进行生物信息学分析,揭示了家蚕精细胞和卵细胞形成相关的功能蛋白与生物学路径。基因本体(gene ontology)注释发现精巢和卵巢蛋白功能类没有较大差异,只有较少的类比如营养储存是卵巢特异的功能类。生物学路径分析发现细胞凋亡(apoptosis)、细胞周期(cell cycle).分化(differentiation).胚胎发生(embryogenesis).成熟(maturation).形态发生(morphogenesis)和迁移(migration)都是在精巢和卵巢中较丰富的生物学过程,表明精子和卵子发生的一般过程具有相似性,而相似的过程中特异的蛋白造成了最终精子和卵子在形态和功能上的差异。通过KEGG pathway分析发现涉及能量产生路径的蛋白在精巢中最丰富,这与精子需要动力的能量需求相一致。
     (4)对鉴定的精巢和卵巢部分蛋白进行了其基因在mRNA水平与蛋白水平相对表达量一致性的观察,发现一些基因在mRNA和蛋白水平的不一致。比如,fibroinase (BCP)和ALY在蛋白水平显示为精巢特异的,但它们的mRNA丰度在卵巢中比精巢中高。MLE protein (MLE)和cytochrome P4509G3(Cyp9g3),在蛋白水平显示是卵巢特异的,而在转录水平上,精巢中的表达丰度比在卵巢中要高。这些结果表明这些基因可能存在转录后调控。把我们蛋白鉴定的结果和基因芯片数据比较,发现很多蛋白基因都存在转录后调控现象,表明转录后调控在生殖细胞发生过程中是一个较普遍的现象。
     (5)对鉴定的精巢和卵巢蛋白基因进行染色体定位,发现性染色体含有更多精巢特异的蛋白基因,并且这些蛋白对精子的功能是必需的。
     (6)以性连锁平衡致死系自交系平2品种雌性胚胎为材料,用双向电泳蛋白质组学方法研究了致死基因l2的致死作用机理。通过对致死时期前致死胚胎和存活胚胎间的双向电泳蛋白质组表达谱比较,寻找在致死基因作用下蛋白质组表达的变化。致死时期的确定通过对致死胚胎特征性形态观察确定。致死时期前存活胚胎和致死胚胎的区分通过用与致死基因l2紧密连锁的多态性SSR标记进行鉴别区分。最终存活胚胎和致死胚胎间11个差异表达的蛋白点通过MALDI-TOF/TOF被成功鉴定。在这些鉴定的蛋白中,只有一个点在致死胚胎中总是上调表达,该蛋白点被鉴定为热激蛋白HSP20.4。推测小热激蛋白HSP20.4可能是致死基因作用下应激而上调表达,小热激蛋白主要起分子伴侣的作用,也有研究证明有些小热激蛋白与膜相关,起保护膜的作用,暗示致死胚胎中可能存在异常蛋白或者膜的损伤。对其余10个下调的蛋白进行GO功能分类注释发现它们参与胚胎发育、核苷代谢、tRNA剪切、翻译和蛋白折叠等功能。对这些下调蛋白进行生物学调控网络分析,发现这些蛋白主要参与纺锤体装配和形态发生等生物学过程。根据这些结果,我们推测l2的表达一定程度上影响了胚胎发育过程中的有丝分裂和形态发生过程。
     本研究结果丰富了家蚕性腺蛋白质组及家蚕胚胎发育功能基因组的信息,为阐明一些与家蚕生殖细胞发生与分化,以及胚胎发育相关的功能基因提供了蛋白质组水平的信息。更深层次地讲,我们家蚕性腺蛋白质组的结果也为家蚕性别决定机制提供了较丰富的蛋白质组水平的背景信息。
Reproduction and embryo development is the important field of life science. Silkworm is an economically important insects and Lepidopteran model. The knowledge of reproduction and embryo development in silkworm will facilitate the human in utilizing the beneficial insects and controlling the pest. With the completion of silkworm genome sequence, the functional genomics become the focus. Proteins, the products of genes, are the real executor in life processes. Therefore, proteomics has become one of major methods for functional genomics. Here, we used proteomics to study the proteome profile of silkworm gonads and sex-linked embryo lethal mutant embryos. The function and regulation network of those proteins identified were revealed using bioinformatics analysis, their roles in silkworm gametogenesis and embryo development were discussed. The main results are as follows:
     (1) Shotgun proteomics were used to profile the proteome of silkworm larval gonads at the fifth day of the fifth instar. Totally286and205non-redundant proteins were identified from silkworm testis and ovary, respectively, with false discovery rate (FDR) of0.35%and0.49%. Of those,92proteins were detected in both tissues, while194and113proteins were sex-specific. Ribosomal proteins were the most enriched are protein family both in testis and ovary, indicating active cell growth and proliferation in gametogenesis. Apolipophorin was the abundant proteins both in testis and ovary, giving a clue that lipoprotein has a role in spermatogenesis and oogenesis. According to the spectral count, cellular retinoic acid binding protein (CRABP) showed to be very high-abundant in testis and14-3-3epsilon protein is abundant in testis.30K proteins, one of the major plasma protein groups, were identified in testis specifically. Those abundant proteins in testis may be critical for spermatogenesis. Tubulins showed to be abundant in ovary. This may be consistent with the fundamental roles of tubulins in oogenesis. Tubulins have been revealed to participate in the oocyte specification, axis formation and transport of maternal mRNA and proteins in Drosophila melanogaster.
     (2) Several Drosophila essential proteins for gametogenesis were also identified their homologies in silkworm, such as male meiotic arrest gene product ALY and vismay in testis, and maternal mRNA localization protein exuperantia and squid in ovary. Those identifications reveal the conservation in spermatogenesis and oogenesis between Bombyx mori and Drosophila melanogaster.
     (3) The bioinformatics analysis on the common and sex-specific proteins provides system-level insights into the sexual dimorphism and gametogenesis. For example, the nutrient reservoir is the ovary-specific function category, while energy generation pathway enriched in testis.
     (4) The correlation of expression between mRNA and protein level of eleven genes were explored. Those11proteins genes representing common and sex-specifically expression were selected for qRT-PCR analysis. The qRT-PCR results showed discrepancy of some genes between mRNA and protein level. For instance, fibroinase (Bcp) and ALY showed testis-specific expression at protein level (Figure2A), while their mRNA abundance were higher in ovary than testis. MLE protein (MLE) and cytochrome P4509G3(Cyp9g3), showed ovary-specific at protein level, while expressed higher abundance in testis than in ovary at transcriptional level. Those results suggest post-transcriptional regulation of those genes may occur. We also compared our identification with the microarray-based studies performed by Xia et al. The discrepancy between mRNA and protein level indicated the occurrence of post-transtriptional regulations on many genes.
     (5) The chromosome contribution of our identified proteins was investigated. All the common, testis-and ovary-specific genes were mapped onto the silkworm chromosomes. The testis-specific genes were higher than the ovary-specific genes on the sex chromosome, showed that the Z chromosome contains more testis-specific genes as revealed at transcriptional level. Furthermore, those testis-specific proteins showed to have crucial roles in spermatogenesis.
     (6) To gain insight into the effect of one embryo-lethal gene l2, comparative proteomic analysis was carried out between the survival embryos and lethal embryos of the sex-linked balanced lethal (SLBL) strains of silkworm before the lethal stage. The lethal stage of h was confirmed by observing the typical dead embryo morphology. The two genotype embryos before lethal stage were distinguished using polymorphic simple sequence repeats (SSR) markers closely linked to l2on the sex chromosome. Finally,11differentially expressed protein spots were successfully identified by MALDI-TOF/TOF mass spectrometry (MS). Among them, only1protein identified as heat shock protein20.4(HSP20.4) was up-regulated in the lethal embryos, while the other10were down-regulated. Small heat shock proteins act as the molecular chaperon, having a role in protein folding. They were also evidenced to have a role in association with membrane protection. The up-regulation of HSP20.4suggests that there may be abnormal polypeptides or membrane harm in the lethal embryos. The gene ontology (GO) annotation indicated those down-regulated proteins are involved in important biological processes including embryo development, nucleoside metabolism, tRNA splicing, translation and protein folding. The biological pathway analysis showed that those down-regulated proteins are mainly involved in spindle assemblage and morphogenesis. Based on our results, we suggest that the expression of l2may be has a negative effect on mitosis and morphogenesis processes.
     Our data enriched the information of silkworm gonad proteomics and functional genome in silkworm embryo development. Those gonad proteome data further provide valuable background for silkworm gametogenesis and sex determination.
引文
1. Arunkumar KP, Mita K, Nagaraju J. The silkworm Z chromosome is enriched in testis-specific genes [J]. Genetics 2009,182,493-501.
    2. Balmer JE, Blomhoff R. Gene expression regulation by retinoic acid [J]. J. Lipid Res. 2002,43,1773-1808.
    3. Becalska AN, Kim YR, Belletier NG, Lerit DA, Sinsimer KS, Gavis ER. Aubergine is a component of a nanos mRNA localization complex [J]. Dev. Biol.2011,349,46-52.
    4. Beitel GJ, Lambie EJ, Horvitz HR. The C. elegans gene lin-9, which acts in an Rb-related pathway, is required for gonadal sheath cell development and encodes a novel protein [J]. Gene 2000,254,253-263.
    5. Berkowitz O, Jost R, Pollmann S, Maslea J. Characterization of TCTP, the translationally controlled tumor protein, from Arabidopsis thaliana. The Plant Cell 2008,20, 3430-3447.
    6. Berleth T, Burri M, Thoma G, Bopp D, Richstein S, Frigerio G, Noll M, Nusslein-Volhard C. The role of localization of bicoid RNA in organizing the anterior pattern of the Drosophila embryo [J]. EMBOJ.1988,7,1749-1756.
    7. Bhatt AM, Zhang Q, Harris SA, White-CooperH, Dickinson H. Gene structure and molecular analysis of Arabidopsis thaliana ALWAYS EARLY homologs [J].Gene 2004, 336,219-229.
    8. Bogard N, Lan L, Xu J, Cohen RS. Rabl1 maintains connections between germline stem cells and niche cells in the Drosophila ovary [J]. Development 2007,134,3413-3418.
    9. Bommer UA, Borovjagin AV, Greagg MA, Jeffrey IW, Russell P, Laing KG, Lee M, Clemens MJ. The mRNA of the translationally controlled tumour protein P23/TCTP is a highly structured RNA, which activates the dsRNA-dependent protein kinase PKR. RNA 2002,8,478-496.
    10. Bradford MM. A rapid and sensitive method for the quantification of microgram qualities of proteins utilizing the principle of protein-dye binding. Anal. Biochem.1976, 72,248-254.
    11. Buszczak M, Cooley L. Eggs to die for:cell death during Drosophila oogenesis [J]. Cell Death Differ.2000,7,1071-1074.
    12. Charlesworth B. The evolution of chromosomal sex determination and dosage compensation [J]. Curr. Biol.1996,6,149-162.
    13. Chen HQ, Yao Q, Bao F, Chen KP, Liu XY, Li J, Wang L. Comparative proteome analysis of silkworm in its susceptibility and resistance responses to Bombyx mori densonucleosis virus. Intervirol 2011.
    14. Chen JE, Yang HJ, Li JY, Shen YW, Zhong BX. Larva-relevant genes expression in embryonic development stages of domesticated silkworm(Bombyx mori L.) [J]. J Zhejiang Univ Agric Life Sci.2008,34,38-44.
    15. Chen SH, Wu PS, Chou CH, Yan YT, Liu H, Weng SY, Yang-Yen HF. A knockout mouse approach reveals that TCTP functions as an essential factor for cell proliferation and survival in a tissue-or cell type-specific manner. Mol Biol. Cell.2007,18, 2525-2532.
    16. Cheng CY, Mruk D. Cell junction dynamics in the testis:Sertoli-germ cell interactions and male contraceptive development [J]. Physiol. Rev.2002,82,825-874.
    17. Chintapalli V, Wang J, Dow J. Using FlyAtlas to identify better Drosophila models of human disease [J]. Nat. Genet.2007,39,715-720.
    18. Dasso M. Running on Ran:nuclear transport and the mitotic spindle. Cell 2001,104, 321-324.
    19. de Cuevas M, Lee JK, Spradling AC. a-spectrin is required for germline cell division and differentiation in the Drosophila ovary [J]. Development 1996,122,3959-3968.
    20. Dobens LL, Raftery LA. Integration of epithelial patterning and morphogenesis in Drosophila ovarian follicle cells [J]. Dev. Dyn.2000,218(1),80-93.
    21. Dorus S, Busby SA, Gerike U, Shabanowitz J, Hunt DF, Karr TL. Genomic and functional evolution of the Drosophila melanogaster sperm proteome [J]. Nat.Genet. 2006,38,1440-1445.
    22. Du X, Li J, Chen Y. Proteomic analysis of sericin in Bombyx mori cocoons [J]. Biotechnol Bioprocess Eng.2011,16,438-444.
    23. Edwards K, Kiehart D. Drosophila non-muscle myosin Ⅱ has multiple essential roles in imaginal disc and egg chamber morphogenesis [J]. Development 1996,122,1499-1511.
    24. Elias JE, Gygi SP. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry [J]. Nat. Methods 2007,4,207-214
    25. Enayati AA, Ranson H, Hemingway J. Insect glutathione transferases and insecticide resistance [J]. Insect. Mol. Biol.2005,14.3-8.
    26. Ephrussi A, Dickinson LK, Lehmann R. oskar organizes the germ plasm and directs localization of the posterior determinant nanos [J]. Cell 1991.66.37-50
    27. Fabrizio JJ, Hime GR, Lemmon SK. Bazinet C. Genetic dissection of sperm individualisation in Drosophila melanogaster [J]. Development 1998,125,1833-1843.
    28. Fischer G, Wittmann-Liebold B, Lang K, Kiefhaber T, Schmid FX. Cyclophilin and peptidyl-prolyl cis-trans isomerase are probably identical proteins [J]. Nature 1989,337, 476-478.
    29. Fortier TM, Vasa PP, Woodard CT. Orphan nuclear receptor_FTZ-F1 is required for muscle-driven morphogenetic events at the prepupal-pupal transition in Drosophila melanogaster [J]. Dev. Biol.2003,257,153-165.
    30. Franklin-Dumont TM; Chatterjee C; Wasserman SA, Dinardo S. A novel eIF4G homolog, Off-schedule, couples translational control to meiosis and differentiation in Drosophila spermatocytes [J]. Development 2001,134,2851-2861.
    31. Fujii T, Shimada T. Sex determination in the silkworm, Bombyx mori:A female determinant on the W chromosome and the sex-determining gene cascade [J]. Semin. Cell Dev. Biol.2007,18,379-388.
    32. Funaguma S, Hashimoto S, Suzuki Y, Omuro N, Sugano S, Mita K, Katsuma S, Shimada T. SAGE analysis of early oogenesis in the silkworm, Bombyx mori [J]. Insect Biochem. Mol. Biol.2007,37,147-154.
    33. Gachet Y, Tournier S, Lee M, Lazaris-Karatzas A, Poulton T, Bommer UA. The growth-related, translationally controlled protein P23 has properties of a tubulin binding protein and associates transiently with microtubules during the cell cycle[J]. J Cell Sci. 1999,112,1257-1271.
    34. Garcia-Herrero S, Garrido N, Martinez-Conejero JA, Remohi J, Pellicer A, Meseguer M. Ontological evaluation of transcriptional differences between sperm of infertile males and fertile donors using microarray analysis [J]. J. Assist Reprod. Genet.2010,27, 111-120.
    35. Gharahdaghi F, Weinberg CR, Meagher DA, Imai BS, Mische SM. Mass spectrometric identification of proteins from silver-stained polyacrylamide gel:A method for the removal of silver ions to enhance sensitivity [J]. Electrophoresis 1999,20,601-605.
    36. Goff SA, Goldberg AL. Production of abnormal proteins in E. coli stimulates transcription of Ion and other heat shock genes [J]. Cell 1985,41,587-595.
    37. Goldsmith MR, Shimada T, Abe H. The genetics and genomics of the silkworm, Bombyx mori [J].Annu. Rev. Entomol.2005,50,71-100.
    38. Gonza'lez-Reyes A, Elliott H, St. Johnston D. Polarization of both major body axes in Drosophila by gurken-torpedo signaling [J]. Nature 1995,375,654-658.
    39. Gould-Somero M, Holland L. The timing of RNA synthesis for spermiogenesis in organ cultures of Drosophila melanogaster testes [J]. Dev. Genes Evol.1974,174,133-148
    40. Groh KJ, Nesatyy VJ, Segner H, Eggen RI, Suter MJ. Global proteomics analysis of testis and ovary in adult zebrafish(Danio rerio) [J]. Fish Physiol. Biochem.2011,37, 619-647.
    41. Guo X, Zhang P, Huo R, Zhou Z, Sha J. Analysis of the human testis proteome by mass spectrometry and bioinformatics [J]. Proteomics Clin. Appl.2008,2,1651-1657.
    42. Haass C, Klein U, Kloetzel PM. Developmental expression of Drosophila melanogaster small heat-shock proteins [J]. J. Cell. Sci.1990,96,413-418.
    43. Hasimoto H. The role of the W-chromosome in the sex determination of Bombyx mori [J]. Jpn. J. Genet.1933,8,245-247.
    44. He P, He HZ, Dai J, Wang Y, Sheng QH; Zhou LP, Zhang ZS, Sun YL, Liu F, Wang K, Zhang JS, Wang HX, Song ZM, Zhang HR, Zeng R, Zhao X. The human plasma proteome:analysis of Chinese serum using shotgun strategy [J]. Proteomics 2005,5, 3442-3453.
    45. Hecht NB. Molecular mechanisms of male germ cell differentiation [J]. BioEssays 1998, 20,551-561.
    46. Hense W, Baines JF, Parsch J. X Chromosome inactivation during Drosophila spermatogenesis [J]. PLoS Biol.2007,5(10), e273.
    47. Hime GR, Brill JA, Fuller MT. Assembly of ring canals in the male germ line from structural components of the contractile ring [J].J. Cell Sci.1996,109,2779-2788.
    48. Hoff H, Zhang H, Sell C. Protein degradation via the proteosome [J]. Methods. Mol. Biol. 2004,285,79-92.
    49. Holm PB. Rasmussen, SW. Chromosome pairing, recombination nodules and chiasma formation in diploid Bombyx males [J]. Carhberg Res. Comnnm.1980.45.483-548.
    50. Horbitiz J. a-Crystallin can function as a molecular chaperone [J]. Proc. Nadl. Acad. Sci. USA 1992,89,10449-10453.
    51. Hossain T, Teshiba S, Shigeoka Y. Fujisawa T, Inoko Y, Sakano D, Yamamoto K, Banno Y, Aso Y. Structural properties of silkworm small heat-shock proteins:sHSP19.9 and sHSP20.8 [J]. Biosci Biotechnol Biochem.2010,74,1556-1563.
    52. Hou Y, Zou Y, Wang F, Gong J, Zhong XW. Xia QY. Zhao P. Comparative analysis of proteome maps of silkworm hemolymph during different developmental stages [J]. Proteome. Sci.2010,8.45-54.
    53. Hsu YC, Chern JJ, Cai Y, Liu MY, Choi KW. Drosophila TCTP is essential for growth and proliferation through regulation of dRheb GTPase [J]. Nature 2007,445.85-788.
    54. Huang LH, Wang CZ, Le K. Cloning and expression of five heat shock protein genes in relation to cold hardening and development in the leafminer, Liriomyza sativa [J]. J. Insect. Physiol 2009,55:279-285.
    55. Huettner AF. The origin of the germ cells in Drosophila melanogaster [J]. J. Morphol. 1923,37,385-423.
    56. International Silkworm Genome Consortium. The genome of a lepidopteran model insect, the silkworm Bombyx mori[J]. Insect Biochem. Mol. Biol.2008,38,1036-1045.
    57. Jakobt UM, Gaestel P, Engel K, Buchner J. Small heat shock proteins are molecular chaperones [J]. The journal of biological chemistry 1993,268,1517-1520.
    58. Johnstone O, Lasko P. Translational regulation and RNA localization in Drosophila oocytes and embryos [J]. Annu. Rev. Genet.2001,35,365-406.
    59. Kagiwada S, Hosaka K, Murata M, Nikawa J, Takatsuki A. The Saccharomyces cerevisiae SCS2 gene product, a homolog of a synaptobrevin-associated protein, is an integral membrane protein of the endoplasmic reticulum and is required for inositol metabolism [J]. J. Bacteriol.1998,180,1700-1708.
    60. Kawasaki H, Sugaya K, Quan GX, Nohata J, Mita K. Analysis of α-and β-tubulin genes of Bombyx mori using an EST database[J]. Insect Biochem Mol Biol 2003,33,131-137.
    61. Kawooya JK, Law JH. Role of lipophorin in lipid transport to the insect egg [J]. J. Biol. Chem.1988,263,8748-8753.
    62. Keller Larkin M, Deng WM, Holder K, Tworoger M, Clegg N, Ruohola-Baker H. Role of Notch pathway in terminal follicle cell differentiation during Drosophila oogenesis [J]. Dev. Genes Evol.1999,209,301-311.
    63. Kiger AA, Jones DL, Schulz C, Rogers MB, Fuller MT. Stem cell selfrenewal specified by JAK-STAT activation in response to a support cell cue [J]. Science 2001,294, 2542-2545.
    64. King RC. Ovarian development in Drosophila melanogaster [M]. Academic Press, New York, London, San Francisco,1970.
    65. King RW, Desharies RJ, Peters JM. How proteolysis drives the cell cycle [J]. Science 1996,274,1652-1659.
    66. Kirilly D, Xie T. The Drosophila ovary:an active stem cell community [J]. Cell Res. 2007,17,15-25.
    67. Koike Y, Mita K, Suzuki MG, Maeda S, Abe H, Osoegawa K, deJong PJ, Shimada T. Genomic sequence of a 320-kb segment of the Z chromosome of Bombyx mori containing a kettin ortholog [J]. Mol. Genet. Genomics 2003,269,137-149.
    68. Korenjak M, Taylor-Harding B, Binne UK, Satterlee JS, Stevaux O, Aasland R, White-Cooper H, Dyson N, Brehm A. Native E2F/RBF complexes contain Myb-interacting proteins and repress transcription of developmentally controlled E2F target genes [J]. Cell 2004,119,181-193.
    69. Koubova J, Menke DB, Zhou Q, Capel B, Griswold MD, Page DC. Retinoic acid regulates sex-specific timing of meiotic initiation in mice [J]. Proc. Natl. Acad. Sci. US A 2006,103,2474-2479.
    70. Kulakosky PC, Telfer WH. Lipophorin as a yolk precursor in Hyalophora cecropia: Uptake kinetics and competition with vitellogenin [J]. Arch. Biochem. Biophys.1990,14, 269-285.
    71. Lasko P. RNA sorting in Drosophila oocytes and embryos [J]. FASEB J.1999,13,421-433.
    72. Leatherman JL, Dinardo S. Zfh-1 controls somatic stem cell self-renewal in the Drosophila testis and nonautonomously influences germline stem cell selfrenewal [J].Cell Stem Cell 2008,3,44-54.
    73. Lee T, Feig L, Montell D. Two distinct roles for ras in a developmentally regulated cell migration [J]. Development 1996,122,409-418.
    74. Lewis PW, Beall EL. Fleischer TC, Georlette D, Link AJ, Botchan M. Identification of a Drosophila Myb-E2F2/RBF transcriptional repressor complex [J]. Genes & Dev.2004, 18,2929-2940.
    75. Li FB, Liu Y, Niu BL, Chen JE, Wang HL, He XL, Weng HB, He LH, Shen WF, Meng ZQ. A preliminary study on the histomorphology of female embryos from a sex linked balanced lethal silkworm strain [J]. Science of Sericulture 2010,36,0529-0533.
    76. Li J, Moghaddam S H, Du X, Zhong B X, Chen Y Y. Comparative analysis on the expression of inducible HSPs in the silkworm, Bombyx mori [J]. Mol. Biol. Rep.2012, 39,3915-3923.
    77. Li JY, Chen X, Fan W, Hosseini Moghaddam SH, Chen M, Zhou ZH, Yang HJ, Chen JE, Zhong BX. Proteomic and bioinformatic analysis on endocrine organs of domesticated silkworm, Bombyx mori L. for a comprehensive understanding of their roles and relations [J]. J. Proteome Res.2009a,8,2620-2632.
    78. Li JY, Chen X, Hosseini Moghaddam, SH, Chen M, Wei H, Zhong B X. Shotgun proteomics approach to characterizing the embryonic proteome of the silkworm, Bombyx mori, at labrum appearance stage [J]. Insect Mol.Biol.2009b,18,649-660.
    79. Li JY, Hosseini Moghaddam SH, Chen JE, Chen M, Zhong BX. Shotgun proteomic analysis on the embryos of silkworm Bombyx mori at the end of organogenesis [J]. Insect. Biochem. Mol. Biol.2010,40,293-302.
    80. Li JY, Li JS, Zhong BX. Proteomic profiling of the hemolymph at the fifth instar of the silkworm Bombyx mori [J]. Insect Sci.2011a,19,441-454.
    81. Li JY, Yang HJ, Lan TY, Wei H, Zhang HR, Chen M, Fan W, Ma YY, Zhong BX. Expression profiling and regulation of genes related to silkworm posterior silk gland development and fibroin synthesis [J]. J. Proteome Res.2011b,10,3551-3564.
    82. Li XH, Wu XF, Yue WF, Liu JM, Li GL, Miao YG. Proteomic analysis of the silkworm (Bombyx mori L.) hemolymph during developmental stage [J]. J. Proteome Res.2006,5, 2809-2814.
    83. Lin H, Spradling AC. Fusome asymmetry and oocyte determination in Drosophila [J]. Dev. Genet.1995,16,6-12.
    84. Lin H, Spradling AC. Germ line stem cell division and egg chamber development in transplanted Drosophila germaria [J]. Dev. Biol.1993,159,140-152.
    85. Lin TY, Viswanathan S, Wood C, Wilson PG, Wolf N, Fuller MT. Coordinate developmental control of the meiotic cell cycle and spermatid differentiation in Drosophila males [J]. Development 1996,122,1331-1341.
    86. Liu H, Sadygov RG, Yates JR 3rd. A model for random sampling and estimation of relative protein abundance in shotgun proteomics [J].Anal. Chem.2004,76,4193-4201.
    87. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method [J]. Methods 2001,25,402-408.
    88. Lu KP, Hanes SD, Hunter T. A human peptidylprolyl isomerase essential for regulation of mitosis [J]. Nature 1996,380,544-547.
    89. Lui WY, Mruk DD, Lee WM, Cheng CY. Adherens junction dynamics in the testis and spermatogenesis [J]. J.Androl,2003,24,1-14.
    90. MacRae TH. Structure and function of small heat shock:a-crystallin proteins: established concepts and emerging ideas [J]. Cell. Mol. Life Sci.2000,57,899-913.
    91. Margaritis L, Kafatos F, Petri W. The eggshell of Drosophila melanogaster. I. Fine structure of the layers and regions of the wild-type eggshell [J]. J. Cell Sci.1980,43, 1-35.
    92. Margolis J, Spradling A. Identification and behavior of epithelial stem cells in the Drosophila ovary [J]. Development 1995,121,3797-3807.
    93. Matouschek A, Rospert S, Schmid K, Gllick B, Schatz G. Cyclophilin catalyzes protein folding in yeast mitochondria [J]. Proc. Natl. Acad. Sci. USA.1995,92,6319-6323.
    94. Miao XX, Xub SJ, Li MH, Li MW, Huang JH, Dai FY, Marino SW, Mills DR, Zeng P, Mita K, Jia SH, Zhang Y, Liu WB, Xiang H, Guo QH, Xu AY, Kong XY, Lin HX, Shi YZ, Lu G, Zhang X, Huang W, Yasukochi Y, Sugasaki T, Shimada T, Nagaraju J, Xiang ZH, Wang SY, Goldsmith MR, Lu C, Zhao GP, Huang YP. Simple sequence repeat-based consensus linkage map of Bombyx mori [J]. Proc Natl Acad Sci U S A. 2005,102,16303-16308.
    95. Mita K, Kasahara M, Sasaki S, Nagayasu Y, Yamada T, Kanamori H, Namiki N, Kitagawa M, Yamashita H, Yasukochi Y, Kadono-Okuda K, Yamamoto K, Ajimura M, Ravikumar G, Shimomura M, Nagamura Y, Shin-I T, Abe H, Shimada T, Morishita S, Sasaki T. The genome sequence of silkworm, Bombyx mori [J]. DNA Res.2004,11, 27-35.
    96. Muller HJ. Artificial transmutation of the gene [J]. Science 1927,66,84-87.
    97. Muller HJ. Genetic variability, twin hybrids and constant hybrids, in a case of balanced lethal factors [J]. Genetics 1918,3,422-499.
    98. Nesvizhskii AI, Aebersold R. Interpretation of shotgun proteomic data:the protein inference problem [J]. Mol. Cell. Proteomics.2005,4,1419-1440.
    99. Neuman-Silberberg FS, Schupbach T. The Drosophila dorsoventral patterning gene gurken produces a dorsally localized RNA and encodes a TGF-like protein [J]. Cell 1993,75,165-174.
    100. Niewiadomska P, Godt D, Tepass U. DE-Cadherin is required for intercellular motility during Drosophila oogenesis [J]. J. Cell Biol 1999,144,533-547.
    101. Nikitin A, Egorov S, Daraselia N, Mazo I. Pathway studio-the analysis and navigation of molecular networks [J]. Bioinformatics 2003,19,2155-2157.
    102. Nishida H. Patterning the marginal zone of early ascidian embryos:localized maternal mRNA and inductive interactions [J]. Bioessays 2002,24,613-624.
    103.Norvell A, Debec A, Finch D, Gibson L, Thoma B. Squid is required for efficient posterior localization of oskar mRNA during Drosophila oogenesis [J]. Dev. Genes Evol. 2005.215.340-349.
    104. Norvell A, Kelley RL, Wehr K. Schupbach T. Specific isoforms of Squid, a Drosophila hnRNP, perform distinct roles in Gurken localization during oogenesis [J]. Genes Dev. 1999.13,864-876.
    105. O'Farrell PH. High resolution two-dimensional electrophoresis of proteins [J]. J. Biol. Chem.1975,250,4007-4021.
    106. Orikasa C, Yamauchi H, Nagasawa H, Suzuki A, Nagata M. Induction of oocyte-nurse cell differentiation in the ovary by the brain during the initial stage of oogenesis in the silkworm, Bombyx mori (Lepidoptera:Bombycidae) [J]. Appl. Entomol. Zool.1993,28, 303-311.
    107. Osanai M, Kasuga H, Aigaki T. Physiology of sperm maturation in the spermatophore of the silkworm, Bombyx mori [J]. Adv. Invert. Reprod.1990,5,531-536.
    108. Parisi M, Nuttall R, Edwards P, Minor J, Naiman D, Lii J, Doctolero M, Vainer M, Chan C, Malley J, Eastman S, Oliver B. A survey of ovary-, testis-, and soma-biased gene expression in Drosophila melanogaster adults [J]. Genome Biol.2004,5, R40.
    109. Parisi M, Nuttall R, Naiman D, Bouffard G, Malley J, Andrews J, Eastman S, Oliver B. Paucity of genes on the Drosophila X chromosome showing male-biased expression [J].Science 2003,299,697-700.
    110. Pokrywka NJ, Stephenson EC. Microtubules mediate the localization of bicoid RNA during Drosophila oogenesis [J]. Development 1991,113,55-66.
    111. Polesello C, Delon I, Valenti P, Ferrer P, Payre F. Dmoesin controls actin-based cell shape and polarity during Drosophila melanogaster oogenesis [J]. Nat. Cell Biol.2002,4, 782-789.
    112. Porter ME. Axonemal dyneins:assembly, organization, and regulation [J]. Curr. Opin. Cell Biol.1996,8,10-17.
    113. Poulson DF. Chromosomal deficiencies and the embryonic development of Drosophila melanogaster [J]. Proc.Natl. Acad. Sci. USA 1937,23,133-137.
    114. Poulson DF. Histogenesis, organogenesis, and differentiation in the embryo of Drosophila melanogaster [M]. In The Biology of Drosophila. New York:Wiley,1950.
    115. Print CG, Loveland KL. Germ cell suicide:new insights into apoptosis during spermatogenesis [J]. Bioessays 2000,22,423-430.
    116. Quraishe S, Asuni A, Boelens WC, O'Connor V, Wyttenbach A. Expression of the small heat shock protein family in the mouse CNS:Differential anatomical and biochemical compartmentalization [J]. Neuroscience 2008,153:483-491.
    117. Rasmussen SW. The meiotic prophase in Bombyx mori females analyzed by three-dimensional reconstructions of synaptonemal complexes [J]. Chromosoma 1976, 54,245-293.
    118. Rasmussen SW. The transformation of the synaptonemal complex into the "elimination chromatin" in Bombyx mori oocytes [J]. Chromosoma 1977,60,205-221.
    119. Rice WR. Evolution of the Y sex chromosome in animals [J]. Bioscience 1996,46. 331-343.
    120. Riemann JG, Gassner G. Ultrastructure of Lepidopteran sperm within spermatheca [J], Ann. Entomol. Soc. Am.1973,66,154-159.
    121. Roth S, Neuman-Silberberg FS, Barcelo G, Schupbach T. cornichon and the EGF receptor signaling process are necessary for both anterior-posterior and dorsal-ventral pattern formation in Drosophila [J]. Cell 1995,81,967-978.
    122. Ruohola H, Bremer KA, Baker D, Swedlow JR, Jan LY, Jan YN. Role of neurogenic genes in establishment of follicle cell fate and oocyte polarity during oogenesis in Drosophila [J]. Cell 1991,66,433-449.
    123. Samali A, Orrenius S. Heat shock proteins:regulators of stress response and apoptosis [J]. Cell Stress Chaperones 1998,3,228-236.
    124. Schafer M, Nayernia K, Engel W, Schfer U. Translational control in spermatogenesis [J]. Dev.Biol.1995,172,344-352.
    125. Schenk S, Hoeger U. Lipid Accumulation and metabolism in polychaete spermatogenesis:role of the large discoidal lipoprotein [J]. Mol. Reprod. Dev.2010, 77.710-719.
    126. Schirmer EC. Florens L, Guan T, Yates JR 3rd, Gerace L. Nuclear membrane proteins with potential disease links found by subtractive proteomics [J]. Science 2003.301, 1380-1382.
    127. Sherman MY, Goldberg AL. Cellular defenses against unfolded review proteins:A cell biologist thinks about neurodegenerative diseases [J]. Neuron 2001,29,15-32.
    128. Shevchenko A, Tomas H, Havlis J. Olsen JV, Mann M. In-gel digestion for mass spectrometric characterization of proteins and proteomes [J]. Nat. Protoc.2006,1, 2856-2860.
    129. Song X. Zhu CH. Doan C, Xie T. Germline stem cells anchored by adherens junctions in the Drosophila ovary niches [J]. Science 2002,296,1855-1857.
    130. St. Johnston D, Nusslein-Volhard C. The origin of pattern and polarity in the Drosophila embryo [J]. Cell 1992,68,201-219.
    131. Steinhauer J. Kalderon D. Microtubule polarity and axis formation in the Drosophila oocyte [J]. Dev. Dyn.2006,235,1455-1468.
    132. Strunnikov VA. On the prospects of using balanced sex linked lethals for insect pest control [J]. Theor. Appl. Genet.1979,55,17-21.
    133. Strunnikov VA. Sex control in silkworms [J]. Nature 1975,255,111-113.
    134. Su TT, Parry DH. Donahoe B, Chien CT, O'Farrell PH, Purdy A. Cell cycle roles for two 14-3-3 proteins during Drosophila development [J]. J. Cell Sci.2001,114, 3445.3454.
    135. Subramanian A, Prokop A, Yamamoto M, Sugimura K, Uemura T, Betschinger J, Knoblich J A, Volk T. Shortstop recruits EB1/APC1 and promotes microtubule assembly at the muscle-tendon junction[J]. Curr. Biol.2003,13,1086-1095.
    136. Suzuki MG, Funaguma S, Kanda T, Tamura T, Shimada T. Analysis of the biological functions of a doublesex homologue in Bombyx mori [J]. Dev. Genes Evol.2003,213, 345-354.
    137. Swan A, Nguyen T, Suter B. Drosophila Lissencephaly-1 functions with Bic-D and dynein in oocyte determination and nuclear positioning [J]. Nat. Cell Biol.1999,1, 444-449.
    138. Tazima Y. The genetics of the silkworm [M]. London:Logos Press.1964.
    139. Theurkauf WE, Smiley S, Wong ML, Alberts BM. Reorganization of the cytoskeleton during Drosophila oogenesis:implications for axis specification and intercellular transport [J]. Development 1992,115(4),923-936.
    140. Thiele H, Berger M, Lenzner C, Kuhn H, Thiele BJ. Structure of the promoter and complete sequence of the gene coding for the rabbit translationally controlled tumor protein (TCTP) P23 [J]. Eur J Biochem.1998,257,62-68.
    141. Trieselmann N, Wilde A. Ran Localizes around the Microtubule Spindle In Vivo during Mitosis in Drosophila Embryos [J]. Curr. Biol.2002,12,1124-1129.
    142. Tsuchida K, Yokoyam T, Sakudoh T, Katagiri C, Tsurumaru S, Takada N, Fujimoto H, Ziegler R, Iwano H, Hamano K, Yaginuma T. Apolipophorin-III expression and low density lipophorin formation during embryonic development of the silkworm, Bombyx mori [J]. Comp. Biochem. Physiol. Part B.2010,155,363-370.
    143. Uechi T, Nakajima Y, Nakao A, orihara HT, Chakraborty A, Inoue K, Kenmochi N. Ribosomal protein gene knockdown causes developmental defects in Zebrafish [J]. PLoS ONE 2006, e37,1-7.
    144. Vardanyan A, Atanesyan L, Egli D, Raja S, Steinmann-Zwicky M, Renkawitz-Pohl R, Georgiev O, Schaffner W. Dumpy-30 family members as determinants of male fertility and interaction partners of metal-responsive transcription factor 1 (MTF-1) in Drosophila [J]. BMC Dev.Biol.2008,8,68-80.
    145. Vernet N, Dennefeld C, Rochette-Egly C, Oulad-Abdelghani M, Chambon P, Ghyselinck NB, Mark M. Retinoic acid metabolism and signaling pathways in the adult and developing mouse testis [J]. Endocrinology 2005,147,96-110.
    146. Wang F, Hanske M, Miedema K, Klein G, Ekblom P, Hennig W. Laminin in the Male Germ Cells of Drosophila [J].J. Cell Biol.1992,119,977-988.
    147. Wang K, Spector A. a-Crystallin stabilizes actin filaments and prevents cytochalasin-induced depolymerization in a phosphorylation-dependent manner [J]. Eur. J. Biochem.1996,242,56-66.
    148. Wang Z, Mann RS. Requirement for two nearly identical TGIF-related homeobox genes in Drosophila spermatogenesis [J]. Development 2003,130,2853-2865.
    149. Washburn MP,Wolters D,Yates JR 3rd.Large-scale analysis of the yeast proteome by multidimensional protein identification technology[i].Nat. Biotechnol.2001,19, 242-247.
    150. White-Cooper H, Schafer MA, Alphey LS, Fuller MT. Transcriptional and post-transcriptional control mechanisms coordinate the onset of spermatid differentiation with meiosis I in Drosophila [J]. Development 1998,125,125-134.
    151. Wu CI, Xu EY. Sexual antagonism and X inactivation--the SAXI hypothesis [J]. Trends Genet.2003,19,243-247.
    152. Wylie C. Germ Cells [J]. Cell 1999,96,165-174.
    153. Xia Q, Cheng D, Duan J, Wang G, Cheng T, Zha X, Liu C, Zhao P, Dai F, Zhang Z, He N, Zhang L, Xiang Z. Microarray-based gene expression profiles in multiple tissues of the domesticated silkworm, Bombyx mori [J]. Genome Biol.2007,8, R162.
    154. Xia Q, Zhou Z, Lu C, Cheng D, Dai F, Li B, Zhao P, Zha X, Cheng T, Chai C, Pan G, Xu J, Liu C, Lin Y, Qian J, Hou Y, Wu Z, Li G, Pan M, Li C, Shen Y, Lan X, Yuan L, Li T, Xu H, Yang G, Wan Y, Zhu Y, Yu M, Shen W, Wu D, Xiang Z, Yu J, Wang J, Li R, Shi J, Li H, Li G, Su J, Wang X, Li G, Zhang Z, Wu Q, Li J, Zhang Q, Wei N, Xu J, Sun H, Dong L, Liu D, Zhao S, Zhao X, Meng Q, Lan F, Huang X, Li Y, Fang L, Li C, Li D, Sun Y, Zhang Z, Yang Z, Huang Y, Xi Y, Qi Q, He D, Huang H, Zhang X, Wang Z, Li W, Cao Y, Yu Y, Yu H, Li J, Ye J, Chen H, Zhou Y, Liu B, Wang J, Ye J, Ji H, Li S, Ni P, Zhang J, Zhang Y, Zheng H, Mao B, Wang W, Ye C, Li S, Wang J, Wong GK, Yang H. A draft sequence for the genome of the domesticated silkworm(Bombyx mori) [J]. Science 2004.306,1937-1940.
    155. Xie T. Spradling AC. A niche maintaining germ line stem cells in the Drosophila ovary [J]. Science 2000,290,328-330.
    156. Yamauchi H, Yoshitake N. Developmental stages of ovarian follicles of the silkworm. Bombyx mori L [J]. J. Morphol.1984,179,21-31.
    157. Yang HJ. Zhou ZH, Zhang HR, Chen M, Li JY, Ma YY, Zhong BX. Shotgun proteomic analysis of the fat body during metamorphosis of domesticated silkworm (Bombyx mori) [J]. Amino Acids,2010,38,1333-1342.
    158. Yao HP, Xiang XW, Chen L, Guo AQ, He FQ, Lan LP, Lu XM, Wu XF. Identification of the proteome of the midgut of silkworm, Bombyx mori L, by multidimensional liquid chromatography (MDLC) LTQ-Orbitrap MS [J]. Biosci. Rep.2009,29,363-373.
    159. Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J.; Li S.; Li R.; Bolund L, Wang J. WEGO:a web tool for plotting GO annotations [J]. Nucleic Acids Res.2006,34 (Web Server issue), W293-297.
    160. Zalewska M, Kochman A, Esteve JP, Lopez F, Chaoui K, Susini C, Ozyhar A, Kochman M. Juvenile hormone binding protein traffic-interaction with ATP synthase and lipid transfer proteins [J]. Biochim. Biophys. Acta. Biomembranes 2009,1788,1695-1705.
    161. Zarnescu DC, Thomas GH. Apical spectrin is essential for epithelial morphogenesis but not apicobasal polarity in Drosophila [J]. J. Cell Biol.1999,146,1075-1086.
    162. Zha X, Xia Q, Duan J, Wang C, He N, Xiang Z. Dosage analysis of Z chromosome genes using microarray in silkworm, Bombyx mori [J]. Insect Biochem. Mol. Biol.2009, 39,315-321.
    163. Zhang P, Aso Y, Yamamoto K, Banno Y, Wang Y, Tsuchida K, Kawaguchi Y, Fujii H. Proteome analysis of silk gland proteins from the silkworm, Bombyx mori [J]. Proteomics 2006,6,2586-2599.
    164. Zhang Y, Dong Z, Liu S, Yang Q, Zhao P, Xia Q. Identification of novel members reveals the structural and functional divergence of Lepidopteran-specific lipoprotein_11 family [J]. Fund. Integr. Genomics 2012, Online FirstTM.
    165. Zhong BX, Li JK, Lin JR, Liang JS, Su SK, Xu HS, Yan HY, Zhang PB, Fujii H. Possible effect of 30K proteins in embryonic development of silkworm Bombyx mori [J]. Acta Biochim. Biophys. Sin.2005,37,355-361.
    166. Zhou ZH, Yang HJ, Chen M, Lou CF, Zhang YZ, Chen KP, Wang Y, Yu ML, Yu F, Li JY, Zhong BX. Comparative proteomic analysis between the domesticated silkworm (Bombyx mori) reared on fresh mulberry leaves and on artificial diet [J]. J. Proteome Res. 2008,7,5103-5111.
    167. Zhu J, Indrasith LS, Yamashita O. Characterization of vitellin, egg-specific protein and 30 kDa protein from Bombyx eggs, and their fates during oogenesis and embryogenesis [J]. Biochim. Biophys. Acta 1986,882,427-436.
    168. Zipperlen P, Fraser AG, Kamath RS, Martinez-Campos M, Ahringer J. Roles for 147 embryonic lethal genes on C.elegans chromosome I identified by RNA interference and video microscopy [J]. EMBO. J.2001,20,3984-3992.
    169.柴春利,鲁成.从形态学不同到基因水平差异:家蚕与果蝇早期胚胎发育比较[J].遗传,2006,28,1173-1179.
    170.陈萍.家蚕胚胎期伴性温敏性与伴性赤蚁sch基因及亲本的关系研究[J].蚕业科学,2007,33,284-287.
    171.高见丈夫,北泽敏男.家蚕胚子发生阶段表:日122号,日124号,支122号,支124号[J].蚕丝试验场报告,1960,75,1-31.
    172.郭秋红,李木旺,李明辉,司科,苗雪霞,徐安英,黄勇平.利用SSR标记鉴定家蚕不同系统的品种初探[J].蚕学科学,2005,31,257-260.
    173.何克荣,祝新荣,黄健辉,夏建国.回交改良家蚕性连锁平衡致死系的研究[J].蚕业科学,2001,27,185-188.
    174.何克荣,祝新荣,黄健辉,夏建国.家蚕性连锁平衡致死系性别控制基因转移方法研究.中国农业科学,2002,35,213-217.
    175.何克荣,祝新荣,孟智启,陈诗,柳新菊.家蚕性连锁平衡致死系的杂交改良方法[J].蚕业科学,2009,35,558-561.
    176.侯勇,官建,赵萍,刘鸿丽,邹勇,夏庆友.家蚕中肠组织蛋白质组学研究[J].蚕业科学,2007,2,216-222.
    177.蒋同庆,郝瑜.家蚕的细胞遗传学研究-减数分裂前期染色体的形态观察及G带分析[J].蚕学通讯,1989,9,3-7.
    178.刘培刚,王永强,陈金娥,何秀玲,李卫国.家蚕孤雌生殖系与有性生殖系亲本的血液比较蛋白质组学研究[J].蚕业科学,2010,36,243-249.
    179.聂红毅,钟晓武,邹勇,衣启营,赵萍,夏庆友.家蚕精巢蛋白质的双向电泳及质谱分析[J].昆虫学报,2010,53,369-378.
    180.潘敏慧,徐伟,苏茂科,王先燕,张金叶,鲁成.家蚕胚胎发育过程的组织形态学研究[J].蚕业科学,2007,33,667-673.
    181.潘庆中,陈业林,陈劲伟,林健荣,黄自然.利用催青温湿度敏感性状控制家蚕性别[J].科学通报,1992,39,67-67.
    182.钱荷英,李木旺,张月华,郭秋红,湘晖,赵云坡,孙平江,侯成香,徐安英.用SSR标记进行家蚕日系品种资源指纹图谱的构建及亲缘关系分析[J].蚕业科学,2005,31,422-428.
    183.邱咏梅,夏庆友,程道军,沈以红,刘春,林英,查幸福,向仲怀.家蚕母性基因的表达序列标签分析[J].昆虫学报,2004,47,159-165.
    184.沈飞英,钟伯雄,楼程富,苏松坤,徐海圣,颜新培,姚国华,陆云翀.家蚕五龄幼虫中部丝腺细胞的蛋白质组成比较[J].中国农业科学,2005,38,1052-1058.
    185.吴卫成,叶键,鲁华云,李建营,陈金娥,孟智启,倪春霄,钟伯雄.家蚕五龄第1天与第4天后部丝腺蛋白质双向电泳图谱比较[J].中国农业科学,2006,39,1495-1500.
    186.夏建国,唐文月.家蚕性别与经济性状的关系[J].蚕业科学,1980,6,167-172.
    187.徐云敏,付强,张赛,贾凌,何宁佳.家蚕化蛹第7天卵巢组织蛋白质标准图谱的构建[J].蚕业科学,2009,35,768-775.
    188.轩楠,牛宝龙,王海龙,庄俐,孟智启.家蚕性连锁平衡致死系致死基因的SSR定位[J].遗传,2010,32,1269-1274.
    189.颜新培,钟伯雄,曹家树,徐孟奎,沈飞英,姚国华.家蚕催青期胚胎蛋白质图谱的建立[J].蚕业科学,2004,30,28-33.
    190.余芳,杨惠娟,李建营,丁农,周仲华,叶键,张金卫,段家龙,钟伯雄.家蚕品种金秋及其杂交亲本的蛋白质表达谱分析[J].中国农业科学,2008,41,4194-4200.
    191.喻叔英,沈其璋.家蚕胚胎发育扫描电镜观察[J].江苏蚕业,1995,(4),1-4.
    192.喻叔英,沈其璋.家蚕胚胎发育扫描电镜图[J].蚕业科学,1993,19,222-228.
    193.张蕊,梅兴林,王修业,郭秋红,李冰,汪生鹏,徐安英,黄勇平,郭锡杰,李木旺.对家蚕第2隐性赤蚁基因(ch-2)的SSR标记定位及连锁分析[J].蚕业科学,2010,36,766-770.
    194.浙江农业大学.家蚕良种繁育与育种学[M].北京:农业出版社,1991.
    195.浙江省农业科学院蚕桑研究所编译.家蚕性别控制与杂种优势的理论及应用研究[M].1998.
    196.钟伯雄.家蚕胚胎发育时期的蛋白质变化及构造分析[J].遗传学报,1999,26,627-633.
    197.朱勇,陈萍,赵天福,鲁成,向仲怀.sch基因在家蚕性别控制及单养雄蚕品种选育上的应用研究[J].蚕业科学,2001,27,253-256.
    198.祝新荣,柳新菊,孟智启,王永强,何克荣.家蚕性连锁平衡致死系原种的孵化率与发育调查[J].蚕业科学,2008,34,342-344.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700