不同糖调节受损人群血糖波动与氧化应激和胰岛功能的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的采用CGMS系统研究不同糖调节受损人群的动态血糖波动特征及其与氧化应激和胰岛功能的相关性。方法1、2008年1月至7月选取北京地区受试者81例,按照美国糖尿病学会(ADA)2003年标准分为单纯空腹血糖受损(I-IFG)组12例,单纯餐后血糖受损(I-IGT)组19例,空腹血糖受损合并糖耐量低减状态(IFG/IGT)组11例,新诊断2型糖尿病(T2DM)组21例,正常糖耐量(NGT)组18例,所有受试对象均行72h动态血糖监测(CGMS),分析其各项临床指标和CGMS动态血糖数据。2、根据连续两次OGTT结果,选取NGT组15例,糖尿病前期(IGR)47例,T2DM组36例。选取平均血糖波动幅度评价血糖波动情况;行CGMS第48~72小时留取24h尿,采用酶联免疫吸附法检测8-异前列腺素F_(2α)(8-isoPGF_(2α))评价氧化应激水平;留取空腹和OGTT负荷后2小时静脉血监测血浆胰岛素及C肽水平,采用HOMA稳态模型胰岛素抵抗指数(HOMA-IR)反映胰岛素敏感性,采用HOMAβ细胞功能指数(HBCI)以及胰岛素分泌功能指数(ΔI_(120)/ΔG_(120))评价糖负荷后胰岛β细胞分泌功能。3、2型糖尿病组给予“重组赖脯胰岛素25”治疗12周,其间定期随访、指导生活方式干预并调整胰岛素用量。对血糖波动、氧化应激、胰岛功能及胰岛素抵抗参数和各项代谢指标的变化行方差分析,并对其影响因素行相关分析及多元逐步回归分析。结果1、不同IGR人群血糖波动特征:①日内血糖波动:NGT、I-IFG、I-IGT、IFG/IGT至T2DM组的最大血糖波动幅度(LAGE)、平均血糖(MBG)和血糖水平标准差(SDBG)依次升高。I-IGT的平均血糖波动幅度(MAGE)(3.16±1.15)mmol/L较NGT(1.62±0.49)mmol/L高,较T2DM(5.23±1.88)mmol/L低(P<0.05);IFG/IGT的有效血糖波动频率(FGE)(5.54±2.50)较NGT(6.06±3.42)低,较T2DM(4.81±1.83)高。糖尿病前期3组间I-IGT组MAGE(3.16±1.15)mmol/L最高,FGE(4.89±1.79)最低。②日间血糖波动:与NGT组(0.76±0.29)mmo/L相比,I-IGT(1.06±0.36)mmol/L、IFG/IGT(1.16±0.39)mmol/L和T2DM(1.95±0.95)mmol/L组的日间血糖平均绝对差依次升高(P<0.05)。③不同糖调节受损人群血糖波动特征:I-IFG组空腹血糖受损程度最重,餐后高峰以IFG/IGT组为著。血糖水平曲线由低至高依次为NGT、I-IGT、IFG/IGT、I-IFG、T2DM组。④受试者HbA_(1C)<7%时,空腹血糖曲线几乎重合,餐后血糖曲线略微分开;HbA_(1C)7.0%~7.9%时,餐后高峰明显上升;HbA_(1C)≥8%时,空腹曲线明显上移,餐后波动继续升高。2、血糖波动与氧化应激相关性:①基线时T2DM组24h尿游离8-isoPGF_(2α)分泌率(8-isoPGF_(2α)/Cr)为(1706±477)pg/mg,较糖尿病前期组((216±65)pg/mg)和正常糖耐量组((269±60)pg/mg)升高,差异有统计学意义(F=27.304,P<0.05)。②T2DM组经“重组赖脯胰岛素25”干预后,24h尿8-isoPGF_(2α)/Cr、平均血糖波动幅度、糖化血红蛋白、甘油三酯与干预前比较分别降低34.53%,31.81%,18.50%和28.79%,差异有统计学意义(F值分别为6.108、18.378、39.322和5.942,P均<0.05);此外,收缩压、舒张压、空腹血糖、餐后2h血糖与干预前比较显著下降(F值分别为7.879、11.684、38.952和61.207,P均<0.01)。③Pearson相关分析显示24h尿8-isoPGF_(2α)/Cr与MAGE呈显著相关(r=0.593,P<0.01);而与HbA_(1C)无相关(r=0.186,P>0.05);④以24h尿8-isoPGF_(2α)/Cr为因变量,以Pearson相关分析与其有相关性的变量为自变量进行多元逐步回归分析,只有平均血糖波动幅度和高密度脂蛋白胆固醇进入最终方程(决定系数r~2分别为0.354和0.346,P均<0.01);偏相关分析与上述结果一致。3、血糖波动与胰岛分泌功能和胰岛素抵抗的相关性:①T2DM组的HOMA胰岛素抵抗指数(HOMA-IR)分别是IGR组和NGT组的2.7倍和3.8倍(F=4.07,P<0.05);②校正HOMA-IR后,T2DM组HOMAβ细胞功能指数(HBCI/IR)为NGT组的17.2%,IGR组的25.5%(F=21.19,P<0.01);T2DM组的空腹β细胞功能指数(FBCI/IR)为NGT组的34.4%,IGR组的42.9%(F=89.62,P<0.01);T2DM组ΔI120/ΔG120/IR为NGT组的6.2%,为IGR组的15.5%(F=21.19,P<0.01);③将Pearson相关分析与氧化应激、血糖波动相关的各项指标行偏相关分析,结果仅FBCI/IR与8-isoPGF_(2α)/Cr的相关性保留,HBCI、HBCI/IR、△I120/△G120和空腹C肽与8-isoPGF_(2α)/Cr的相关性经FBCI/IR调整后消失(r值分别为0.20、0.27、-0.03和0.05,P>0.05);而MAGE仅与FBCI/IR、△I120/△G120具有统计学意义上的相关性,HOMA-IR、HBCI、HBCI/IR、△I120/△G120/IR与MAGE的相关性经FBCI/IR调整后消失(r值分别为0.03、-0.11、0.21和-0.05,P>0.05);多元逐步回归分析支持上述结果;④Pearson相关分析提示HOMA-IR与午餐前血糖关系最为密切;晚餐后峰值血糖主要反映胰岛β细胞分泌功能;基础胰岛分泌功能主要与晚餐后峰值血糖、早餐前血糖和3am血糖相关;而糖负荷后胰岛分泌的储备功能主要与早餐后2h血糖相关;⑤按CGMS特殊时点血糖四分位数水平分组,并行方差分析对比组间反映胰岛功能和胰岛素抵抗等参数的差异,结果显示早餐前血糖、早餐后2小时血糖和午餐前血糖的参考阈值分别是5.8mmol/L、7.9mmol/L和7.3mmol/L;而晚餐后峰值血糖阈值根据评价指标不同略有差异,当其大于8.1mmol/L时,HBCI/IR显著下降;而9.8mmol/L则是评价调整了胰岛素抵抗因素的胰岛β细胞基础分泌功能的推荐界值(P值均<0.01)。结论①随着糖调节受损程度的加重,日内血糖波动、日间血糖波动和氧化应激水平逐渐增加;②正常人血糖波动幅度小,频率高;T2DM餐后血糖波动幅度大,有效波动频率低;③I-IFG组的血糖波动特征最接近于NGT,而I-IGT组最接近于T2DM;④在糖尿病前期阶段餐后血糖受损明显早于空腹;⑤2型糖尿病氧化应激活化程度与血糖波动和部分血脂代谢相关;⑥经胰岛素干预后,血糖波动幅度下降,氧化应激反应减轻;⑦糖尿病前期和2型糖尿病均有不同程度的胰岛β细胞分泌功能减退,考虑了胰岛素抵抗因素的影响后这种改变更为明显;⑧糖尿病急性血糖波动增加,通过氧化应激这一关键环节加重对胰腺β细胞分泌功能的损伤;⑨可以根据特殊时点的血糖水平初步评估糖尿病患者相对占优势的病理生理进展阶段,对口服降糖药物的选择具有参考意义。
Objective To analyze correlation of oxidative stress activation,pancreatic islet function and acute glucose fluctuations in subtypes of impaired glucose regulation by continuous glucose monitoring system(CGMS).Methods 1.From January to July in 2008,according to ADA 2003 diagnostic criteria,81 individuals were divided into 4 groups:normal glucose tolerance(NGT,n=18),isolated impaired fasting glycemia(I-IFG,n=12),isolated impaired glucose tolerance(I-IGT,n=19), combined IFG/IGT(n=11),and newly diagnosed type 2 diabetes mellitus(T2DM, n=21).And then continuous glucose monitoring system(CGMS) was used for 72 hours to monitor the blood glucose(BG) level before drug intervention.2. Assessed by oral glucose tolerance test(OGTT) repeated twice,98 individuals were divided into 3 groups:NGT(n=15),impaired glucose intolerance(IGR,n=47) and 36 T2DM.And their BG levels were monitored by CGMS for three consecutive days.Intraday glycemic excursions were assessed by mean amplitude of glucose excursions(MAGE);From 48h to 72h during CGMS period,24h urine samples were collected and free 8-iso prostaglandin F_(2α)(8-isoPGF_(2α)) were measured by ELISA to evaluate oxidative stress.Fasting and OGTT 2 hours venous blood samples were collected to measure plasma insulin and C peptide levels.Moreover,HOMA insulin resistance index(HOMA-1R) were calculated to evaluate insulin sensitive.HOMAβ-cell function index(HBCI) and△I_(120)/△G_(120) to evaluate the insulin response to a stimulus.Repeated CGMS were given after three months Lispro 25 interventions in T2DM group.Periodical interview included life style intervention directions and insulin regulations.Glucose excursions,oxidative stress,insulin index and other metabolic readouts before and after intervention were compared by one-way ANOVA.Possible factors effected on the deterioration of pancreatic islet function were analyzed by Pearson correlation coefficient and multivariate stepwise regression.Results 1. Characteristics of glycemic excursion in different subtypes of impaired glucose intolerance:①The levels of largest amplitude of glycemic excursions(LA(?)E), mean blood glucose(MBG),and standard deviation of mean level of blood glucose fluctuation(SDBG) increased gradually with the deterioration of glucose tolerance.The MAGE readout of the I-IGT group was(3.16±1.15) mmol/L, significantly higher than that of the NGT group[(1.62±0.49) mmol/L,P<0.05], and significantly lower than that of the T2DM group[(5.23±1.88) mmol/L, P<0.05].The level of frequency of glucose excursion(FGE) decreased along with the decrease of glucose tolerance:NGT group[(6.06±3.42)]>IGT/IFG group [(5.54±2.50)]>T2DM group[(4.81±1.83)].Among the three components of IGR,the I-IGT group showed highest MAGE(3.16±1.15) mmol/L and lowest NGE level(4.89±1.79).②The level of absolute mean of daily difference (MODD) increased in the following order:NGT group[(0.76±0.29) mmol/L], I-IGT group[(1.06±0.36) mmol/L],IFG/IGT group[(1.16±0.39) mmol/L], and T2DM group[(1.95±0.95) mmol/L](all P<0.05).③The fasting glucose level deteriorated the most rapidly in the I-IFG group,while it reached the highest postprandial peak in the IFG/IGT group.The blood glucose curve increased along the order of NGT,I-IGT,IFG/IGT,I-IFG,and T2DM.④When the level of glycosylated hemoglobin A1c(HbA_(1C)) level was less than 7%,the fasting phase of curve virtually coincided with each other among individual groups with different HbA_(1C) levels;however,the postprandial peak separated slightly.When the HbA_(1C) level was between 7.0%and 7.9%,the postprandial peaks of individual groups with different HbA_(1C) levels dispersed markedly.When the HbA_(1C) level was higher than 8%,the fasting blood glucose curve moved upwards significantly with increasing postprandial excursion.2.Correlation of oxidative stress activation and acute glucose fluctuations:①Mean(SD) urinary excretion rates of 8-isoPGF_(2α)(1706±477)pg/mg of creatinine)in T2DM group significantly increased compared with it in IGR group((216±65)pg/mg) and NGT group((269 4-60)pg/mg)(F=27.304,P<0.05).And levels of MAGE(6.04mmol/L) in T2DM group also elevated compared with it in IGR group((2.70±1.22)mmol/L)) and NGT group((1.73±0.50)mmol/L))(F=67.729,P<0.05).②With Lispro 25 interventions in T2DM group,urinary excretion rates of 8-isoPGF_(2α),MAGE, glycosylated hemoglobin(HbA_(1C)) and triglyceride(TG) read(?)ts decreased by 34.53%,31.81%,18.50%and 28.79%respectively(F values were 6.108,18.378, 39.322 and 5.942,all P<0.05).Moreover,the level of systolic blood pressure(SBP),diastolic blood pressure(DBP),fasting blood glucose(FBG) and 2h postprandial blood glucose(2hPBG) also significantly decreased(F values were 7.879,11.684,38.952 and 61.207 respectively,all P<0.01).③Pearson correlation analysis:urinary excretion rates of 8-isoPGF_(2α) was positively correlated with MAGE(r=0.593,P<0.01).No significant correlation were found between HbA_(1C) and urinary excretion rates of 8-isoPGF_(2α)(r=0.186,P>0.05);④With urinary excretion rates of 8-isoPGF_(2α) as dependent,and positive correlation factors in Pearson correlation analysis as independent,multivariate stepwise regression analysis showed MAGE and HDL-c entered final two models(r~2 value was 0.354 and 0.346 respectively,all P<0.01);and same results were found by Partial correlation analysis.3.Correlation of Pancreatic Islet Function and Acute Glucose Fluctuations:①HOMA-IR of T2DM group were 2.7 times and 3.8 times higher than that of IGR group and NGT group respectively(F=4.07,P<0.05).②With corrected by HOMA-IR,HBCI/IR of T2DM group were 17.2 percent and 25.5 percent as that of NGT group and IGR group respectively(F=21.19,P<0.01). And FBCI/IR of T2DM group were 34.4 percent and 42.9 percent as that of NGT group and IGR group respectively(F=89.62,P<0.01).Moreover,△I_(120)/△G_(120)/IR of T2DM group were 6.2 percent and 15.5 percent than that of NGT group and IGR group respectively(F=21.19,P<0.01).③Significant correlation by Partial correlation analysis was found only between FBCI/IR and 8-isoPGF_(2α)/Cr,but not between HBCI,HBCI/IR,△I120/△G120,fasting C peptide and 8-isoPGF_(2α)/Cr after FBCI/IR controlled analysis(r value was 0.20,0.27,-0.03 and 0.05 respectively,P>0.05).Furthermore,statistical significant was also found in the correlation between FBCI/IR,△I120/△G120 and MAGE, but not between HOMA-IR,HBCI,HBCI/IR,△I120/△G120/IR and MAGE after FBCI/IR controlled analysis(r value was 0.03,-0.11,0.21 and -0.05 respectively, P>0.05).These conclusions were further evaluated and validated by multivariate stepwise regression analysis.④Pearson correlation analysis:HOMA-IR was positively correlated with blood glucose before lunch with most significance; dinner postprandial glucose spike mainly reflected islet beta cell secretion function.And there were significantly correlation between basal islet function and dinner postprandial glucose spike,fasting blood glucose and 3am blood glucose; Stimulated pancreatic islet function had correlation with blood glucose two hours after breakfast.⑤All subjects were grouped by the level of quartile blood glucose in special time and insulin resistance and pancreatic islet function indices were compared by one-way ANOVA.Then the reference threshold of fasting blood glucose,two hours after breakfast and blood glucose before lunch were 5.8mmol/L,7.9mmol/L and 7.3mmol/L respectively.The cut-off points of dinner postprandial glucose spike depending on the index.It was 7.3mmol/L to assess HBCI/IR and 8.1mmol/L to assess FBCI/IR(all P<0.01).Conclusion①With the deterioration of glucose regulation,the intraday and day-to-day blood glucose excursion levels became increasingly fluctuant,therefore,the oxidative stress became more activated.②The amplitude of glycemic excursion was lower in the NGT group than in the T2DM group,however,the frequency of glycemic excursion was higher in the NGT subject than that in the T2DM subjects.The glucose excursion profile of the IGR subjects was between the NGR and T2DM subjects.③The characteristics of glucose excursion of the I-IGT group were similar to those of the T2DM group,and the characteristics of the I-IFG group was similar to those of the NGT group.④The loss of postprandial glycemic control preceded evident deterioration in fasting phase of IGR.⑤The activation of oxidative stress in T2DM were positive correlation with glucose fluctuations and some lipoprotein metabolism.⑥With insulin treatment,glucose excursions and oxidative stress were both improved obviously.⑦Pre-diabetes and type 2 diabetes had various degrees of pancreaticβ-cell secreting dysfunction,and this tendency became more obvious with insulin resistance factors taken into account.⑧Acute glucose fluctuations may contribute to pancreaticβ-cell secreting dysfunction through activation of oxidative stress in T2DM.⑨According to the level of blood glucose in special time,we had a preliminary evaluation of diabetic patients' pathophysiology conditions and it may be helpful to choose oral hypoglycemic agents.
引文
[1]International Diabetes Federation.Global Guideline for Type 2 Diabetes.International Diabetes Federation.2005.
    [2]萧建中.糖尿病的流行情况和诊断标准.中华医学杂志(增刊),2008,121:9-1O.
    [3]胡善联,刘国恩,许樟荣,等.我国糖尿病流行病学和疾病经济负担研究现状.中国卫生经济,2008,8:635-7.
    [4]The Diabtes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group.Effect of intensive therapy on the microvascular complications of Type 1 diabetes mellitus.JAMA,2002,287:2563-9.
    [5]The Diabtes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group.Intensive diabetes therapy and carotid intima-media thickness in Type 1 diabetes mellitus.New England Journal of Medicine,2003,348:2294-303.
    [6]Coutinho M,Gerstein HC,Wang Y,et al.The relationship between glucose and incident cardiovascular events.A metaregression analysis of published data from 20 studies of 95,783 individuals followed for 12.4 years.Diabetes Care,1999,22:233-40.
    [7]De Vegt F,Dekker JM,Ruhe HG,et al.Hyperglycaemia is associated with all-cause and cardiovascular mortality in the Hoorn population:the Hoorn Study.Diabetologia,1999,42:926-31.
    [8]Khaw K-T,Wareham N,Bingham S,et al.Association of Hemoglobin A1c and cardio-vascular disease and mortality in adults:the European Prospective Investigation into Cancer in Norfolk.Ann Intern Med 2004,141:413-20.
    [9]Hanefeld M,Fischer S,Julius U,et al.Risk factors for myocardial infarction and death in newly detected NIDDM:the Diabetes Intervention Study,11-year follow-up.Diabetologia,1996,39:1577-83.
    [10]Cavalot F,Petrelli A,TRaversa M,et al.Postprandial blood glucose is a stronger predictor of cardiovascular events than fasting blood glucose in type 2 diabetes mellitus,particularly in women:lessons from the San Luigi Gonzaga Diabetes Study.J Clin Endocrinol Metab,2006,91:812-9.
    [11]Brownlee M.Biochemistry and molecular cell biology of diabetic complications.Nature,2001,414:813-20.
    [12]Monnier,L et al.Activation of Oxidative Stress by Acute Glucose Fluctuations Compared With Sustained Chronic Hyperglycemia in Patients With Type 2 Diabetes.JAMA,2006,295,1681-7.
    [13]Robertson RP,Harmon JS.Diabetes,glucose toxicity,and oxidative stress:A case of double jeopardy for the pancreatic islet beta cell.Free Radic Biol Med,2006,41(2):177-84.
    [14]Piro S,Anello M et al.Chronic exposure to free fatty acids or high glucose induces apoptosis in rat pancreatic islets:possible role of oxidative stress.Metabolism,2002,51(10):1340-7.
    [15]Kaneto H,Kajimoto Y et al.Oxidative stress induces p21 expression in pancreatic islet cells:possible implication in beta-cell dysfunction.Diabetologia,1999,42(9):1093-7.
    1.Tominaga M,Eguchi H,Manaka H,et al.Impaired glucose tolerance is a risk factor for cardiovascular disease,but not impaired fasting glucose.Diabetes Care,1999,22:920-4.
    2.Rao SS,Disraeli P,McGregor T.Impaired glucose tolerance and impaired fasting glucose.Am Fam Physician,2004,69:1961-8.3.王先令,陆菊明,潘长玉.动态血糖监测系统的临床应用.军医进修学院学报,2005,26:63-5.
    4.Salardi S,Zucchini S,Santoni R et al.The glucose area under the pro2files obtained with continuous glucose monitoring system relationships with HbA(lc) in pediatric type 1 diabetic patients.Diabetes Care,2002,25:1840-4.
    5.Service FJ,Molnar GD,Rosevear JW,et al.Mean amplitude of glycemic excursions,a measure of diabetic instability.Diabetes,1970,19:644-55.
    6.Molnar GD,Taylor WF,Ho MM.Day-to-day variation of continuously monitored glycaemia:a further measure of diabetic instability.Diabetologia,1972,8:342-8.
    7.Kilpatrick ES,Rigby AS,Atkin SL.The effect of glucose variability on the risk of microvascular complications in type 1 diabetes.Diabetes Care,2006,29:1486-90.
    8.Gimeno-Orna JA,Castro-Alonso FJ,Boned-Juliani B,et al.Fasting plasma glucose variability as a risk factor of retinopathy in Type 2 diabetic patients.J Diabetes Complications,2003,17:78-81.
    9.Kovatchev BP,Otto E,Cox D,et al.Evaluation of a new measure of blood glucose variability in diabetes.Diabetes Care,2006,29:2433-8.
    10.王瑶,杨文英,杨兆军,等.从心血管危险因素看空腹血糖受损切点下调.中华内分泌代谢杂志,2004,20:18-20
    11.N(?)voa FJ,Boronat M,Saavedra P,et al.Differences in cardiovascular risk factors,insulin resistence,and insulin secretion in individuals with normal glucose tolerance and in subjects with impaired glucose regulation:the Telde Study.Diabetes Care,2005,28:2388-93.
    12.Kim YI,Kim CH,Choi CS,et al.Microalbuminuria is associated with the insulin resistance syndrome independent of hypertension and type 2 diabetes in the Korean population.Diabetes Res Clin Pract,2001,52:145-52.
    13.Gabir MM,Hanson RL,Dabelea D,et al.Plasma glucose and prediction of microvascular disease and mortality:evaluation of 1997 American Diabetes Association and 1999 World Health Organization criteria for diagnosis of diabetes.Diabetes Care,2000,23:1113-8
    14.DECODE Study Group,the European Diabetes Epidemiology Group.Glucose tolerance and cardiovascular mortality:comparison of fasting and 2-hour diagnostic criteria.Arch Intern Med,2001,161:397-405.
    15.苏海燕,潘长玉,刘敏,等.从冠脉造影病变程度及心血管危险因素角度探讨空腹血糖受损界值下降的临床意义.中华内分泌代谢杂志,2008,24:261-4
    16.Unwin N,Shaw J,Zimmet P,et al.Impaired glucose tolerance and impaired fasting glycemia:the current status on definition and intervention.Diabet Med,2002,19:708-23.
    17.陆菊明,卢艳慧.糖尿病前期人群的胰岛素分泌功能和血管病变.国际内分泌代谢杂志,2006,26:213-4.
    18.周健,贾伟平,喻明.应用动态血糖监测系统评估不同糖耐量个体血糖稳定性的特征.上海医学,2008,31:10-13.
    19.Monnier L,Colette C,Dunseath G,et al.The loss of postprandial glycemic control precedes stepwise deterioration of fasting with worsening diabetes.Diabetes Care,2007,30:263-9.
    [1]Brownlee M.Biochemistry and molecular cell biology of diabetic complications.Nature,2001,414:813-20.
    [2]Piconi L,Quagliaro L,Da Ros R,et al.Intermittent high glucose enhances ICAM-1,VCAM-1,E-selectin and interleukin-6 expression in human umbilical endothelial cells in culture:the role of poly(ADP-ribose)polymerase.J Thromb Haemost,2004,2:1453-9.
    [3]Quagliaro L,Piconi L,Assaloni R,et al.Intermittent high glucose enhances apoptosis related to oxidative stress in human umbilical vein endothelial cells:the role of protein kinase C and NAD(P)H-oxidase activation.Diabetes,2003,52:2795-804.
    [4]Liang Y,Wei P,Duke RW,et al.Quantification of 8-iso-prostaglandin-F (2alpha) and 2,3-dinor-8-iso-prostaglandin-F(2alpha) in human urine using liquid chromatography-tandem mass spectrometry.Free Radic Biol Med,2003,34:409-18.
    [5]Pratico D.F(2)-isoprostanes:sensitive and specific noninvasive indices of lipid peroxidation in vivo.Atherosclerosis,1999,147:1-10
    [6]Davi G,Ciabattoni G et al.In vivo formation of 8-iso-prostaglandin F2a and platelet activation in diabetes mellitus:effects of improved metabolic control and vitamin E supplementation.Circulation 1999,99:224-9.
    [7]Kumar A,Kingdon E,Norman J.The isoprostane 8-iso-PGF2alpha supresses monocyte adhesion to human microwascular endothelial cells via two independent mechanisms.FASEB J,2005,19:443-5.
    [8]Varma S,Janesko KL,Wisniewski SR,et al.F2-isoprostane and neuron -specific enolase in cerebrospinal fluid after severe traumatic brain injury in infants and children.J Neurotrauma,2003,20:781-6.
    [9]Inder T,Mocatta T,Darlow B,et al.Elevated free radical products in the cerebrospinal fluid of VLBW infants with cerebral white matter injury.Pediatr Res,2002,52:213-8.
    [10]Brault S,Martinez-Bermudez AK,Marrache AM,et al.Selective neuromicro-vascular endothelial cell death by 8-Iso-prostaglandin F-alpha:possible role in ischemic brain injury.Stroke,2003,34:776-82.
    [11]Yoshida Y,Itoh N et al.Lipid peroxidation induced by carbon tetrachloride and its inhibition by antioxidant as evaluated by an oxidative stress marker,HODE.Toxicol Appl Pharmacol,2005,208:97-97.
    [12]Colette C,Monnier L.Acute glucose fluctuations and chronic sustained hyperglycemia as risk factors for cardiovascular diseases in patients with type 2 diabetes.Horm Metab Res,2007,39:683-6.
    [13]康怡,陆菊明,孙敬芳等.不同糖调节受损人群的血糖波动特征.中华医学杂志.2009,89:669-72.
    [14]El-Osta A,Brasacchio D,Yao D,et al.Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia.J Exp Med,2008,205:2409-17.
    [15]Sampson M,Gopaul N,Davies I.et al.Plasma F2 isoprostanes:direct evidence of increased free radical damage during acute hyperglycemia in type 2 diabetes.Diabetes Care,2002,25:537-541.
    [16]Monnier,L et al.Activation of Oxidative stress by Acute Glucose Fluctuations Compared With Sustained Chronic Hyperglycemia in Patients With Type 2 Diabetes.JAMA,2006,295,1681-7.
    [17]Wentholt IME,Kulik W,Michels RPG,et al.Glucose fluctuations and activation of oxidative stress in patients with type 1 diabetes.Diabetologia,2008,51:183-190.
    [18]Du X,Edelstein D,Obici S,et al.Insulin resistance reduces arterial prostacyclin synthase and eNOS activities by increasing endothelial fatty acid oxidation.J Clin Invest,2006,116:1071-80.
    [19]Monnier L,Colette C.Glycemic Variability:Should we and can we prevent it? Diabetes Care,2008,31(Suppl.2):S150-S154.
    [20]Bruttomesso D,Pianta A,Mari A,et al.Restoration of early rise in plasma insulin levels improves the glucose tolerance of type 2 diabetic patients.Diabetes,1999,48:99-105.
    [1]Porksen N.The in vivo regulation of pulsatile insulin secretion.Diabetologia,2002,45:3-20.
    [2]Cobelli C,Toffolo GM,Dalla Man,et al.Assessment of beta-cell function in humans,simultaneously with insulin sensitivity and hepatic extraction,from intravenous and oral glucose tests.Am J Physiol Endocrinol Metab,2007,293:E1-E15.
    [3]Larsson H,Ahren B.Glucose-dependent arginine stimulation test for characterization of islet function:studies on reproducibility and priming effect of arginine.Diabetologia,1998,41:772-777.
    [4]Ferrannini E,Gastaldelli A,Miyazaki Y,et al.β-cell function in subjects spanning the range from normal glucose tolerance to overt diabetes:a new analysis.J Clin Endocrinol Metab,2005,90:493-500.
    [5]Weir GC,Bonner-Weir S.Five stages of evolving β-cell function dysfunction during progression to diabetes.Diabetes,2004,53(Suppl 3):S16-S21.
    [6]Marfella R,Quagliaro L,Nappo F,et al.Acute hyperglycemia induces an oxidative stress in healthy subjects.J Clin Invest,2001,108:635-6.
    [7]张贤玲,顾燕云,李果.胰岛β细胞数量的动态平衡及调节.国际内分泌代谢杂志,2007,27:377-379.
    [8]Lawrence MC,Mcglynn K,Park BH,et al.ERK1/2-dependent activation of transcription factors required for acute and chronic effects of glucose on the insulin gene promoter.J Biol Chem,2005,280:26751-9.
    [9]王宣春,胡仁明.高血糖损伤胰岛β细胞的分子机理.国际医学内分泌分册,2002,22:240-242.
    [10]Liu k,Paterson AJ,Chin E,et al.Glucose stimulates protein modification by O-linked GlcNAc in pancreatic β cells;Linkage of O-linked GlcNAc to β cell death.Proc Natl Acad Sci USA,2000,97:2820-5.
    [11]Meyer J,Stuffs J,Katschinski M,et al.Acute hyperglycemia alters the ability of the normal β-cell to sense and respond to glucose.Am J Physiol Endecinol Metab,2002,282:E917-22.
    [12]Del Guerra S,Grupillo M,Masini M,et al.Gliclazide protects human islet beta-cells from apoptosis induced by intermittent high glucose.Diabetes Metab Rev,2007,23:234-238.
    [13]侯志强,李宏亮,赵家军,等.高糖波动诱导氧化应激及内质网应激损伤胰岛β细胞功能.中华医学杂志,2008,88:2002-4.
    [14]Lipson KL,Fonseca SG,Ishigaki S,et al.Regulation of insulin biosynthesis in pancreatic beta cells by an endoplasmic reticulumresident protein kinase IREI.Cell Metab,2006,3:245-54.
    [15]Reaven GM.Banting lecture 1988.Role of insulin resistance in human disease.Diabetes,1998,37:1595-607.
    [16]Monnier L,Colette C,Owens DR.Type 2 diabetes:A well-characterised but suboptimally controlled disease.Can we bridge the divide? Diabetes &Metabolism,2008,34:207-16.
    [1]Eric S Kilpatruck,Alan S,Rigby et al.The effect of glucose variability on the risk of microvascular complications in type 1 Diabetes.Diabetes Care,2006,29:1486-90.
    [2]A Cerielio,L Quagliaro.Role of Hyperglycemia in Nitrotyrosine Postprandial Generation.Diabetes Care,2002,25:1439-1443.
    [1]Lachin JM,Genuth S,Nathan DM,et al.Effect of glycemic exposure on the risk of microvascular complications in the Diabetes Control and Complications Trial-Revisited.Diabetes,2008,57:995-1001.
    [2]康怡,陆菊明,孙敬芳,等.不同糖调节受损人群的血糖波动特征.中华医学杂志.2009,89:669-672.
    [3]de Vegt F,Dekker JM,Ruhe" HG,et al.Hyperglycaemia is associated with all-cause and cardiovascular mortality in the Hoom population:the Hoorn Study.Diabetologia,1999,42:926-931.
    [4]Donahue RP,Abbott RD,Reed DM,et al.Postchallenge glucose concentration and coronary heart disease in men of Japanese ancestry:Honolulu Heart Program.Diabetes,1987,36:689-692.
    [5]Lowe LP,Liu K,Greenland P,et al.Diabetes,asymptomatic
    hyperglycemia,and 22-year mortality in bL.ck and white men:the Chicago Heart Association Detection Project in Industry study.Diabetes Care,1997,20:163-169.
    [6]The DECODE Study Group,the European Diabetes Epidemiology Group:Glucose tolerance and mortality:comparison of WHO and American Diabetes Association diagnostic criteria.Lancet,1999,54:617-621.
    [7]Hanefeld M,Koehler C,Schaper F,et al.Postprandial plasma glucose is an independent risk factor for increased carotid intima-media thickness in non-diabetic individuals.Atherosclerosis,1999,144:229-35.
    [8]Temelkova-Kurktschiev TS,Koehler C,Schaper F,et al.Postchallenge plasma glucose and glycemic spikes are more strongly associated with atherosclerosis than fasting glucose and HbAlc level.Diabetes Care,2000,23:1830-1834
    [9]Coutinho M,Gerstein HC,Wang Y,et al..The relationship between glucose and incident cardiovascular events.A meta regression analysis of published data from 20 studies of 95,783 individuals followed for 12.4 years.Diabetes Care,1999,22:233-40.
    [10]Balkau B,Shipley M,Jarrett RJ,et al.High blood glucose concentration is a risk factor for mortality in middle-aged nondiabetic men:20-year follow-up in the Whitehall Study,the Paris Prospective Study,and the Helsinki Policemen Study.Diabetes Care,1998,21:360-67.
    [11]O' Sullivan JJ,Conroy RM,Robinson K,et al.In hospitalprognosis of patients with fasting hyperglycemia after first myocardial infarction.Diabetes Care,1991,14:758-60.
    [12]Gray CS,French JM,Bates D,et al.Increasing age,diabetes mellitus and recovery from stroke.Postgrad Med J,1989,65:720-42.
    [13]Marfella R,Nappo F,De Angelis L,et al.The effect of acute hyperglycaemia on QTc duration in healthy man.Diabetologia,2000,43:571-75.
    [14]Koya D,King GL.Protein kinase C activation and the development of diabetic complications.Diabetes,1998,47:859-66.
    [15]Vinik A.The protein kinase C-b inhibitor,ruboxistaurin,for the treatment of diabetic microvascular complications.Expert Opin Investig Drugs 2005,14:1547-59.
    [16]Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus.Diabetes Care 1998,22(suppl.1):S5-S19.
    [17]Sassa M,Yamada Y,Hosokawa M,et al.Glycemic instability in type 1diabetic patients:Possible role of ketosis or ketoacidosis at onset of diabetes.Diabetes Res Clin Pract,2008,81:190-195.
    [18]Quagliaro L,Piconi L,Assalone R,et al.Intermittent high glucose enhances apoptosis related to oxidative stress in human umbilical vein endothelial cells:The roll of protein kinase C and NAD(P)H-Oxidase activation.Diabetes,2003,52:2795-804.
    [19]Jones S,Saunders H,Qi W,et al.Intermittent high glucose enhances cell growth and collagen synthesis in cultured human tubulointerstitial cells.Diabetologia,1999,42:1113-9.
    [20]Brownlee M.Biochemistry and molecular cell biology of diabetic complications.Nature,2001,414:813-20.
    [21]Zeymer U,Schwarzmaier-D'assie A,Petzinna D,et al.STOP-NIDDM Trial Research Group.Effect of acarbose treatment on the risk of silent myocardial infarction in patients with impaired glucose tolerance:results of the randomized STOP-NIDDM trial electro-cardiography substudy.Eur J Cardiovasc Prev Rehabil,2004,11:412-415.
    [22]Hanefeld M,Chiasson JL,Koehler C,et al.Acarbose slows progression of intima-media thickness of the carotid arteries in subjects with impaired glucose tolerance.Stroke,2004,35:1073-8.
    [23]Hanefeld M,Cagatay M,Petrowitsch T,et al.Acarbose reduces the risk for myocardial infarction in type 2 diabetic patients:meta-analysis of seven long-term studies.Eur Heart J,2004,25:10-6.
    [24]Esposito K,Giugliano D,Nappo F,et al.Regression of carotid atherosclerosis by control of postprandial hyperglycaemia in type 2 diabetes mellitus.Circulation,2004,110:214-9.
    [25]Bruttomesso D,Pianta A,Mari A,et al.Restoration of early rise in plasma insulin levels improves the glucose tolerance of type 2 diabetic patients.Diabetes,1999,48:99-105.
    [26]El-Osta A,Brasacchio D,Yao D,et al.Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia.J Exp Med,2008,205:2409-2417.
    [27]Monnier L,Mas E,Ginet C,et al.Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes.JAMA,2006,295:1681-167.
    [28]Marfella R,Quagliaro L,Nappo F,et al.Acute hyperglycemia induces an oxidative stress in healthy subjects.J Clin Invest,2001,108:635-6(letter).
    [29]Esposito K,Nappo E,Martella R,et al.Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans:role of oxidative stress.Circulation,2002,106:2067-72.
    [30]Kohnert KD,Auqstein P,Zander E,et al.Glycemic variability strongly correlates with postprandial p-cell dysfunction in a segment of type 2 diabetic patients using oral hypoglycemic agents.Diabetes Care,2009,Epub ahead of print.
    [31]Kilpatrick ES,Rigby AS,Atkin SL.The effect of glucose variability on the risk of microvascular complications in type 1 diabetes.Diabetes Care,2006,29:1486-1490.
    [32]Fiallo-Scharer R.Diabetes Research in Children Network(DirecNet)Study Group.Eight-point glucose testing versus the continuous glucose monitoring system in evaluation of glycemic control in type 1 diabetes.J Clin Endocrinol Metab,2005,90:3387-3391.
    [33]Colette C,Monnier L.Acute glucose fluctuations and chronic sustained hyperglycemia as risk factors for cardiovascular diseases in patients with type 2 diabetes.Horm Metab Res,2007,39:683-686.
    [34]Hirsch I,Brownlee M.The effect of glucose variability on the risk of microvascular complications in type 1 diabetes,response to Kilpatrick et al.and Bolli.Diabetes Care,2006,30:186-7.
    [35]Kilpatrick ES,Rigby AS,Atkin SL.HbA_(1C)variability and the risk of microvascular complications in type 1 diabetes:data from the DCCT.Diabetes Care,2008,31:2198-2202.
    [36]Wentholt IME,Kulik W,Michels RPG,et al.Glucose fluctuations and activation of oxidative stress in patients with type 1 diabetes.Diabetologia,2008,51:183-190.
    [37]Du X,Edelstein D,Obici S,et al.Insulin resistance reduces arterial prostacyclin synthase and eNOS activities by increasing endothelial fatty acid oxidation.J Clin Invest,2006,116:1071-80.
    [38]American Diabetes Association:Postprandial blood glucose.Diabetes Care,2001,24:775-778.
    [39]Bonora E,Corrao G,Bagnardi V,et al.Prevalence and correlates of postprandial hyper-glycaemia in a large sample of patients with type 2 diabetes mellitus.Diabetologia,2006,49:846-54.
    [40]Esposito K,Giugliano D,Nappo F,et al.Regression of carotid atherosclerosis by control of postprandial hyperglycaemia in type 2 diabetes mellitus.Circulation,2004,110:214-9.
    [41]Marfella R,Barbieri M,Grella R,et al.Effects of vildagliptin twice daily vs.sitagliptin once daily on 24-hour acute glucose fluctuations.J Diabetes Complications,2009,Epub ahead of print.
    [42]Heine RJ,Van Gaal LF,Johns D,et al.Exenatide versus insulin glargine in patients with suboptimally controlled type 2 diabetes.Ann Intern Med,2005,143:559-569.
    [43]Bruttomesso D,Pianta A,Mari A,et al.Restoration of early rise in plasma insulin levels improves the glucose tolerance of type 2 diabetic patients.Diabetes,1999,48:99-105.
    [44]Yki-Jarvinen H,Kauppinen-Makelin R,Tiikkainen M,et al.Insulin glargine or NPH combined with metformin in type 2 diabetes:the LANMET study.Diabetologia,2006,49:442-51.
    [1]Yano M,Hasegawa G,Ishii M.et al.Short-term exposure of high glucose concentration induces generation of reactive oxygen species in endothelial cells:implication for the oxidative stress associated with postprandial hyperglycemia.Redox Rep,2004,9:111-16.
    [2]Ha H,Lee H.Reactive oxygen species as glucose signaling molecules in mesangial cells cultured under high glucose.Kidney Inter,2000,Suppl,77:S19-S25.
    [3]Ceriello A,Quaqliaro L,D'Amico M,et al.Acute hyperglycemia induces nitrotyosine formation and apoptosis in perfused heart from rat.Diabetes,2002,51:1076-82.
    [4]Okouchi M,Okayama N,Aw T.Hyperglycemia potentiates carbonyl stress-induced apoptosis in naive PC-12 cells:relationship to cellular redox and activator protease factor-1 expression.Curr.Neurovasc.Res,2005,2:375-86.
    [5]Sampson M,Gopaul N,Davies Ⅰ,et al.Plasma F2 isoprostanes:direct evidence of increased free radical damage during acute hyperglycemia in type 2 diabetes.Diabetes Care,2002,25:537-41.
    [6]Tessier D,Khalil A,Fulop T.Effects of an oral glucose challenge on free radicals/ antioxidants balance in an older population with type Ⅱ diabetes.J Gerontol A Biol Sci Med Sci,1999,54:M541-M545.
    [7]Ceriello A,Bortolotti N,Crescentini A,et al.Antioxidant defences are reduced during the oral glucose tolerance test in normal and non-insulin-dependent diabetic subjects.Eur J Clin Invest,1998,28:329-33.
    [8]Marfella R,Quagliaro L,Nappo F,et al.Acute hyperglycemia induces an oxidative stress in healthy subjects.J Clin Invest,2001,108:635-6.
    [9]Monnier L,Mas E,Ginet C,et al.Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes.JAMA,2006,295:1681-7.
    [10]Kyselova P,Zourek M,Rusavy Z.et al.Hyperinsulinemia and oxidative stress.Physiol Res,2002,51:591-5.
    [11]Bravi M,Armiento A,Laurenti 0,et al.Insulin decreases intracellular oxidative stress in patients with type 2 diabetes mellitus.Metabolism,2006,55:691-5.
    [12]Quinones-Galvan A,Sironi A,Baldi S et al.Evidence that acute insulin administration enhances LDL cholesterol susceptibility to oxidation in healthy humans.Arterioscler Thromb Vase Biol,1999,19:2928-32.
    [13]Meyer J,Sturis J,Katschinski M,et al.Acute hyperglycemia alters the ability of the normal p-cell to sense and respond to glucose.Am J Physiol Endecrinol Meab,2002,282:E917-E922.
    [14]Brock B,Mogensen JH,Gregersen S,et al.Glucose desensitization in INS-1 cells:evidence of impaired function caused by glucose metabolite(s)rather than by the glucose molecule per se.Metabolism.2002,51:671-7.
    [15]Hou ZQ,Li HL,Gao L,et al.Involvement of chronic stresses in rat islet and INS-1 cell glucotoxicity induced by intermittent high glucose.Mol Cell Endocrinol,2008,291:71-8.
    [16]Marciniak SJ,Ron D.Endoplasmic reticulum stress signaling in disease.Physiol Rev,2006,86:1133-1149.
    [17]Wu J,Kaufman RJ.From acute ER stress to physiological roles of the unfolded protein response.Cell Death Differ,2006,13:374-384.
    [18]Yoshida H.ER stress and diseases.FEBS J,2007,274:630-658.
    [19]Joseph L,Ira D,Betty A,et al.Are Oxidative Stress-Activated Signaling Pathways Mediators of Insulin Resistance and(3-Cell Dysfunction?Diabetes,2003,52:1-8
    [20]Hideaki K,Yoshihisa N,Dan K,et al.Role of oxidative stress,endoplasmic reticulum stress,and c-Jun N-terminal kinase in pancreatic-cell dysfunction and insulin resistance.The International Journal of Biochemistry & Cell Biology,2005,37,1595-608.
    [21]Pavlovic D,Kocic R,Kocic G,et al.Effect of four-week metformin treatment on plasma and erythrocyte antioxidative defense enzymes in newly diagnosed obese patients with type 2 diabetes.Diabetes Obes.Metab,2000,2:251-6.
    [22]Tankova T,Koev D,Dakovska L,et al.The effect of repaglinide on insulin secretion and oxidative stress in type 2 diabetic patients.Diabetes Res Clin Pract,2003,59:43-9.
    [23]Gumieniczek A.Oxidative stress in kidney and liver of alloxan-induced diabetic rabbits:effect of repaglinide.Acta Diabetol,2005,42:75-81.
    [24]Gumieniczek A.Effect of the new thiazolidinedione-pioglitazone on the development of oxidative stress in liver and kidney of diabetic rabbits.Life Sci,2003,74:553-62.
    [25]Dobrian A,Schriver S,Khraibi A,et al.Pioglitazone prevents hypertension and reduces oxidative stress in diet-induced obesity.Hypertension,2004,43:48-56.
    [26]Agarwal R.Anti-inflammatory effects of short-term pioglitazone therapy in men with advanced diabetic nephropathy.Am J Physiol Renal Physiol,2006,290:F600-F605.
    [27]Jennings P,Belch J.Free radical scavenging activity of sulfonylureas:a clinical assessment of the effect of gliclazide.Metabolism,2000,49:23-6.
    [28]Ceriello A,Lush C,Darsow T.et al.Pramlintide reduced markers of oxidative stress in the postprandial period in patients with type 2 diabetes.Diabetes Metab Res Rev,2008,24:103-8.
    [29]Ogawa S,Mori T,Nako K,et al.Angiotensin Ⅱ type 1 receptor blockers reduce urinary oxidative stress markers in hypertensive diabetic nephropathy.Hypertension,2006,47:699-705.
    [30]Takebayashi K,Matsumoto S,Aso Y,et al.Aldosterone blockade attenuates urinary monocyte chemoattractant protein-1 and oxidative stress in patients with type 2 diabetes complicated by diabetic nephropathy,2006,J Clin Endocrinol Metab,91:2214-7.
    [31]Ceriello A,Assaloni R,Da Ros,et al.Effect of atorvastatin and irbesartan,alone and in combination,on postprandial endothelial dysfunction,oxidative stress,and inflammation in type 2 diabetic patients.Circulation,2005,17:2518-24.
    [32]Shishehbor M,Aviles R,Brennan M,et al.Association of nitrotyrosine levels with cardiovascular disease and modulation by statin therapy.JAMA,2003,289:1675-80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700