连续重整装置流程模拟技术与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
连续重整是重要的石油化工二次加工过程之一,是芳烃原料和高辛烷值汽油调和组分的重要来源。随着经济的高速发展,装置挖潜增效的要求日益凸显。将流程模拟技术应用于重整装置,实现操作优化,是提高经济效益的有效可行的方法,装置模拟软件日益受到炼油与石化企业的青睐。本文针对连续重整装置,围绕重整反应机理、动力学模型的建立、模型参数估计等问题展开研究,以此为基础将流程模拟技术应用于连续重整装置,对重整过程进行了分析与优化,并开发了连续重整装置模拟平台软件。具体包括以下几个方面:
     1)根据集总理论和连续重整的反应机理,基于工业连续重整装置,提出了一个包含38个集总组分、86个反应的重整反应动力学模型,建立了相应的反应网络。该模型集总组分划分较详细,覆盖了反应物料绝大部分信息,更加接近实际反应,保证了模拟精度。确立了86个待估模型参数,给出了分层策略和BFGS算法相结合的参数估计方法,并基于大量工业现场数据,对模型参数进行了估计。
     2)在所建立的38集总重整动力学模型基础上,构建了连续重整装置的流程模拟框架。对某炼油厂连续重整装置进行了模拟计算,模拟结果与实际值吻合较好,验证了38集总重整动力学模型的可靠性与准确性。将模型用于芳烃收率的预测,在两个多月的时间内收率预测精度与趋势均令人满意。以芳烃收率最大化为目标,对操作参数进行了优化计算,结果表明,通过对各反应器入口温度的轻微调整,芳烃收率提高了0.17%。
     3)以MATLAB为工具,开发了基于图形用户界面(GUI)的连续重整装置模拟平台软件CataRefsim,人机界面友好,操作简单。软件具有装置模拟、灵敏度分析以及操作参数优化等功能,它的开发为研究连续重整装置的流程模拟、系统分析、先进控制与优化等提供了一条有效途径。
Continuous catalytic reforming(CCR) is one of the most important secondary processes for producing aromatic feedstock and high octane gasoline in petroleum-refining and petrochemical industries. The requirement of potentiality-tapping and profit-increasing of the CCR unit is highlighted progressively with the rapid development of the economy. The application of process simulation technology to the reforming unit, which could optimize the operating conditions, is a effective and feasible way to improve the economic efficiency. The process simulation software is becoming more and more popular in refining and petrochemical enterprises. This thesis takes the CCR unit as the research background, and the reforming kinetic, the modeling of the process and the parameter estimation are studied. Based on those work, the process simulation technology is applied to the CCR unit, and the reforming process is analyzed and optimized. A simulation platform software for CCR unit is developed. In this thesis, the main contributions are as follows.
     1) Based on the lumping theory and catalytic reforming reaction mechanisms, a new kinetic model involving 38 lumped components and 86 reactions is developed for the industrial CCR unit. The reaction network of the model is established according to the reaction mechanism of bi-functional catalyst and related kinetic theory. As the detailed division of the lumped components, most of the reactants' information is covered, consequently the model could be more realistic.86 model parameters are identified and a parameter estimation method, which combines the hierarchical strategy and BFGS algorithm, is given.
     2) On the basis of the 38-lumped kinetic model, the process simulation framework of CCR unit is built. Simulation of a refinery reformer is carried out, and fair agreement between the calculated results and the actual operating data is obtained. The result could demonstrate the reliability and accuracy of the developed model. The model is applied to predict the aromatics yield, and the result showed that (?) of the trend and precision of the aromatics yield prediction are satisfied in more than two months time. The process optimization is implemented, and an (?)rease of 0.17% on aromatics yield is obtained by a slight tuning of each inlet temperature.
     (?)simulation platform software for CCR unit, CataRefsim, with a friendly (?)face and simple operation features is developed based on MATLAB/GUI. The (?)ware could be used in performing steady-state simulation of the basic process (?)CCR unit, as well as sensitivity analysis and process optimization. The development of the software could provide an effective way for the research of the (?)unit's process simulation, system analysis, advanced control and (?)mization.
引文
[1]曹湘洪.石油化工流程模拟技术进展及应用[M].北京:中国石化出版社,2010.
    [2]林世雄.石油炼制工程[M].北京:石油工业出版社,1988.
    [3]王基铭.新世纪石油炼制和石化技术的发展趋势[J].中国石化,2004,(11):4-7.
    [4]LEE J W, KO Y C, JUNG Y K, et al. A modeling and simulation study on a naphtha reforming unit with a catalyst circulation and regeneration system [J]. Computers & Chemical Engineering,1997,21(Suppl.):S1105-S1110.
    [5]ASPEN TECHNOLOGY Inc. Customer Profile [J/OL] 2009, http://www.aspentech.com/corporate/casestudies.aspx.
    [6]李文波,毛鹏生.化工流程模拟技术的现状与发展[J].化工时刊,1998,12(6):3-6.
    [7]韩方煜,郑世清,荣本光.过程系统稳态模拟技术[M].北京:中国石化出版社,1999.
    [8]WEI J, PROTER C D. A lumping analysis in monomolecular reaction system [J]. Industrial and Engineering Chemistry Fundamentals,1969,8(1):114-124.
    [9]徐承恩.催化重整工艺与工程[M].北京:中国石化出版社,2006.
    [10]杨友麟.过程流程模拟[J].计算机与应用化学,1995,12(1):1-6.
    [11]李玉刚,周传光,郑世清.联立模块法在流程模拟中的应用[J].青岛化工学院学报,1997,18(1):17-20.
    [12]贺来宾,杨霞,岳金彩,等.基于SQP法的ECSS-化工之星优化功能的实现[J].计算机与应用化学,2004,21(5):753-757.
    [13]鲍立威,钱积新.基于面向对象的工业过程动态流程模拟系统系统设计与开发[J].浙江大学学报(自然科学版),1998,(6):551-556.
    [14]裴瑞凌,荣冈.炼油过程的智能工厂流程模拟仿真平台[J].化工自动化及仪表,2005,32(2):43-46.
    [15]吴重光.过程系统高效仿真软件平台[J].北京化工大学学报(自然科学版),2001,28(4):78-82.
    [16]ASPEN TECHNOLOGY Inc. Aspen CatRefTM [J/OL] 2005, www.aspentech.com/brochures/catref.pdf.
    [17]江洪波,欧阳福生,翁惠新.催化重整集总动力学模型(Ⅲ)工业应用软件的编制和验证 (?)学报,1994,45(5):538-544.
    (?)彭正浩,刘太极.催化重整反应动力学模型的建立及其工业应用(5)—重整反应(?)软件的开发与应用[J].炼油设计,1996,26(6):42-45.
    (?)R B. Kinetic analysis of naphtha reforming with platinum catalyst [J]. Chemical (?)eering Progress,1959,55(6):76-88.
    (?)有(?)催化重整流程模拟及优化研究[D].杭州;浙江大学,2004.
    (?)W S. A kinetic simulation model of the powerforming process [M]. AIChE Meeting. (?)Texas.1972:72.
    (?)G B, FROMENT G F. Reforming of C6 hydrocarbons on a Pt-Al2O3 catalyst [J]. (?)cal Engineering Science,1982,37(5):759-773.
    (?)G B, FROMENT G F. The development and use of rate equations for catalytic (?)processes; proceedings of the Conference on Hydrotreating Processes, Kuwait,1989 (?)Fisevier.
    (?)M P, GRAZIANI K P, KRAMBECK F J. Development of mobil's kinetic reforming (?)[J]. Chemical Engineering Science,1980,35:41-48.
    (?)M P, GRAZIANI K P, SCHIPPER P H, et al. A review of mobil's industrial process modeling philosophy [J]. Advances in Chemical Engineering,1987,13:193-266.
    (?)NT G F. The kinetic of complex catalytic reactions [J]. Chemical Engineering Science, (?)42(5):1073-1087.
    (?)NS J H, STEPHENS T W. Kinetic of catalytic reforming [J]. Hydrocarbon processing, (?), (11):163-167.
    (?)ADMAVATHI G, CHAUDHURI K. Modeling and simulation of commercial catalytic naphtha (?)s [J]. Canadian Journal of Chemical Engineering,1997,75:903-937.
    (?)A J, EDUARDO V M. Kinetic modeling of naphtha catalytic reforming reactions [J]. (?)& Fuels,2000,14(5):1032-1037.
    (?)POVIC M Z, VOJVODIC-OSTOJIC A, MILENKOVIC I, et al. Development of a kinetic model for catalytic reforming of naphtha and parameter estimation using industrial olant data [J]. Energy Fuels,2009,23(2):979-983.
    (?)RIGUEZ M A, ANCHEYTA J. Detailed description of kinetic and reactor modeling for (?)catalytic reforming [J]. Fuel,2011,90(12):3492-3508.
    [32]戴星.六碳重整反应体系的反应动力学研究[J].石油学报(石油加工),1988,4(4):1-9.
    [33]武建初,林正仙.六碳组分重整动力学参数估值方法的研究[J].石油学报(石油加工),1987,3(2):10-20.
    [34]姜炳南,林培滋,曾理,等.催化重整复杂反应网络动力学模型研究[J].化学反应工程与工艺,1987,3(3):1-7.
    [35]孙绍庄,翁惠新,毛信军,等.催化重整集总反应动力学模型研究—(Ⅰ)六碳反应网络的动力学模型[J].化学反应工程与工艺,1992,8(1):10-17.
    [36]孙绍庄,翁惠新,毛信军,等.催化重整集总反应动力学模型研究—(Ⅱ)七碳反应网络的动力学模型[J].化学反应工程与工艺,1992,8(1):18-23.
    [37]孙绍庄,翁惠新,毛信军,等.催化重整集总反应动力学模型研究—(Ⅲ)八碳反应网络的动力学模型[J].化学反应工程与工艺,1992,8(3):254-259.
    [38]孙绍庄,翁惠新,毛信军,等.催化重整集总反应动力学模型研究[J].石油学报(石油加工),1993,9(3):27-33.
    [39]翁惠新,孙绍庄,江洪波.催化重整集总动力学模型(Ⅰ)模型的建立[J].化工学报,1994,45(4):407-411.
    [40]翁惠新,江洪波,陈志.催化重整集总动力学模型(Ⅱ)实验设计和动力学参数估计[J].化工学报,1994,45(5):531-537.
    [41]HOU W, SU H, HU Y, et al. Modeling, simulation and optimization of a whole industrial catalytic naphtha reforming process on aspen plus platform [J]. Chinese Journal of Chemical Engineering,2006,14(5):584-591.
    [42]解新安,彭世浩,刘太极.催化重整反应动力学模型的建立及其工业应用(1)—物理模型的建立[J].炼油设计,1995,25(6):49-51.
    [43]解新安,彭世浩,刘太极.催化重整反应动力学模型的建立及其工业应用(2)—催化重整反应动力学数学模型的建立[J].炼油设计,1996,26(1):44-47.
    [44]解新安,彭世浩,刘太极.催化重整反应动力学模型的建立及其工业应用(3)—重整催化剂结焦失活与烧焦再生[J].炼油设计,1996,26(2):44-48.
    [45]解新安,彭世浩,刘太极.催化重整反应动力学模型的建立及其工业应用(4)—重整催化剂再生过程中的氯化和氧化复活[J].炼油设计,1996,26(5):27-29.
    [46]胡永有,苏宏业,褚健.工业重整装置建模与仿真[J].高校化学工程学报,2003,17(4):418-424.
    [47]HU Y, SU H, CHU J. Modeling, simulation and optimization of commercial naphtha catalytic (?)forming process; proceedings of the 42nd IEEE Conference on Decision and Control, Maui,Hawaii USA,2003 [C].
    [48]HU S, ZHU X X. Molecular modeling and optimization for catalytic reforming [J]. Chemical Engineering Communications 2004,191(4):500-512.
    [49]赵亮,方向晨,王海彦.催化重整与十三集总动力学模型及子模型的研究[J].工业催化,2005,13(4):23-26.
    [50]周红军,石铭亮,翁惠新,等.芳烃型催化重整集总反应动力学模型[J].石油学报(石油加工厂,2009,25(4):545-550.
    [51]VAN TRIMPONT P A, MARIN G B, FROMENT G F. Reforming of C7 hydrocarbon on a (?)ided commercial Pt/Al2O3 catalyst [J]. Industrial & Engineering Chemistry Research 1988, (?):51-57.
    [52]COPPENS M, FROMENT G F. Fractal aspects in the catalytic reforming of naphtha [J]. Chemical Engineering Science 1996,51(10):2283-2292.
    [53]ANCIIEYTA-JUAREZ J, VILLAFUERTE-MACIAS E. Kinetic modeling of naphtha catalytic reforming reactions [J]. Energy Fuels,2000,14(5):1032-1037.
    [54]ANCHEYTA-JUAREZ J, VILLAFUERTE-MACIAS E, DIAZ-GARCIA L, et al. Modeling and simulation of four catalytic reactors in series for naphtha reforming [J]. Energy Fuels,2001, 15(4):887-893.
    [55]RAHIMPOUR M R, ESMAILI S, BAGHERI YAZDI S A. Kinetic and deactivation model for industrial catalytic naphtha reforming [J]. Iranian Journal of Science and Thchnology, Transaction B-Engineering,2003,27(B2):279-290.
    [56]LID T, SKOGESTAD S. Data reconciliation and optimal operation of a catalytic naphtha reformer [J]. Journal of Process Control,2008,18(3-4):320-331.
    [57]WEIW, BENNETT C A, TANAKA R, et al. Detailed kinetic models for catalytic reforming [J]. Fuel Processing Technology,2008,89(4):344-349.
    [58]ARANI H M, SHOKRI S, SHIRVANI M. Dynamic modeling and simulation of catalytic naphtha reforming [J]. International Journal of Chemical Engineering and Applications,2010, 1(2):159-164.
    [59]侯祥麟.中国炼油技术[M].北京:中国石化出版社,2001.
    [60]中国新闻网.中国机动车保有量达2.17亿辆私家车破7000万辆[J/OL]2011,http://www.chinanews.com/auto/2011/07-18/3189951.shtml.
    [61]刘豪.催化重整的新发展时期[M]//中国石油化工信息学会石油炼制分会.中国石油炼制技术大会.珠海,中国;中国石化出版社.2005:589-592.
    [62]胡德明.我国催化重整装置发展空间的探讨[J].炼油技术与工程,2004,34(10):5-9.
    [63]ANTOS J F, AITANI M A.石脑油催化重整[M].徐承恩等,译.2版.北京:中国石化出版社,2009.
    [64]贺晓军,袁赞根,刘伯龙,等.低压组合床重整工艺工业试验[J].石油炼制与化工,2003,34(6):1-4.
    [65]李彬,邢卫东.国产连续重整成套技术在装置改造中的应用[J].石油炼制与化工,2010,41(11):48-52.
    [66]张传兆.催化重整工艺技术进展及产能现状[J].炼油与化工,2011,22(4):3-7.
    [67]油气杂志[J/OL] 2011, http://www.petromm.com/news/1/623.html
    [68]MILLS G A, HEINEMANN H, MILLIKEN T H, et al. Catalytic mechanism [J]. Industrial and Engineering Chemistry,1953,45(1):134-137.
    [69]GYNGAZOVA M S, KRAVTSOV A V, IVANCHINA E D, et al. Reactor modeling and simulation of moving-bed catalytic reforming process [J]. Chemical Engineering Journal,2011, 176-177(1):134-143.
    [70]IRANSHAHI D, POURAZADI E, PAYMOONI K, et al. Enhancement of aromatic production in naphtha reforming process by simultaneous operation of isothermal and adiabatic reactors [J]. International Journal of Hydrogen Energy,2011,36(3):2076-2085.
    [71]IRANSHAHI D, POURAZADI E, PAYMOONI K, et al. A dynamic membrane reactor concept for naphtha reforming, considering radial-flow patterns for both sweeping gas and reacting materials [J]. Chemical Engineering Journal,2011,178(15):264-275.
    [72]IRANSHAHI D, RAHIMPOUR M R, ASGARI A. A novel dynamic radial-flow, spherical-bed reactor concept for naphtha reforming in the presence of catalyst deactivation [J]. International Journal of Hydrogen Energy,2010,35(12):6261-6275.
    [73]李绍芬.化学与催化反应工程[M].北京:化学工业出版社,1986.
    [74]王军,张守臣,王立秋.反应工程[M].大连:大连理工大学出版社,2004.
    [75]TASKAR U, RIGGS J B. Modeling and optimization of a semiregenerative catalytic naphtha reformer [J]. AIChE Journal,1997,43(3):740-753.
    [76]IRANSHAHI D, POURAZADI E, PAYMOONI K, et al. Modeling of an axial flow, spherical packed-bed reactor for naphtha reforming process in the presence of the catalyst deactivation [J]. International Journal of Hydrogen Energy,2010,35(23):12784-12799.
    [77]周爱月,李士雨.化工数学[M].北京:化学工业出版社,2011.
    [78]GOPAL K G, RON SACKS D, PETER E T. A review of recent developments in solving ODEs [J]. ACM Computing Surveys,1985,17(1):5-47.
    [79]SHAMPINE L F, REICHELT M W. The MATLAB ODE Suite [J]. SIAM Journal on Scientific Computing,1997,18:1-22.
    [80]卢焕章.石油化工基础数据手册[M].北京:化学工业出版社,1982.
    [81]马沛生.石油化工基础数据手册:续编[M].北京:化学工业出版社,1993.
    [82]张宇英,张克武.分子热力学性质手册:计算方法与最新实验数据[M].北京:化学工业出版社,2009.
    [83]冯新.化工热力学[M].北京:化学工业出版社,2009.
    [84]王正烈.物理化学[M].北京:化学工业出版社,1997.
    [85]侯卫锋.催化重整流程模拟与优化技术及其应用研究[D].杭州;浙江大学,2006.
    [86]HOLLAND J H. Adaptation in natural and artificial systems [M]. Massachusetts:MIT Press, 1975.
    [87]KIRKPATRICK S, GELATT C D, VECCHI J, et al. Optimization by simulated annealing [J]. Science,1983,220(13):671-680.
    [88]GLOVER F. Tabu search-Part 1 [J]. ORSA Journal on Computing,1989,1(2):190-206.
    [89]GLOVER F. Tabu search-Part 2 [J]. ORSA Journal on Computing,1990,2(1):4-32.
    [90]陈宝林.最优化理论与算法[M].北京:清华大学出版社,2005.
    [91]袁亚湘.非线性优化计算方法[M].北京:科学出版社,2008.
    [92]BROYDEN C G. The Convergence of a Class of Double-rank Minimization Algorithms [J]. IMA Journal of Applied Mathematics,1970,6(1):76-90.
    [93]FLETCHER R. A New Approach to Variable Metric Algorithms [J]. Computer Journal,1970, 13(3):317-322.
    [94]GOLDFARB D. A Family of Variable Metric Updates Derived by Variational Means [J]. Mathematics of Computing,1970,24(109):23-26.
    [95]SHANNO D F. Conditioning of Quasi-Newton Methods for Function Minimization [J]. Mathematics of Computing,1970,24(111):647-656.
    [96]龚纯,王正林.精通MATLAB最优化计算[M].北京:电子工业出版社,2009.
    [97]FLETCHER R. Practical methods of optimization [M]. New Jersey:John Wiley and Sons, 1987.
    [98]陈垚光,毛涛涛.精通MATLAB GUI设计[M].北京:电子工业出版社,2008.
    [99]陈晓春,马桂荣.动态模拟技术与化学工程[J].现代化工,2002,22(3):14-7.
    [100]PFLEEGER S L, ATLEE J M.软件工程[M].杨卫东,译.4版.北京:人民邮电出版社,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700