基于ADAMS的急救车担架支架减振特性仿真分析与优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
车载担架支架的乘卧舒适性是伤病员运送车辆的重要评价指标之一。本文以某型急救车为研究对象,以降低卧姿伤病员的振动能量、提高乘卧舒适性为目标,对担架支架减振系统进行了仿真分析与优化设计研究。
     围绕车载担架支架乘卧舒适性研究所涉及的关键技术,对多体系统动力学理论、汽车平顺性研究方法、担架支架减振技术(包括钢丝绳弹簧、阻尼减振等技术)的研究现状与发展趋势进行了归纳和总结。
     根据急救车的振动特点,基于多体系统动力学理论,建立了包括简化悬架、车身、担架支架系统、卧姿人体质量块在内的9自由度振动微分方程,模型中考虑了刚性限位器的碰撞作用,钢丝绳弹簧简化为三向弹簧。运用多体系统动力学仿真分析软件ADAMS进行了模型的求解计算。
     依据GB4970-1996《汽车平顺性随机输入行驶试验方法》、QC/T677-2001《卧铺客车平顺性随机输入行驶试验方法》和GB/T18368-2001《卧姿人体全身振动舒适性的评价》的相关规定,在机械工业部工程机械军用改装车试验场(北京延庆)进行了两种代表性路面(砂石路和沥青路)激励下常用车速的道路试验,测量了卧姿、坐姿人体相应部位的振动加速度信号。通过对乘员相应测试部位加速度采样信号的1/3倍频程进行两次计权计算,对卧姿、坐姿人体的舒适性进行了评价。试验数据的分析结果表明,两种路面下担架支架的减振效果均没有达到工程设计的要求(减振效率(?)30%),砂石路激励下甚至还会引起乘员的不舒适。因此,本文针对砂石路激励下担架支架的减振效果进行了优化设计研究。
     在ADAMS软件中建立了与样车模型相一致的车辆振动系统仿真分析模型,模型包括车轮(4个)、车身、等效悬架系统、担架支架、卧姿人体质量块,其中,悬架参数通过基于遗传算法的参数识别方法获得,钢丝绳弹簧用轴套力Bushing模拟,刚性限位器发生作用时的反作用力用Impact函数计算。用汽车试验场道路试验测得的车辆轴头信号在时间域内对系统进行激励,真实模拟了车载担架支架系统的振动情况,仿真与试验结果对比表明,两种路面激励下模型的误差仅为8.267%和7.611%,说明模型具有较高的计算精度;在此基础上对模型进行了减振特性的优化研究,考虑的因素主要有钢丝绳弹簧的数量、刚度、位置、方向,各种分析结果表明担架支架系统的振动响应特性得到了有效改善。但是在随机振动的隔离中,单一由钢丝绳弹簧组成的减振系统,很难满足减振效率的设计要求。
     针对钢丝绳弹簧阻尼比偏小的问题,提出了采用小刚度弹簧并附加液压阻尼器的阻尼减振方案。对该方案的刚度、阻尼匹配关系进行了仿真分析与优化设计研究,优化结果为:钢丝绳弹簧垂向刚度K_y=2737N/m,阻尼器阻尼系数C=2605Ns/m,砂石路激励下垂向减振效率为32.53%,沥青路激励下的减振效率为34.26%。这一分析结果理论上满足了工程设计要求,但在工程实际中,由于钢丝绳弹簧的刚度过小,维持系统静平衡所需的初始变形量较大,因而工程应用实现起来困难较大。
     为解决钢丝绳弹簧渐软特性的不足,在担架支架阻尼减振研究的基础上,设计了四种两级钢丝绳组合式减振方案,经仿真分析与优化研究,优选出最佳减振方案,不仅其对应的砂石路激励下的减振效率可达到31.29%,沥青路激励下的减振效率可达到32.51%,而且两级钢丝绳弹簧的垂向刚度(分别为11545.6 N/m和30101.4 N/m)相对阻尼减振的优化结果(2737N/m)有了显著的提高,有利于工程应用的实现。
     急救车主要行驶在平稳随机路面上,但有时也会遇到凸起或凹坑,这时就表现为冲击激励。为了估算各种方案是否满足冲击情况下的安全性要求,针对原车加装阻尼器前后和采用两级钢丝绳组合式减振方案的优化结果,在Simulink模块中搭建仿真分析模型,分别进行了各方案抗冲击减振效果的简化分析。分析结果表明:原车减振方案的优化结果中,系统最大响应加速度较小,但振动衰减缓慢,且最大响应位移较大,系统稳定性较差;加装阻尼器的后两种方案中,系统的最大响应加速度降低较小,但振动衰减迅速,且最大响应位移也较小,合理兼顾了稳定性与减振效率这一对矛盾,特别是优选出的最佳两级钢丝绳组合式减振方案,用最大响应加速度评价的冲击减振效率达到了68.69%,而最大相对位移仅为3.4mm,有效改善了担架支架减振系统的稳定性。
The ride comfort of the stretcher-support on vehicle is one of the important evaluation indices of wounded transportation vehicle.In order to reduce the vibration energy and improve the ride comfort of the supine wounded,the vibration absorption property of stretcher-support is simulated and optimized in this dissertation.
     The present situation and developing trend of the key technology related to the study of the comfortable characteristic of the stretcher-support on vehicle is summarized,including the theory of multi-body system dynamics,the study methods of vehicle ride comfort,the related technology of stretcher-support vibration absorption about wire rope spring and vibration damping.
     According to the vibration characteristics of the emergency ambulance,the vibration differential equation of nine DOFs(Degrees of Freedom) is founded based on the theory of multi-body system dynamics,including simple suspension system,vehicle body,vehicle stretcher-support system and the body mass of recumbent position crew.In this model,the collision of rigid limiters is also considered,and the wire rope springs are simplified to three direction springs.The model is analyzed in ADAMS,the automatic analysis software of multi-body system dynamics.
     In accordance with the relevant provisions of GB4970-1996 " Method of random input running test--Automotive ride comfort",QC/T677-2001 "Method of random input running test-ride comfort of sleeper bus" and GB/T18368-2001 "Comfort evaluation of human exposure to whole-body vibration in recumbent position",the road test of common speed under the excitation of two representative roads(graveled road and bituminous road ) is carried out at the test ground of reequipped military vehicle of the Mechanical Industry Department(located in Yanqing,Beijing),the acceleration signal transferred to the occupants in the recumbent position and seated position is sampled.Through two terms' weighting of 1/3 OCT of sample acceleration signals on the occupants' corresponding parts,the ride comfort in the recumbent position and seated position is evaluated.The analysis results of test data shows that the vibration absorbing efficiency of stretcher-support under the two types of road can't meet the requirement of engineering design(vibration absorbing efficiency≮30%), and the vibration even causes the occupants' uncomfortableness under the exciting of the gravel,road,therefore,the numerical simulation and optimization for the vibration absorbing efficiency of stretcher-support is carried out under this case.
     The virtual prototype model of vehicle vibration system according with the prototype, including four wheels,vehicle body,equivalent suspension system,stretcher-support system and the body mass of recumbent position,is built in the simulation analysis software ADAMS based on mechanical system dynamics,in which,the suspension parameters are obtained through the parameters identification method based on genetic algorithm,the wire rope springs are simulated by bushing model,and the collision force of rigid limiter is calculated through the function of impact.
     The simulation model is excited in the time domain by the four channels acceleration signals on the end of axletree from the road test and the real vibration condition is fully simulated.From the results comparison between the test and simulation,the calculation error under the exciting of the two roads is only 8.267%and 7.611%,which shows that this model has a higher precision.
     Through the optimization study of this virtual model,considered such factors as the number,stiffness,position and direction of the wire rope springs,the reasonable absorbing vibration scheme is founded.From the analysis results,the vibration absorption system only made up of wire rope springs can't match the industry design targets,although the vibration response characteristics of stretchers has been largely improved.
     To deal with the problem that the damping ratio of wire rope spring is comparatively small,a new kind of vibration absorption scheme is set up using less stiff springs with vibration damping device.And the matching relation of stiffness and damping is simulated and optimized.As a result,the vertical stiffness of wire rope spring K_y is 2737N/m,damping coefficient C is 2605Ns/m and the vibration absorbing efficiency under the gravel road excitation is 32.53%and 34.26%under the excitation of bituminous road.The result of this analysis can meet the design requirements of the project in theory,but in the engineering application,it is comparatively difficult to achieve because the stiffness of wire rope spring is too little and the initial deformation to maintain the system static equilibrium is larger.
     Based on the study of vibration damping,four types of two-stage combined vibration absorbing schemes are designed in order to get over the shortcoming of wire rope spring's soften characteristic.The best scheme is selected after simulation and optimization study.Not only the vibration absorbing efficiency in this scheme can reach to 31.29%and 32.51% corresponding to the exciting of gravel road and bituminous road,but also the stiffness of the two-stage wire rope spring(11545.6 N/m and 30141.4 N/m respectively) has been largely improved compared to the optimization results of damping vibration(2737N/m),which is conducive to realize in the engineering application.
     The emergency ambulance mainly runs on the stationary random road but sometimes it will pass the convex surface or pits on the road,the vibration presents shock excitation in this case.In order to evaluate whether the design schemes can match the security requirements under shocking excitation,the shock vibration isolation efficiency is simply analyzed in the Simulink module for the optimized results on the vibration isolation scheme of pre/post adding;dampers as well as the best scheme of the two-stage combined.The analysis results show that in the optimized results of original scheme,the maximal response acceleration is comparatively little,but the attenuation is very slow,and the maximal response displacement is too large,the system stability is comparatively weak;In comparison,in the two schemes of adding vibration damping device,the decrease of the maximal response acceleration became little,but the attenuation is fast,and the maximal response displacement is also little,therefore the system stability and vibration absorption efficiency are balanced reasonably.In the selected scheme of the two-stage combined vibration absorbing,the vibration absorbing efficiency reaches to 68.69%using the maximal response acceleration as evaluation indicator and the maximal response displacement is only 3.4mm,the stability of stretcher-support system is improved largely.
引文
[1]傅征,王政,霍仲厚等.军队卫生装备学[M].北京:人民军医出版社,2004.
    [2]苏小平.依维柯汽车多体动力学仿真分析、优化研究及工程实现[D].南京:南京理工大学,2005.
    [3]王明容.纯电动轿车平顺性建模与仿真[D].北京:北京交通大学,2005.
    [4]王国权.虚拟试验技术[M].北京:电子工业出版社,2004.
    [5]陈立平,张云清,任卫群,等.机械系统动力学分析及ADAMS应用教程[M].北京:清华大学出版社,2005.
    [6]洪嘉振.计算多体系统动力学[M].北京:高等教育出版社,2003.
    [7]J.维滕伯格著、谢传锋译,多刚体系统动力学[M].北京:北京航空学院出版社,1986.
    [8]L.Lilov,M.Lorer.Dynamic Analysis of Multi-Body System Based on the Gauss Principle[C].ZAMM,1982,62(10):539-545.
    [9]陆佑方.柔性多体系统动力学[M].北京:高等教育业出版社,1996.
    [10]张越今.多体系统动力学在轿车动力学仿真及优化研究中的应用[D].北京:清华大学,1997.
    [11]R.Schwertasek,R.E.Roberson.Dynamics of Multibody System[M].Berlin:Springer- Verlag,1986.
    [12]D Rosenthal.Order N Formulation for Equation of Motion of Multibody Systems[C].SDIO/NASA Workshop on Multibody Dynamics.1987:1122-1150.
    [13]G.Bianchi,W.Shiehlen.Dynamisc of Multibody System[M].Berlin:Springer -Verlag,1986.
    [14]A.A.Shabana.Dynamisc of Multibody System[M].New York:John Wiley &Sons.1989.
    [15]W.Schiehlen.Multibody System Handbook[M].Berlin:Springer-Verlag,1990.
    [16]洪嘉振等.多体系统动力学--理论、计算方法和应用[M].上海:上海交通大学出版社,1992.
    [17]洪嘉振,贾书惠.多体系统动力学与控制[M].北京:北京理大学出版社,1996.
    [18]陈潇凯.多休系统动力学应用于轻型客车数字化模型的研究[D].长春:吉林大学,2002.
    [19]林逸,张洪欣,温吾凡.多刚体系统动力学在汽车独立悬架运动分析中的应用[J].汽车工程,1990,(1):37-42.
    [20]王国强,张进平,马若丁.虚拟样机技术及其在ADAMS上的实践[M].西安:西北工业大学出版社,2002.
    [21]S.Hegazy,H.Rahnejat,K.Hussain.Multi-Body Dynamics in Full-Vehicle Handling Analysis under Transient Manoeuvre[J].Vehicle System Dynamics,2000,34:1-24.
    [22]R.R.Ryan.ADAMS-Multi-body System Analysis Software.Multi-body Systems Handbook[M].Berlin:Springer-verlag,1990.
    [23]K.H.Guo,H.Guan.Modeling of driver/vehicle directional control system[J].Vehicle System Dynamics,1993,27:141-184.
    [24]Antoun R J,Hackert P B,O'L EARY M C,et.Simulating Vehicle Dynamic Handing[J].Automotive Engineering.1986,94(10),51-57.
    [25]鲍卫宁.基于ADAMS软件的轿车悬架动态模拟与仿真[D].武汉:武汉理工大学,2002.
    [26]Michelberger P,PalkovicL,Bokor J.Robust design of active suspension system[J].Int J of Vehicle Design,1993,14(2/3):145-165.
    [27]方琼.基于整车动力学仿真的某越野车后悬架改进设计研究[D].长沙:湖南大学,2006.
    [28]詹文章.汽车独立悬架多体系统动力学仿真及转向轮高速摆振研究[D].长春:吉林大学,2000.
    [29]W.W.Hooker.Equation of Motion for Inteiconnected Rigid and Elastic Bodies[J].Celestial Mechanics,1975,11(5):337-359.
    [30]R.P.Singh.R.J.Vander Voort.Dynamics of Flexble Bodies in TreeTopology-A Computer-Oriented Approach[M].Journal of Guidance,Control and Dynamics,1985.
    [31]桑璟如.基于ADAMS多体动力学软件的轻型客车平顺性仿真[D].武汉:华中科技大学,2005.
    [32]Pinhas Barak,Nataraj Panakanti,Tarun Desai.Effect of Chassis Design Factors on the Ride Quality Using a Seven Degree of Freedom Vehicle Model[J].SAE paper2004-01 - 1555,Detroit,2004.
    [33]王国权,余群,吕伟.8自由度乘坐动力学模型及时域仿真[J].中国农业大学学报,2002,7(2):99-103.
    [34]I.M.Ibrahim.Non-linear Simulation Model for Articulated Vehicles with Controllable Dampers and Flexible Sub-Structures[J].SAE paper2002-01-3043.
    [35]周长峰,孙蓓蓓,孙庆鸿等.铰接式自卸车悬架系统动力学建模与仿真[J].汽车技术,2004,(9):15-18.
    [36]孙建成.车辆行驶平顺性的预测与研究[J].汽车研究与开发,1998;(1):28-32.
    [37]王国平.汽车振动与行驶平顺性的计算机模拟[J].轻型汽车技术,1995,(4):38-44.
    [38]王连明,宋宝玉,周岩等.汽车平顺性建模及其仿真研究[J].哈尔滨工业大学学报,1998,30(5):80-84.
    [39]孔亮.基于虚拟样机技术的某军用专用车平顺性研究[D].南京:南京理工大学,2006.
    [40]N.Orlandea,M.A.Chace.Simulation of a Vehicle Suspension with the ADAMS Computer Program[J].SAE paper 770053,Detroit,1977.
    [41]C.W.Mousseau,S.M.Karamihas,T.D.Gillespie.Computer Synthesis of Light Truck Ride Using a PC Based Simulation Program[J].SAE paper 1999-01-1796,Detroit,1999.
    [42]Leandro Pugliese de Siqueira,Felipe Nogueira.Tractor Air Suspension Design and Turning[J].SAE paper 2002-01-3041,Detroit,2002.
    [43]Carlos Cosme,Amir Ghasemi,Jimmy Gandevia.Application of Computer Aided Engineering in the Design of Heavy-Duty Truck Frames[J].SAE paper 1999-01-3760,Detroit,1999.
    [44]Odilon T.Perseguim,A.Costa Neto,Marcos A.Argentino.Comfort and Vibration Study of a Tractor and Trailer Combination Using Simulation and Experimental Approaches:the Jumping Ride Behavior[J].SAE paper2000-01-3517,Detroit,2000.
    [45]Tong Y.Yi.Vehicle Dynamic.Simulations Based on Flexible and Rigid Multibody Models[J].SAE paper 2000-01-0114,Detroit,2000.
    [46]张建文,杨兴龙,林逸等.空气悬架大客车平顺性仿真研究[J].公路交通科技,2003,20(6):130-133.
    [47]J.Z.Feng,F.Yu,YX.Zhao.Design of a Bandwidth-limited Active Suspension Controller for Off-Road Vehicle Based on the Co-simulation Technology[J].SAE paper 2004-01-1067,Detroit,2004.
    [48]支龙,昌放辉,陈立平等.汽车半主动悬架的ADAMS和MATLAB联合仿真[J].自动化与仪表,2004,(6):43-45.
    [49]庞胜明.公路及铁路卧铺客车卧位振动舒适性试验与空间数值模拟[D].西安:长安大学,2002.
    [50]ISO 10362-1:1992.Mechanical Vibration-Laboratory Method for Evaluating Vehicle Seat Vibration - Part 1:Basic Requirements.
    [51]ISO 5982.Human Exposure to Mechanical Vibration and Shock.1999.
    [52]袁纲.公路卧铺客车卧位振动评价方法研究[D].西安:西安公路交通大学,2000.
    [53]ISO 2631-1:1997(E).Mechanical Vibration and shock-Evaluation of Human Expose to Whole-Body Vibration.
    [54]ISO 2631-4:1998.Human Exposure to Mechanical Vibration and Shock.
    [55]GB/T 4970-1996汽车平顺性随机输入行驶试验方法.
    [56]GB/T 13442-92人体全身振动暴露的舒适性降低界限和评价准则.
    [57]QC/T 677-2001卧铺客车平顺性随机输入行驶试验方法.
    [58]GB/T 18368-2001卧姿人体全身振动舒适性的评价.
    [59]龚宪生,谢志江,骆振黄等.非线性隔振器阻尼特性研究[J].振动工程学报,2001,14(3):334-338.
    [60]白鸿柏,张培林,郑坚等.滞迟振动系统及其工程应用[M].北京:科学出版社,2000.
    [61]侯志强,李跃.迟滞系统受随机激励的响应[J].计算应用力学学报,2003,20(4):101-105.
    [62]Li Linan,Yang Wenfang,Zheng Wei.Finite Element Analysis of Steel Wire ropes for Ship sin Considering Extrusion Case[J].Journal of Tianjin University Science and Technology,2003,36(3):281-284.
    [63]闫辉,姜洪源,李瑰贤等.航空发动机管路支承用金属隔振器性能研究[J].中国机械工程,2007,18(12):1443-1447.
    [64]朱可君.GS型钢丝绳减振器的试制[J].噪声与振动控制,1994,(6):20-21.
    [65]姚起杭,葛祖德,潘树祥.航空用高阻尼减振器研制[J].航空学报,1998,19(4):497-498.
    [66]朱海潮,何琳,霍睿等.钢丝绳隔振器用于船舶主机隔振[J].中国造船,2003,44(2):33-38.
    [67]欧阳光耀,施引,黄映云.船用重载钢丝绳隔振器性能的理论与试验研究[J].非线性动力学学报,1998,5(4):306-311.
    [68]万叶青,杨平,张伟欣.钢丝绳隔振器驾驶座减振性能研究[J].拖拉机与农用运输车,2006,33(3):22-24.
    [69]曹斌.基于钢丝绳隔振器的陆用车载雷达机柜隔振设计[J].电子机械工程,2005,21(6):18-21.
    [70]祁建城,王政,宁洁等.新型汽车运送伤员附加装置的研制[J].医疗卫生装备,2004,25(9):18-19.
    [71]马履中,杨启志,尹小琴等.仿橡胶多自由度阻尼减振装置研究[J].机械工程学报,2004,40(1):21-24.
    [72]刘习军,贾启芬.工程振动理论与测试技术[M].北京:高等教育出版社,2004.
    [73]赵玉珍,高阻尼Zn-27Al合金阻尼特性及机理研究[D].成都:西南交通大学,2004.
    [74]魏鹏勃,夏禾,曹艳梅等.安装阻尼板的钢轨减振性能试验研究[J].北京交通大学学报,2007,31(4):35-39.
    [75]杜冬菊,刘爱华,黄佳典.阻尼减振在潜艇管路上的应用研究[J].中国修船,2004,(1):14-17.
    [76]王燕.海洋平台结构随机响应复模态法及阻尼隔振减振技术研究[D].青岛:中国海洋大学,2003.
    [77]刘明辉,刘丽坤,郑钢铁.传统星-箭连接PAF的改进及其减振性能[J].上海航天,2007,(2):37-42.
    [78]韦勇,陈国平.一般阻尼结构的模态阻尼优化设计[J].振动工程学报,2006,19(4):433-437.
    [79]陈荫三.我国救护车平顺性的改善途径[J].汽车运输研究,1987,(1):45-48.
    [80]黄永勇.救护车担架平顺性的研究[J].专用汽车,1990,(4):36-39.
    [81]Henderson,R.J.,Raine,J.K..Two-degree-of freedom ambulance stretcher suspension[C].Proceedings of the Institution of Mechanical Engineers,Part D,1998,212(5):93-102,227-240,401-407.
    [82]Stammers,C.W.,Leyshon,D.R.Ambulance stretchers design for vibration isolation[J].Tenth ASME Conference on Mechanical Vibration,Cincinatti,1985.
    [83]Leyshon,D.R.,Stammers,C.W.Development and performance of an ambulance stretcher suspension[J].Proceedings of the Institution of Mechanical Engineers,Part D,1986,200(D4):249-257.
    [84]Taro Shimogo,Masaaki Kawana and Takeshi Uenoyama.Active Suspension of Ambulance Stretcher[C].Proceedings of International Conference on Vibration Engineering,Dalian,China:1998,6,6-9.
    [85]张顺心,刘淑英,刘文润.气弹簧在救护车担架减振装置中的应用[J].河北工业大学学报,2001,30(5):71-73.
    [86]祁建城,李若新,刘志国等.救护车担架系统振动的阻尼主动控制研究[J].振动工程学报,1998,11(2):241-244.
    [87]马履中,尹小琴,谢俊等.多自由度并联机构组合弹性阻尼减振装置分析[J].江苏大学学报(自然科学版),2003,24(1):1-4.
    [88]孙景工,任旭东,高振海等.一种应用于救护车辆的磁流变减振器的实验研究[J].机床与液压,2007,35(3):54-55.
    [89]徐中明,张志飞,贺岩松.15自由度重型汽车乘坐舒适性计算机仿真[J].计算机仿真,2005,22(2):195-199.
    [90]丁玉庆,马幼鸣.货车振动系统频率响应的模拟[J].振动与冲击,2000,19(1):61-65.
    [91]丁玉庆.汽车振动系统的简化及数学模型的建立[J].南京理工大学学报,2001,25(4):391-394.
    [92]檀润华,陈鹰,路永祥.汽车线性与非线性乘坐动力学建模与仿真研究[J].机械工程学报,2000,36(8):80-84.
    [93]JIANG Guo- he,SHEN Rong- ying,YIN Li- guo.Non- linear Shock Response Calculation of Shipboard Equipment with Displacement Restrictor Using Pseudo- Force Approach[J].Journal of Ship Mechanics,2006,10(6):138-150.
    [94]赵应龙,何琳,黄映云等.限位器对隔振系统抗冲击性能的影响[J].振动与冲击,2005,24(2):71-77.
    [95]贺华,汪玉,冯奇.带刚性限位的双层隔振系统的离散模型[J].动力学与控制学报,2004,2(2):88-91.
    [96]江国和,沈荣瀛,张小华.利用增量模态叠加法计算带限位器隔离系统非线性冲击响应[J].噪声与振动控制,2006(1):5-9.
    [97]汪玉,冯奇.舰船设备抗冲隔振系统建模理论及其应用[M].北京:国防工业出版社,2006.
    [98]赵济海,王哲人,关朝雳.路面不平度的测量分析与应用[M].北京:北京理工大学出版社,2000.
    [99]刘树棠,黄建国译.[美]Oppenheim,A.V.,Schafer,R.W.,Buck,J.R.著.离散时间信号处理(第二版)[M].西安:西安交通大学出版社,2001.
    [100]李军,刑俊文,覃文洁.ADAMS实例教程[M].北京:北京理工大学出版社,2002.
    [101]吴光强,方圆.汽车平顺性时域仿真分析[J].汽车技术,2007,2:8-11.
    [102]王国权.汽车平顺性虚拟试验技术的研究[D].北京:中国农业大学,2002.
    [103]于学华.汽车平顺性技术理论与实践研究[D].哈尔滨:东北林业大学,2002.
    [104]关文达.汽车构造[M].北京:机械工业出版社,2004.
    [105]喻凡,林逸.汽车系统动力学[M].北京:机械工业出版社,2005.
    [106]MOHAMED A.OMAR.Finite element modeling of leaf springs for vehicle system application[D].Chicago,USA:University of Illinois,2003.
    [107]靳晓雄,张立军,江浩.汽车振动分析[M].上海:同济大学出版社,2002.
    [108]曹树谦,张文德,萧龙翔.振动结构模态分析--理论、实验与应用[M].天津:天津大学出版社,2001.
    [109]牛福.卧姿人体垂直振动模型的建立及其应用[D].天津:军事医学科学院卫生装备研究所,2001.
    [110]《汽车工程手册》编辑委员会.汽车工程手册--基础篇[M].北京:人民交通出版社,2001.
    [111]陈国良,王熙法.遗传算法及其应用[M].北京:人民邮电出版社,2001.
    [112]范成建,熊光明,周明飞.虚拟样机软件MSC.ADAMS应用与提高[M].北京:机械工业出版社,2006.
    [113]朱石坚,楼京俊,何其伟等.振动理论与隔振技术[M].北京:国防工业出版社,2006,6.
    [114]袁修干,庄达民.人机工程[M].北京:北京航空航天大学出版社,2002.
    [115]马志宏,李金国.军用装备抗振动抗冲击设计方法[J].装备环境工程,2006,3(5):70-73.
    [116]张志涌编著.精通MATLAB6.5版[M].北京:北京航空航天大学出版社,2003.
    [117]温浩.车内电子设备的隔振设计[J].专用汽车,2005,(2):21-24.
    [118]周桐,刘青林,张思箭.钢丝绳隔振器综合力学性能试验研究[J].振动与冲击,2007,26(3):139-143.
    [119]万叶青,范立民,齐煜.钢丝绳隔振器非线性特性分析[J].振动与冲击,2007,26(7):46-50.
    [120]严东晋,李宣霖,丁娜娜等.钢丝绳隔震器刚度特性静力试验研究[J].振动与冲击,2007,26(5):145-148.
    [121]赵六奇,金达锋译.车辆动力学基础[M].北京:清华大学出版社,2006.
    [122]刘习军,贾启芬.工程振动理论与测试技术[M].北京:高等教育出版社,2004.
    [123]Ninoslav Truhar.An efficient algorithm for damper optimization for linear vibration systems using lyapunov equation[J].Journal of computational and applied mathematics,2004,172(1):169-182.
    [124]曹斌.基于钢丝绳隔振器的陆用车载雷达机柜隔振设计[J].电子机械工程,2005,21(6):18-20.
    [125]束立红,周炜,吕志强等.钢丝绳隔振器在大型机械设备的振动冲击隔离设计中的应用[J].振动与冲击,2006,25(4):78-81.
    [126]黄映云,秦俊明,吴善跃等.钢丝绳隔振器冲击特性试验研究[J].海军工程大学学报,2007,19(1):23-26.
    [127]王勇,黄映云.锤击法测评小型钢丝绳隔振器冲击特性[J].船舶工程,2007,29(4).79-81.
    [1]王国权,等编著.虚拟试验技术[M].北京:电子工业出版社,2004.
    [2]熊光楞,李伯虎,柴旭东.虚拟样机技术[J].系统仿真学报,2001,13(1):114-117.
    [3]C.Sekimoto,Mashisa Yano.Development of Conceptual Design CAD System[C].Proceedings of Intemational ADAMS Users' Conference,1998.
    [4]郝云堂,金烨,季辉.虚拟样机技术及其在Adams中的实践[J].机械设计与制造,2003,3(1):16-18.
    [5]李瑞涛,方湄,张文明.虚拟样机技术的概念及应用[J].机电一体化,2000,(5):17-19.
    [6]Jasujia S.c.,Kosik R.C..Application of CAE Analyses for Improved NVH Performance of the New 1992 Econoline[J].SAE Transaction,1992,1125-1135.
    [7]祖旭,黄洪钟,张旭.虚拟样机技术及其发展[J].农业机械学报,2004,35(2):168-171.
    [8]Kari Kuutti,Katja Battarbee,et.al.Virtual Prototypes in usability testing[C].Proceedings of the 34th Annual Hawaii International Conference,2001,6(3):1880 -1886.
    [9]姜虹,朱文海.结构与控制系统协同并行设计技术研究[C].美国MDI公司2001年ADAMS中国用户年会会议论文.
    [10]王国权,刘旭东,余群.一种车辆平顺性虚拟试验方法[J].农业机械学报,2004,35(1):18-21.
    [11]潘云鹤.智能CAD方法与模型[M].北京:北京科学出版社,1997.
    [12]http://www.simwe.com/art/tec/2004-02-06/tec0-9-217.shtml.
    [13]谢强,陈思忠.汽车虚拟试验场(VPG)技术[J].北京汽车,2003,(3):13-15.
    [14]封飚.汽车动力学特性仿真分析与ADAMS软件[J].城市车辆,2001,(3):13-15.
    [15]王国强,张进平,马若丁.虚拟样机技术及其在ADAMS上的实践[M].西安:西北工业大学出版社,2002.
    [16]Wang G Gary.Definition clarification and review on virtual prototyping[C].Proceedings of the 2001 ASME Design-21265.Pittsburgh.
    [17]傅征.军队卫生装备学[M].北京:人民军医出版社,2004.
    [18]苏卫华,徐新喜,高振海,等.结构动力优化设计及其在卫生技术车辆中的应用[J].医疗卫生装备,2003,24(1):28-30.
    [19]刘小平,郑建荣,朱治国,等.虚拟样机及其相关技术研究和实践[J].机械科学与技术,2003,22(11):235-238.
    [20]贾长治,杜中华,王兴贵,等.装备虚拟样机及其应用研究[J].计算机工程,2001,27(12):121-125.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700