芳烃联合装置芳烃转化过程建模与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
芳烃是重要的基本有机化工原料,尤其是苯、甲苯和二甲苯(BTX),在现代国民经济中有着极其重要的地位和作用。芳烃的大规模工业化生产是通过现代化芳烃联合装置实现的,其加工流程复杂,伴有芳烃间的相互转化过程。碳八芳烃临氢异构化反应和甲苯歧化与C_9芳烃烷基转移过程是芳烃联合装置中重要的两个芳烃转化工艺,其目的分别是将异构体邻二甲苯(OX)、间二甲苯(MX)和乙苯(EB)转化为价值更高的对二甲苯(PX)和将直接用途较少、相对过剩的甲苯和C_9芳烃转化成用途广泛但供应不足的苯(B)和二甲苯(X)。
     过程建模是石化工业过程一个重要的研究课题,基于过程模型的工业综合自动化技术如软测量、先进控制、流程模拟与优化以及优化调度与计划等在石化领域越来越受重视。本论文以石化过程工业装置——芳烃联合装置中C_8芳烃临氢异构化单元和甲苯歧化与烷基转移单元为背景,探讨了俩个芳烃转化过程建模及模型应用中涉及的理论和工程应用实际问题。论文的内容分成两个部分,第一部分为两个芳烃转化过程的建模,即C_8芳烃临氢异构化和甲苯歧化与C_9芳烃烷基转移过程的建模;第二部分为两个过程模型的应用,包括模型的离线模拟和在线应用。本论文的研究为专用流程模拟与优化软件功能模块的划分提供了依据,主要包括以下研究内容:
     1.针对某实际工业异构化和工业歧化装置,分别建立了适用于工业生产的碳八芳烃临氢异构化反应动力学模型和甲苯歧化与C_9芳烃烷基转移反应简化机理模型,用于反应过程的监控、优化及反应器内物料组成分布的预测。所建立的过程机理模型结合了催化剂结焦失活模型,基于时间的经验失活模型考虑了氢分压(P_h)和重时空速(WHSV)的影响,能够合理地解释长期使用的催化剂的失活问题。针对过程机理模型参数数目过多且难以同时估计频率因子和活化能参数的难题,采用同系列催化剂的活化能和经验活化能,使所需估计的参数数目减少了一半。所采用的简化处理方法大大降低了参数估计难度,但引入了误差并将累积到频率因子上。采用Runge-Kutta法对模型方程进行数值求解,基于多套稳态平衡数据采用差分变尺度优化算法(BFGS)对频率因子进行估计,进而在不同操作条件下对模型进行验证,结果表明模型估计值与工业标定值相当吻合,达到了工业应用的模拟精度要求。所建立的模型形式简单,参数估计方便,适用于工业装置的离线仿真和在线估计。
     2.在已开发的异构化反应过程机理模型和歧化与烷基转移过程机理模型的基础上,讨论了过程模型的应用,包括模型验证、过程模拟和灵敏度分析。采用所建立的模型,对大批工业数据进行模拟,详细比较了关键组分浓度和工艺指标的模型估计值和实际观测值之间的偏差,以它为依据,对过程模型进行维护,以保证模型的估计精度;模拟了反应器内部各组分浓度的分布,然后详尽地分析了组分浓度模拟情况的合理性;最后讨论了操作条件包括反应温度、液时空速、氢烃比和反应压力对反应性能的影响。异构化反应和歧化与烷基转移过程的离线模拟充分体现了模型验证和过程模拟这两个功能,而反应过程分析则包含了反应器内部的模拟和灵敏度分析。这些内容的讨论和分析为异构化和歧化反应过程专用流程模拟软件功能模块的划分提供了重要依据。
     3.针对国内工业异构化装置和工业歧化与烷基转移装置,研究了过程机理模型的在线应用。文中讨论了在线软测量技术实施过程中所涉及的关键问题,且采用模型参数在线更新策略修正模型参数,以保证模型的预测精度。应用APC—Sensor软测量软件实现过程模型在工业装置上的在线计算,计算结果表明模型的预测值能够很好地跟踪实际值的变化。机理软测量模型具有同时计算多个生产指标的特点,模型在线计算的成功应用为先进控制和优化的实施提供了保障。
     最后,在总结全文研究工作的基础上,对需要进一步完善和深入研究解决的部分问题进行了探讨和展望。
It is well known that aromatics are key raw materials and important starting materials for many intermediates and petrochemicals, playing an important role in the modern national economy, benezene, toluene and xylenes in particular. The commercial production of aromatics is achieved by modern aromatics combination unit with complex processes accompanying transformation between aromatics. The modern aromatics combination unit is assembled properly with many processes together including process of C_8-aromatics hydroisomerization and process of toluene disproportionation and transalkylation with C_9-aromatics. The process of C_8-aromatics hydroisomerization is to transform isomers such as o-xylene, m-xylene and ethylbenzene to more valuable p-xylene and the process of toluene disproportionation and transalkylation with C_9-aromatics is a convenient way to get more valuable and widely used benzene and xylenes from surplus toluene (C7) and trimethylbenzenes
    (C9).
    Modeling is a key issue in petrochemical industry, and more and more attentions are payed to the integrated automation technologies based on process model such as soft sensor, advanced process control, process simulation and optimization, process scheduling and planning in modern petrochemical industry.
    The dissertation takes the practical commercial unit, unit of C_8-aromatics hydroisomerization and unit of toluene disproportionation and transalkylation in aromatics combination unit, in petrochemical industry as the research background, focusing on several typical theory and engineering issues in petrochemical process modeling and its applications. Two main parts are involved in the dissertation, one relating to process modeling of two aromatics transformation processes, namely process of C_8-aromtics hydroisomerization and process of toluene disproportionation and transalkylation with C_9-aromatics, and the other dealing with applications of the two established models, off-line simulation and on-line application. The contents discussed here are the foundation of functional modules for special process simulation
    and optimization softwares and the details are arranged as follows,
    1. Based on the reported reaction networks, new kinetic models for commercial unit of C_8-aromtics hydroisomerization and unit of toluene disproportionation and transalkylation with C_8-armatiocs are developed for process monitor, process optimization and prediction. A time based empirical catalyst deactivation function considering hydrogen partial pressure (P_h) and weight hourly space velocity (WHSV) is incorporated into the models, accounting for the loss in activity because of coke formation on the catalyst surface during the long-term operation. As to the difficulty of simultaneous estimation for frequency factors (k_0) and activation energies (E_a) as well as the difficulty of many parameters to be estimated at the same time, the activation energies of the same kind catalyst and empirical activation energies are adopted, hence the number of parameters is reduced to half. The kinetic parameters are benchmarked with several sets of balanced plant data and estimated by the differential variable metric optimization method (BFGS), while the ordinary differential equations of the models are solved by the Runge-Kutta method and the errors introduced are inevitably accumulated to the frequency factors. The kinetic models are validated by industrial units with sets of plant data at different operating conditions and simulation results show a good agreement between the model predictions and plant observations, which means that the developed model are suitable for off-line
    simulation and on-line soft sensor application of industrial units.
    2. The off-line applications of the developed models about process of C_8-aronatics
    hydroisomerization and process of toluene disproportionation and transalkylation with C_9-aromatics are discussed in detail including model verification, process simulation and sensitivity analysis of operating variables. First of all, large number of balanced plant data are simulated with the developed models, and the comparisons of key components concentration and technologic indexes between model predictions and plant observations are made for the warranty of model
    maintenance; then the distribution of the components inside the reactor is simulated by the models and its rationality is showed in detail; at last, the effect of operating variables such as reaction temperature, weight hourly space velocity, molar ratio of hydrogen-to-hydrocarbons and reaction temperature on the process performances is investigated. In fact, off-line simulation involves model verification and process simulation, and process analysis incorporates simulation of the reactor and sensitivity analysis. The above-mentioned discussion and analysis point out functional modules of the special process simulation and optimization softwares for two aromatics transformation processes.
    3. The on-line applications of the first principle process models are studied for domestic industrial units about aromatics transformation processes, C_8-aromatics hydroisomerization and toluene disproportionation and transalkylation with C_8-aromatics. The key problems about practical operation of on-line soft sensors system based on process models are discussed and the strategy of on-line model rolling-revision is proposed for the warranty of model prediction accuracy. On-line computation is applied to the industrial units with APC-Sensor soft and the results show that the model predictions agree well with plant data observed. The high performance of the model predicting many indexes simutaneously is presented and its successful on-line application guarantees the operation of advanced process control and optimized process control. The dissertation is concluded with a summary and perspectives of some
    important issues for further investigation.
引文
[1] 杨友麒.化工过程模拟.化工进展,1996,3:1-7,63
    [2] 牟盛静.石化工业过程建模与优化若干问题研究.浙江大学博士学位论文,2004
    [3] Tong H W and Crowe C M. Detection of gross errors in data reconciliation by principle component analysis, AIChE J., 1995,41:1712-1722
    [4] 张余岳.化工过程模拟与在线优化.浙江大学博士学位论文,1998
    [5] 王冀程,祝云和.化工过程控制工程.北京:化学工业出版社,1991
    [6] 方崇智,萧德云.系统辨识.北京:清华大学出版社,1988
    [7] Lant P A, Willis M J. Montague G A, Tham M T and Morris A J. A comparison of adaptive estimation with neural-based techniques for bioprocess application. Process American Control Conference, 1990,3:2173-2178
    [8] 王旭东,邵惠鹤.分布式RBF神经网络及其在软测量方面的应用.控制理论与应用,1998,15(4):558-563
    [9] 沈明新,隋有功.钢水碳含量模型的模糊辨识及应用.自动化仪表,1997,18(4):11-16
    [10] Wang Yin, Rong gang. A self-organizing neural-network-based fuzzy system. Fuzzy Sets and Systems, 1999,103(1): 1-11
    [11] 张凯,钱锋,刘漫丹.模糊神经网络技术综述.信息与控制,2003,32(5):431-435
    [12] Sugungun M M, Kolesnikov I M, Vinogradov V M, Kolesnikov S I. Kinetic modeling of FCC process. Catalysis Today, 1998,43:315-325
    [13] Takatsuka T, Sato S, Morimoto Y, Hashimoto H. A reaction model for fluidized-bed catalytic cracking of residual oil. International Chemical Engineering, 1987,27(1): 107-116
    [14] 翁惠新,欧阳福生,马军.重油催化裂化反应集总动力学模型(Ⅰ)模型的建立.化工学报,1995,46(6):662-668
    [15] Meng Xianghai,Xu Chunming Gao Jinsen,Li Li.Catalytic pyrolysis of heavy oils:8-lump kinetic model.Applied Catalysis A:General,2006,301:32-38
    [16] 侯卫锋,苏宏业,胡永有,褚健.催化重整集总动力学模型的建立及其在线应用.化工学报,2006,57(7):1605-1611
    [17] 徐欧官,苏宏业,金晓明,褚健.甲苯歧化与C_9芳烃烷基转移反应动力学模 型.化工学报,2006(accepted)
    [18] 翁惠新,马军,欧阳福生.重油催化裂化反应集总动力学模型(Ⅱ)模型的工业验证.化工学报,1995,46(6):669-674
    [19] 徐春明,高金森,林世雄,杨光华.重油催化裂化反应过程分析.北京:石油工业出版社,2002
    [20] Nounou M N, Bakshi B R, Goel P K and Shen X. Bayesian Principal Component Analysis. Journal of Chemometrics, 2002,16(11):576-595
    [21] Nounou M N, Bakshi B R, Goel P K and Shen X. Process Modeling by Bayesian Latent Variable Regression. AIChE J.,2002,48(8): 1775-1793
    [22] Mackay D J C. Bayesian interpolation. Neural Comput. 1992,4:415-447
    [23] Buntine W L and Weigend A S. Bayesian back-prpagation. Complex System, 1991,5:603-611
    [24] Mackay D J C. A practical Bayesian framework for backpropagation networks. Neural Comput., 1992,4:448-460
    [25] 李向阳,祝学锋,刘焕彬.间歇制浆蒸煮过程的混合建模方法研究.中国造纸学报,2001,16:24-28
    [26] Mcavoy T J. Contemplative Stance for Chemical Process Control. Automatica, 1992, 28(2):441-442
    [27] 俞金寿,刘爱伦,张克进.软测量技术及其在石油化工中的应用.北京:化学工业出版社,2000
    [28] Dstal B S and MacGregor J F. Multi-output process identification. J. Proc. Cont., 1997, 7(4):269-282
    [29] Regnier N, Defaye G, Caralp L and Vadal C. Software sensor based control of exothermic batch reactors. Chem. Engng. Sci., 1996,51 (23):5125-5136
    [30] Meng J Er. Fuzzy neural networks-based quality prediction system for sintering process. IEEE Trans. On Fuzzy System, 2002,8(3):314-324
    [31] Mu Shengjing, Zeng Yingzhi, Liu Ruilan, Wu Ping Su Hongye and Chu Jian. Online dual updating with recursive PLS model and its application in predicting crystal size of purified terephthalic acid (PTA) process. Journal of Process Control, 2006,16:557-566
    [32] Sugungun M M, Kolesnikov I M, Vinogradov V M and Kolesnikov S I. Kinetic modeling of FCC process. Catalysis Today, 1998,43:315-325
    [33] Nayak S V, Joshi S L and Ranade V V. Modeling of vaporization and cracking of liquid injected in a gas-solid riser. Chem. Engng. Sci., 2005,60:6049-6066
    [34] Jorge A J, Eduardo V Met al.. Kinetics Modeling of Naphtha Catalytic Reforming Reactions, Energy & Fuel,2001,14:1032-1037
    [35] 俞金寿,仲蔚.加氢裂化分馏塔实用动态机理模型与仿真研究.自动化仪表,2001,22(8):15-18
    [36] Lang P, Szalms G, Chikany Get al.. Modelling of a crude distillation column. Comput. and Chem. Engng., 1991,15(2):133-139
    [37] Cao G, Servida A, Pisu M and Morbidelli M. Kinetics of p-Xylene liquid catalytic oxidation, AIChE J., 1994,40(7): 1156-1166
    [38] 杨友麒.化工过程系统的模拟分析与合成(一),化学工程,1984,71(1):57-68
    [39] Koch D H. The Future: Benefiting from New Tools, Techniques, and Teaching, Chem. Eng. Progr., 1997,93(1):66-72
    [40] Marquardt W. Trends in Computer-Aided Process Modeling, Comput. Chem. Engng., 1996,20(6/7): 591-609
    [41] Xu Ouguan (徐欧官), Su Hongye (苏宏业), Ji Jianbing (计建炳), Jin Xiaoming (金晓明) and Chu Jian (褚健). Kinetic Model and Sensitivity Analysis for Toluene Disproportionation and C9-Aromatics Transalkylation. Chinese Journal of chemical Engineering, 2006(accepted)
    [42] 刘正庚,赵建华,李制.石油化工流程模拟与应用.计算机与应用化学.1993,10(3):161-170
    [43] Corma A, Cortés A, Nebot I and Tom,is F. On the Mechanism of Catalytic Isomerization of Xylenes, Molecular Orbital Studies. J. Catal., 1979,57:444-449
    [44] Lanewala M A and Bolton A P. Isomerization of the xylenes using zeolite catalysts. J. Org. Chem., 1969,34(I 0):3107-3112
    [45] Robschlager K H and Christoffel E G. Reaction Mechanism of Ethylbenzene Isomerization. Ind. Eng. Chem. Prod. Res. Dev., 1979,18(4):347-352
    [46] Hsu Y S, Lee T Y and Hu H C. Isomerization of Ethylebenzene and m-Xylene on Zeolite. lnd. Eng. Chem. Res.,1988,27(6):942-947
    [47] Collins D J, Medina R J and David B H. Xylene Isomerization by ZSM-5 Zeolite Catalyst. The Cana. J. of Chem. Eng., 1983,61:29-35
    [48] Wei J and Prater D C. The Structure and Analysis of Complex Reaction System. Adv. Catal., 1962,13:203-392
    [49] Kinetics Study of the Isomerization of Xylene on HZSM-5 Zeolite. 1. Kinetics Model and Reaction Mechnism. Ind. Eng. Chem. Res., 1992,31:187-192
    [50] 李玉光,胡军.二甲苯在改性ZSM—5沸石催化剂上异构化反应动力学.化学物理学报,1996,9(4):339-344
    [51] Li Yuguang, Hu Jun. Kinetics study of the isomerization of xylene on ZSM-5 zeolite: the effect of the modified with MgO and CaO. Applied Catalysis A:General, 1996,142:123-137
    [52] Iliyas A, Al-Khattaf S. Xylene transformation over USY zeolite: an experimental and kinetic study. Appl. Catal. A: Gen., 2004,269:225-236
    [53] Iliyas A, A1-Khattaf S. Xylene Isomerization over USY Zeolite in a Riser Simulator: A Comprehensive Kinetic Model. Ind. Eng. Chem. Res., 2004,43(6): 1349-1358
    [54] Iliyas A and A1-Khattaf S. Gas-phase isomerization of meta-xylene over USY zeolite in a Riser Simulator: a simplified kinetic model. Chemical Engineering Journal, 2005,107:127-132
    [55] Al-Khattaf S, Tukur N M and Iliyas A. Modeling Xylene Reactions over ZSM-5 Zeolite in a Riser Simulator: 1,3- versus 1,2-Methyl Shift. lnd. Eng. Chem. Res., 2005,44(21): 7957-7968
    [56] Araujo A S, Domingos T B, Souza M J B and Silva A O S. m-Xylene isomerization in SAPO/HZSM-5 mixed catalyst. Reaction Kinetics and Catalysis Letters, 2001,73(2): 283-290
    [57] Gendy T S. Simulation of liquid and vapour phase xylene isomerization over deactivating H-Y-Zeolite. Journal of Chemical Technology and Biotechnology, 1998, 73(2):109-118
    [58] Beschmann K and Riekert L. Isomerization of Xylene and Methyllation of Toluene on Zeolite H-ZSM-5, Compound Kientics and Selectivity. J. of Catal., 1993,141:548-565
    [59] Robschlager K H and Christoffel E G. Kinetic Investigation of the Isomerization of C8-Aromatics. The Cana. J. of Chem. Eng.,1980,58:17-520
    [60] Himmelblau D M, Jones C R and Bischoff K B. Determination of Rate Constants for Complex Kinetics Models. Ind Eng. Chem. Fundam., 1967,6(4):539-543
    [61] 伍登熙,林正仙.八碳芳烃临氢异构化反应系统动力学模型(Ⅰ)用特征向量法研究选择性动力学.化工学报,1985,3(3):257-267
    [62] 伍登熙,林正仙.八碳芳烃临氢异构化反应系统动力学模型(Ⅱ)射线向量的数学表达式及其应用.化工学报,1985,3(3):68-277
    [63] 戴星,施亚钧.八碳芳烃临氢异构化反应网络的动力学研究.化工学报,1989,3(3):323-330
    [64] 戴星.应用试差矩阵法研究完全可逆的拟一级复杂反应网络的动力学.化学反应工程与工艺,1989,5(3):79-84
    [65] Dezhao Chen, Yaqiu Chen and Shangxu Hu. A pattern classification procedure integrating the multivariate statistical analysis with neural networks. Computers and Chemistry, 1997, 21(2):109-113
    [66] 李志华,陈德钊,庄凌,胡上序.RBF-MCSR方法用于二甲苯异构化装置的建模.化工学报,2002,53(6):627-632
    [67] Bhavikatti S S and Patwardhan S R. Toluene Disproportionation over Nickel-Loaded Aluminum-Deficient Mordenite. 2. Kinetics. Ind. Eng. Chem. Res., 1981,20:106-109
    [68] Tsai T C, Chen W H, Lai C S, Liu S B, Wang I And Ku C S. Kinetics of Toluene Disproportionation over Fresh and Coked H-mordenite, Catalysis Today, 2004,97:297-302
    [69] Tsai T C. Reactivation of acidic sites in mordenite used in toluene disproportionation. Applied Catalysis A:General, 2006,301:292-298
    [70] Aneke L E, Gerritsen L A, Eilers J and Trion R. The Disproportion of Toluene over a HY/β-A1F3/Cu Catalyst 2. Kineitcs. J. Catal., 1979,59:37-44
    [71] Dooley K M, Brignac S D and Price G L. Kinetics of Zeolite-Catalyzed Toluene Disproportionation. Ind. Eng. Chem. Res., 1990,29:789-795
    [72] Bhaskar G V and Do D D. Toluene Disproportionantion Reaction over HZSM-5 Zeolites: Kinetics and Mechamism. lnd Eng. Chem. Res., 1990:29,355-361
    [73] Uguina M A, Sotelo J L and Serrano D P. Kinetics of Toluene Disproportionation over Unmodified and Modified ZSM-5 Zeolites. Ind. Eng. Chem. Res., 1993,32:49-55
    [74] 蔡仲稣,张福芝.脉冲催化色谱研究甲苯歧化催化剂.(Ⅰ)丝光沸石催化剂上甲苯歧化动力学.燃料化学学报,1982,9(4):340-347
    [75] 陆广中,钱仰东.ZA—2型丝光沸石催化剂上甲苯歧化反应本征动力学和反应机理的研究.华东化工学院学报,1987,13(6):662-667
    [76] 高铁男,贾同文,钱俊,刘上垣,王敬中.芳烃在Hβ沸石上的烷基转移反应研究.石油学报(石油加工).1994,10(3):36-46
    [77] 陶克毅,高峰,邱晓航,周苗,李赫晅.有机氟改性丝光沸石催化剂用于甲苯歧化C_9芳烃烷基转移反应的研究.石油化工,1992,21(7):445-449
    [78] Wang I, Tsai T C, Huang S T.' Disproportionation of Toluene and of Trimethylbenzene and Their Transalkylation over Zeolite Beta. Ind. Eng. Chem. Res., 1990,29:2005-2012
    [79] Das J, Bhat Y S, Bhardwaj A I, Halgeri A B. Zeolite Beta Catalyzed C_7 and C_9 Aromatics Transformation. Applied Catalysis A:General, 1994,116:71-79
    [80] Das J, Bhat Y S, Bhardwaj A I, Halgeri A B. Transakkylation and Disproportionation of Toluene and C9 aromatics over Zeolite Beta. Catal. Letters, 1994,23; 161-168
    [81] Ratnasamy P, Bhat R N, Pokhriyal S K et al. Reactions of Aromatictis Hydrocarbons over Zeolite Beta. J. Catal., 1989,119:65-70
    [82] 陆贤,刘红星,谢在库,张成芳,陈庆龄.一种烷基转移反应体系的反应条件和热力学分析.华东理工大学学报,2003,29(1):14-17,43
    [83] 刘红星,谢在库,张成芳,陈庆龄.甲苯歧化与三甲苯烷基转移反应体系的化学平衡.石油化工,2003,32(1):28-32
    [84] 谢在库,陈庆龄,张成芳,刘红星,陆贤.Hβ沸石上甲苯歧化与C_9芳烃烷基转移反应,华东理工大学学报,2000,26(3):260-264
    [85] 刘红星,谢在库,张成芳,陈庆龄.β沸石上甲苯歧化与C_9芳烃烷基反应规律,石油学报(石油加工).1994,17(5):20-25
    [86] 刘红星.β沸石上甲苯歧化与C_9芳烃烷基反应特性与动力学研究.华东理工大学硕士学位论文,1999
    [87] Dumitriu E, Hulea V, Kaliaguine S, Huang M M. Transalkylation of The Alkylaromatic Hydrocarbons in The Presence of Ultrastable Y Zeolites: Transalkylation of Toluene with Trimethylbenzenes. Applied Catalysis A: General,1996,135:57-81
    [88] Cejka J, Krejci A, zilková N, Dědecek J and Hanika J. Alkylation and disproportionation of aromatic hydrocarbons over mesoporous molecular sieves. Microporous and Mesoporous Materials, 2001, 44(45):499-507
    [89] Dumitriu E, Guimon C, Hulea V, Lutic D and Fechete. Transalkylation of toluene with trimethylbenzenes catalyzed by various AFI catalysts. Applied Catalysis A:General, 2002, 237:211-221
    [90] Sulikowski B and Rachwalik R. Catalytic properties of heteropoly acid/zeolite hybrid materials: toluene disproportionation and transalkylation with 1,2,4-trimethylbezene. Applied Catalysis A:General, 2003, 256:173-182
    [91] 邬柏春,陆广中.甲苯歧化催化剂TA—3丝光沸石的失活动力学.华东化工学院学报.1990,16(5):538-544
    [92] 王庆祺,张国泰,吴指南.丝光沸石催化剂上甲苯歧化失活动力学的研究.催化学报.1990,11(6):483-489
    [93] Uguina M A, Sotelo J L, Serrano D P and Valverde J L. Deactivation Kinetics of Para- Selective Toluene Disproportionation over Modified ZSM-5. Ind. Eng. Chem. Res., 1994,33:26-31
    [94] 孙宗海,瞿国华,张溱芳编著.石油芳烃生产工艺与技术.北京:化学工业出版社,1986
    [95] Frank H G and Stadelhofer J W著,许锡恩,姚国欣,许根慧,米镇涛译.工业芳烃化学.北京:中国石化出版社,1994
    [96] 赵仁殿,金彰礼,陶志华,黄仲九.芳烃工学.北京:化学工业出版社,2001
    [97] 林世雄主编.石油炼制工程.石油工业出版社,2000
    [98] Imperial Chemical Industries, LTD. Isomerization Maximizes Paraxylene. Hydro. Proce., 1969,48(8): 109-110
    [99] 姚国欣.二甲苯异构化技术进展.现代化工,1990,4:23-27
    [100] Edison R R, Boyum A A. New xylene isom process scores high. Oil&Gas J. 1979,77(5): 140-152
    [101] Berger C V. Match Isomer with Parax. Hydro. Proce., 1973,52(9):173-174
    [102] 景振华,周立芝.金—1876型C_8芳烃临氢异构化催化剂的工业应用.石油化工,1986,15(5):301-305
    [103] 乔映宾.C_8芳烃异构化催化剂的开发及应用.中国工程科学,19991(1):73-77
    [104] Guisnet M, Gnep N S, Morin S. Mechanisms of xylene isomerization over acidic solid catalysts. Microporous and Mesoporous Materials, 2000,35(36):47-59.
    [105] Lanewalla M A and Balton A P. Isomerization of the xylenes using zeolite catalysts. J. Org. Chem. 1969,34(10):3107-3112
    [106] Allen R H and Yats L D. Kinetics of Three-compound Equilibrations. Ⅱ. The Isomerization of Xylene. J. Am. Chem. Soc., 1959,81:5289-5292
    [107] 石油化工科学研究院.C_8芳烃临氢异构化催化剂的制备.石油化工,1980,9(3):177-182
    [108] 程文才.甲苯歧化与烷基转移工艺进展.石油化工,1986,15:252-256
    [109] 程文才,杨德琴.甲苯歧化与烷基转移工艺.CN1174184,1996
    [110] 魏劲松.HAT-095型甲苯歧化及烷基转移催化剂的工业应用.石油化工,1998,27(10):748-751
    [111] 李建立,宋夕平,李玉涛,程文才.HAT-096型甲苯歧化及烷基转移催化剂的工业应用.齐鲁石油化工,2000,28(4):284-286
    [112] Verdol J A. Here's a new way to more xylenes. Oil&Gas J. 1969,67(23):63-66
    [113] 张钟文.一种新的对二甲苯原料的来源——甲苯歧化法.国外石油化工快报,1996,26(4):3-4
    [114] Rudolph M L, David O M, Deptford N Jet al. Catalyst modification for shape selective hydrocarbon conversions. US5552357,1996
    [115] Chang C D, Paul G R, Rock H. Regioselective methylation of toluene to para-xylene. US5607888,1997
    [116] Shamshoum E S, Ashim K G, Thomas R Set al. Toluene dsiproportionation employing modeified OMEGA zeolite catalyst. US 5210356,1993
    [117] Li Y G, Chang X D and Zeng Z H. Kinetics Study of the Isomerization of Xylene on HZSM-5. 1. Kinetics Model and Reaction Mechanism. Ind. Eng. Chem. Res.,1992,31(1): 187-192
    [118] Christoffel E G, Robschlager K H. Kinetic Investigation of the Isomerization of Cs-Aromatics. The Cana. J. of Chem. Eng.,1980, 58:517-520
    [119] Ramage M P, Graziani K R and Krambeck F J. Development of Mobil's Kinetic Reforming Model. Chem. Eng. Sci., 1980,35(1):41-48
    [120] 郑雨,魏飞,金涌.下行床反应器内催化裂化过程的CFD模拟.化工学报,003,54(8):1087-1086
    [121] Jacob S M, Gross B and Weekman JR. V W. A Lumping and Reaction Scheme for Catalytic Cracking. AIChE J., 1976,22(4):701-713
    [122] Van Trimpont P A, Matin G B and Froment G F. Reforming of C_7 Hydrocarbons on Sulfided Commercial Pt/Al_2O_3 Catalyst. Ind. Eng. Chem. Res.,1988,27(1):51-57
    [123] 宋续祺,汪展文,金涌.移动床径向反应器中流体力学行为的研究.化工学报,1992,43(3):268-274
    [124] 王金福,景山,王铁峰,金涌,马燮琦,高丽萍.径向移动床反应器流场特性及其数学模拟.高校化学工程学报,1999,13(5):435-441
    [125] 徐欧官,苏宏业,褚健.催化裂化装置模拟研究与进展.化工自动化及仪表,2005,32(6):1-6
    [126] 黄华江编著.实用化工计算机模拟—MATLAB在化学工程中的应用.化学工业出版社,2004
    [127] 张成芳.失活催化剂的最佳温度条件——级不可逆反应的分析.华东化工学院学报,1983,9(3):339-344
    [128] 胡永有,苏宏业,褚健.工业重整装置建模与仿真.高校化学工程学报,2003,17(4):418-424
    [129] Gorra F, Breckenridge L L, Guy W M and Sailor R A. Selective toluene disproportionation process proven at Italian refinery. Oil&Gas Journal,1992, 90(41):60-67
    [130] Kerry M D, Stephen D B, Geoffrey L P. Kinetics of Zeolite-Catalyzed Toluene Disproportionation. Ind. Eng. Chem. Res., 1990,29:789-795
    [131] Bhaskar G V, Do D D. Toluene Disprop.ortionation Reaction over HZSM-5 Zeolites: Kinetics and Mechanism. Ind. Eng. Chem. Res., 1990, 29:355-361.
    [132] Bibby D M, Howe R F, McLellan G D. Coke formation in high-silica zeolites. Appl. Catal. A:General, 1992,93(1): 1-34
    [133] Bhatia S, Beltramini J Do D D. Deactivation of zeolite cataly. Catal. Rev-Sci. Eng., 1989-1990,31 (4):431-480
    [134] Bharati S P, Bhatia S. Deactivation Kinetics of Toluene Disproportionation over Hydrogen Mordenite Catalyst. Ind. Eng. Chem. Res., 1987,26:1854-1860
    [135] Robschlager K H and Christoffel E G. Reaction Mechanism of Ethylbenzene Isomerization. Ind. Eng. Chem. Prod Res. Dev.,1979,18(4):347-352
    [136] Jenkins J H and Stephens T W. Kinetics of Catalytic reforming, Hydrocarbon Processing, 1980,November: 163-167
    [137] Taskar U and Riggs J B. Modeling and Optimization of a Semiregenarative Catalytic Naphtha Reformer. AIChE J. 1997,43(3):740-753
    [138] 徐欧官,苏宏业,金晓明,褚健.八碳芳烃临氢异构化反应动力学模型.高校化学工程学报,2006(Accepted)
    [139] 崔世纯,朱冬茂,李向勇(上海石油化工研究院).轴向流固定床反应器.CN1351900A.2002
    [140] 钟思青,陈庆龄,陈智强,童海颖,陈神华,徐依菡.轴向流固定床内流场的数值模拟与实验验证.化工学报,2005,56(4):63-636
    [141] Froment G. F. et al., Chemical Reactor Analysis and Design, 2nd ed., Prentice Hall, NJ, 1992
    [142] 胡永有.催化重整流程模拟及优化研究.浙江大学博士学位论文,2004
    [143] 侯卫锋.催化重整流程模拟与优化技术及其应用研究.浙江大学博士学位论文,2006
    [144] 仲蔚.软测量与先进控制策略研究及在石油化工过程中的应用.华东理工大学博士论文,1999
    [145] 仲蔚,刘爱伦,俞金寿.多变量系统的软测量建模研究.控制与决策,2000,15(3):209-212
    [146] Karakuzu C, Türker M, Oztürk S. Modelling, on-line state estimation and fuzzy control of production scale fed-batch baker's yeast fermentation. Control Engineering Practice, 2006,14:959-974
    [147] Chen Xi, Gao Furong, Chen Guohua. A soft-sensor development for melt-flow-length measurement during injection mold filling. Materials Science & Engineering A, 2004, 384:245-254
    [148] Fortuna L, Rizzo A, Sinatra M and Xibilia M G. Soft analyzers for a sulfur recovery unit. Cantrol Engineering Practice, 2003,11:1491-1500
    [149] Liu Ruilan, Su Hongye, Mu Shengjing, Jia Tao, Chen Weiquan and Chu Jian. Fuzzy Neural Network Model of 4-CBA Concentration for Industrial Purified Terephthalic Acid Oxidation Process. Chinese J. of Chem. Eng., 2004,12(2):234-239
    [150] 刘瑞兰.软测量技术若干问题的研究及工业应用.浙江大学博士学位论文,2004
    [151] Tham M T, Montague G A, Morris A. J and Lant PA. Soft-sensors for process estimation and inferential control. Journal of Process Control, 1991,1 (1):3-14
    [152] 罗荣富,邵惠鹤,王林,王克庭.丙稀精馏塔的非线性推断控制系统.化工自动化及仪表,1992,19(5):5-9
    [153] Lennartson B E V. Combining infrequent and indirect measurements by estimation and control. Ind. Eng. Chem. Res., 1989,28(11): 1653-1658
    [154] 于静江,周春晖.过程控制中的软测量技术.控制理论与应用,1996,13(2):137-144
    [155] Zhou 1 et al. Modelling and Control for Non Linear Time-Delay System via Pattern Recognition Approach. Preprints of 8nd IFAC Workshop oil Artificial Intelligence in Real Time Control, 1989:7-12
    [156] 牟盛静.石化工业过程建模与优化若干问题研究.浙江大学博士学文论文,2004
    [157] Egan C J. Calculated Equilibria of the Methylbenzenes and Benzene from 298 to 1000 K. J. Chem. Eng. Data, 1960,5(3):298-29

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700