纳米材料固定化酶体系的构筑及其在电化学传感器中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过两种途径以克服酶的纯化、分离过程复杂,成本昂贵,长期稳定性差,与底物以及产物不易分离,无法重复利用等缺陷。一是通过酶固定化方法,改善酶的稳定性及重复利用性。为此,本文选用纳米氧化锌(ZnO)和化学还原氧化石墨烯(CRGO)为酶固定化载体材料,构建了两种新型的纳米材料固定化酶体系。研究了所构筑的固定化酶体系中纳米材料与酶的作用机理以及材料对固定化酶催化性质和物理化学性质的影响。同时,利用纳米材料固定化酶制备出了电化学生物传感器。另一途径是设计并制备生物酶模拟物。该论文的具体研究内容及主要结果如下:
     (1)不同形貌的ZnO纳米材料用于酶的固定化体系的构筑。通过调节水热法制备过程中溶剂甲醇与水的比例,可控合成出了不同形貌的ZnO纳米颗粒,包括纳米球、纳米片、纳米多枝杈等。利用3-氨基丙基三乙氧基硅烷(APTES)和正硅烷(TEOS)对ZnO纳米材料表面进行了氨基功能化修饰。以戊二醛为交联剂,成功地将辣根过氧化物酶(HRP)通过化学键合的方法固在于氨基化的纳米ZnO材料表面。同时,研究了ZnO纳米粒子形貌对HRP固载的影响,发现三种不同形貌纳米ZnO材料达到最大酶固载量时所用戊二醛的量不同;HRP固载量以及固定化酶动力学参数也因载体材料形貌的不同而有差别;纳米材料的形貌对酶的固载量以及固定化酶的动力学参数都有着重要的影响。
     (2)氧化石墨烯/化学还原氧化石墨烯固载酶体系构筑。系统研究了HRP以及草酸氧化酶(OxOx)与氧化石墨烯(GO)及化学还原氧化石墨烯(CRGO)的相互作用,发现通过物理吸附,HRP和草酸氧化酶(OxOx)可成功固载于GO或CRGO表面,HRP和OxOx的固载量随着GO的还原程度的增加而增大。同时发现CRGO的酶固载量与溶液pH值无关,但受溶液中盐离子浓度的影响较大,盐离子浓度越大,酶的固载量越大,表明疏水作用是酶与CRGO结合的主要作用力。与GO固定化酶相比,CRGO固定化酶具有较好好的催化活性和重复利用性。特别是OxOx,固定化后的酶活升高至游离酶的1.4倍。
     (3)基于CRGO固定化酶的电化学传感器。由于CRGO具有良好的电学性质和大的比表面积,CRGO固定化酶可作为电化学电极修饰材料以制备相应的电化学传感器。本文利用CRGO固定化OxOx酶修饰玻碳电极后,发现在电化学循环伏安曲线上可以明显观测到OxOx催化草酸分解的特征峰,且随着草酸浓度的增加,特征峰电流不断增大。当采用OxOx固载量为5mg/mg,CRGO的覆盖量为0.6μg制备所谓酶电极时,对0.01-1.0mM区间范围内的草酸分解都具有很好的线性响应,较高的灵敏性和低的检测下限。
     (4)基于石墨烯量子点的生物酶模拟物。由于其完整的二维平面骨架结构和较多的羧基,石墨烯量子点(GQDs)具有良好的模拟过氧化物酶的催化活性。利用GQDs边缘富含的羧基,本文将GQDs通过化学键键合的方法结合于Au电极表面。GQDs修饰后的Au电极保留了GQDs对H_2O_2的催化活性。以GQDs/Au电极为基础构建的H_2O_2电化学传感器具有较宽的检测线性范围,低的检测下限,良好的稳定性和重复利用性,已被用于检测活细胞释放的H_2O_2浓度。
Enzymes show usually unique catalytic properties, and have been widely utilized inmedical, chemical and food industries. However, natural enzymes assume severaldisadvantages. For example, their preparation and purification are usually time-consumingand expensive. The free enzymes can be easily denatured by environmental changes, andcan be digested by proteases. They are lack of long-term stability under process conditions,and also have difficulties in recovery and recycling.
     In this thesis, to overcome these problems, the enzyme immobilization andenzyme-mimetic materials, mainly the graphene quantum dots (GQDs), were studied.Using nanoscaled ZnO particles with different morphologies, graphene oxide (GO), andchemically reduction graphene oxide (CRGO) as substrates, the conjugates of nanoscaledmaterials and enzymes were constructed. The catalytic activities, physical and chemicalproperties of immobilized enzymes, and the interactions between enzymes and thesubstrates were studied systematically. The electrochemical biosensor based immobilizedenzyme was fabricated as well. As an enzyme-mimetic system, graphene quantum dots(GQDs)were explored. It was found that the GQDs showed pronounced peroxidase likecatalytic property. Meanwhile, the enzyme free electrochemical sensor to H_2O_2basedGQDs were studied. The main results of the work are as follows:
     (1) Immobilization of horseradish peroxidase (HRP) on ZnO nanocrystals withdifferent morphologies. The ZnO nanocrystals with different morphologies weresynthesized through a hydrothermal procedure, and the control on the morphology of ZnO nanocrystals was achieved by varying the ratio of CH3OH to H2O, which were used assolvents in the hydrothermal reaction. The surface of as-prepared ZnO nanoparticles wasfunctionalized with amino groups using3-aminopropyltriethoxysilane and tetraethylorthosilicate. Horseradish peroxidase was immobilized on the as-modified ZnOnanostructures with glutaraldehyde as a crosslinker. It was demonstrated that themorphologies of ZnO nanocrystals affected severely the HRP loadings and the catalyticalactivities of the immobilized enzyme.
     (2) Immobilizations of HRP and oxalate oxidase (OxOx) on graphene oxide andchemically reduced graphene oxide (CRGO). The interactions between HRP and OxOxwith GO and CRGO were studied systematically. It was illustrated that the enzymes HRPand OxOx could be immobilized easily on both GO and CRGO through physicaladsorptions. Significantly, as the reduction extent of CRGO increased, the enzyme loadinggot higher. The enzyme loading onto CRGO can be tenfold higher than that on GO, andmaximum enzyme loadings reached1.3and12mg/mg for HRP and OxOx on CRGO,respectively. The enzyme loadings on CRGO were insensitive to pH, but affected by ionicstrength. The higher ionic strength resulted higher loading. The results suggested thathydrophobic interaction is the driving force for enzyme immobilization on the CRGO. TheHRP and OxOx immobilized on CRGO also exhibit higher enzyme activities andreusability than those on the GO. The results demonstrate that CRGO should be moreproper for enzyme immobilizations.
     (3) Electrochemical sensors based on CRGO immobilized with OxOx. Due to theultra-large specific surface area and excellent electrical conductivity, the CRGOimmobilized with enzymes has been considered as an ideal material for electrodemodification. It was found that the glass carbon electrode (GCE) modified with CRGOimmobilized with OxOx showed typical electrochemical catalytic property to oxalic aciddecomposition, and unique redox peaks appeared in the CV or DPV curves. Withincreasing of the OxOx loading, the electrochemical catalytic activity and the sensitivity of electrode can be improved. As a electrochemical sensor, the GCE modified the CRGOimmobilized with OxOx showed a linear detection range, from0.01mM to1.0mM, and adetection limit8μM (based on the S/N=3) to oxalic acid.
     (4) Peroxidase like catalytic property of graphene quantum dots (GQDs). Due to theunique aromatic basal plan structure, small lateral size, and abound surface carboxylicgroups, GQDs exhibit intrinsic peroxidase-like activity. In the work, GQDs were preparedthrough photo-Fenton reaction GO. Using the periphery carboxylic groups, theas-synthesized GQDs were chemically assembled on Au electrode surface. It wasdemonstrated that, as an enzyme free electrochemical sensor to detect the H_2O_2, theGQDs/Au electrode exhibits wide linear H_2O_2detection range, low detection limit, goodstability and fast response, which is better than or comparable to many electrodesimmobilized enzymes. The electrodes could have potential application in H_2O_2sensing inbiological system.
引文
[1] O. Kirk, T.V. Borchert, C.C. Fuglsang, Industrial enzyme applications, Current Opinion inBiotechnology13(2002)345-351.
    [2] F.X. Malcata, C.G. Hill, C.H. Amundson, Use of a lipase immobilized in a membrane reactor tohydrolyze the glycerides of butteroil, Biotechnology and bioengineering38(1991)853-868.
    [3] M. Cao, Z. Li, J. Wang, W. Ge, T. Yue, etc., Food related applications of magnetic iron oxidenanoparticles: Enzyme immobilization, protein purification, and food analysis, Trends in FoodScience& Technology27(2012)47-56.
    [4] Y. Wang, D. Wei, H. Yang, Y. Yang, W. Xing, Y. Li, A. Deng, Development of a highly sensitive andspecific monoclonal antibody-based enzyme-linked immunosorbent assay (ELISA) for detection ofSudan I in food samples, Talanta77(2009)1783-1789.
    [5] E. Katchalski-Katzir, Immobilized enzymes—learning from past successes and failures, Trends inBiotechnology11(1993)471-478.
    [6]陈建龙,祁建城,曹仪植等,固定化酶研究进展,化学与生物工程23(2006)7-9.
    [7] M.-R. Choi, N. Sato, T. Yamagishi, F. Yamauchi, Partial characterization of Aspergillus oryzae cell wallfraction-bound enzyme related to immobilized biocatalyst, Journal of Fermentation andBioengineering72(1991)214-216.
    [8] M.D. Trevan, Immobilized Enzymes: An Introduction and Applications in Biotechnology, John Wiley&Sons Inc NewYork,1980.
    [9] B. Brena, Immobilization of enzymes. A literature survey, Methods in biotechnology22(2006)15.
    [10] Z. Zhong, W. Wu, D. Wang, D. Wang, J. Shan, Y. Qing, Z. Zhang, Nanogold-enwrapped GrapheneNanocomposites as Trace Labels for Sensitivity Enhancement of Electrochemical Immunosensors inClinical Immunoassays: Carcinoembryonic Antigen as a Model, Biosens. Bioelectron.25(2010)2379-2383.
    [11] Z. An, J. He, S. Lu, L. Yang, Electrostatic-induced interfacial assembly of enzymes with nanosheets:Controlled orientation and optimized activity, AIChE Journal56(2010)2677-2686.
    [12] X. Zheng, Q. Liu, C. Jing, etc., Catalytic Gold Nanoparticles for Nanoplasmonic Detection of DNAHybridization, Angewandte Chemie International Edition50(2011)11994-11998.
    [13] R.P. S. Duinhoven, G. Van Der Coet, W. G. M. Agterof, W. Norde, J. Lyklema, Driving Forces forEnzyme Adsorption at Solid-Liquid Interfaces, J. Colloid Interf. Sci.170(1995)340-350.
    [14] J. Porath, Salting-out adsorption techniques for protein purification, Biopolymers26(1987)193-204.
    [15] M. Ferrer, F.J. Plou, G. Fuentes, etc., Effect of the immobilization method of lipase fromThermomyces lanuginosus on sucrose acylation, Biocatalysis and biotransformation20(2002)63.
    [16] D.M.A. M. Monier, Y. Wei, A.A. Sarhan, Immobilization of Horseradish Peroxidase on ModifiedChitosan Beads, Int. J. Biol. Macromol.46(2010)324-330.
    [17] J. Shen, M. Shi, B. Yan, H. Ma, N. Li, Y. Hu, M. Ye, Covalent attaching protein to graphene oxide viadiimide-activated amidation, Colloids and Surfaces B: Biointerfaces81(2010)434-438.
    [18] K.K. Seyed-Fakhreddin Torab, Salehe Ghasempur, Nasser Ghaemi, Seyed-Omid Ranaei Siadat,Covalent Attachment of Cholesterol Oxidase and Horseradish Peroxidase on Perlite throughSilanization: Activity, Stability and Co-immobilization., J. Biotechnol.131(2007)111.
    [19] F. Caruso, D. Trau, H. M hwald, R. Renneberg, Enzyme Encapsulation in Layer-by-Layer EngineeredPolymer Multilayer Capsules, Langmuir16(2000)1485-1488.
    [20] Y. Wang, F. Caruso, Mesoporous Silica Spheres as Supports for Enzyme Immobilization andEncapsulation, Chemistry of materials17(2005)953-961.
    [21]刘秀伟,司芳,郭林等,酶固定化研究进展,化工技术经济21(2003)12-17.
    [22] R.A. Sheldon, R. Schoevaart, L.M. Van Langen, Cross-linked enzyme aggregates (CLEAs): A noveland versatile method for enzyme immobilization (a review), Biocatalysis and biotransformation23(2005)141-147.
    [23] I. Migneault, C. Dartiguenave, M.J. Bertrand, Karen C. Waldron, Glutaraldehyde: Behavior inAqueous Solution, Reaction with Proteins, and Application to Enzyme Crosslinking, BioTechniques37(2004)790-802.
    [24]袁定重,张秋禹,侯振宇等,固定化酶载体材料的最新研究进展,材料导报20(2006)69-72.
    [25] B.B. Agrawal, I.J. Goldstein, Specific binding of concanavalin A to cross-linked dextran gels,Biochemical journal96(1965)23contd-23con25c.
    [26] B.B.L. Agrawal, Protein-carbohydrate interaction: VI. Isolation of concanavalin a by specificadsorption on cross-linked dextran gels, Biochimica et biophysica acta. Protein structure147(1967)262.
    [27] G. Kay, E.M. Crook, Coupling of enzymes to cellulose using chloro-s-triazines, Nature216(1967)514.
    [28] J. Porath, Chemical Coupling of Proteins to Agarose, Nature215(1967)1491.
    [29] W. Harkins, L. Fourt, P. Fourt, Immlmochemistry of catalase.ⅡActivity in multilayers., J Biol Chem132(1940)111-118.
    [30] E.F. Gale, H.M. Epps, Studies on bacterial amino-acid decarboxylases:1. l(+)-lysine decarboxylase,Biochemical journal38(1944)232-242.
    [31] A. Dyal, K. Loos, M. Noto, S.W. Chang, etc., Activity of Candida rugosa Lipase Immobilized onγ-Fe2O3Magnetic Nanoparticles, J. Am. Chem. Soc.125(2003)1684-1685.
    [32] Y. Goto, R. Matsuno, T. Konno, M. Takai, K. Ishihara, Polymer Nanoparticles Covered withPhosphorylcholine Groups and Immobilized with Antibody for High-Affinity Separation of Proteins,Biomacromolecules9(2008)828-833.
    [33] F. Xu, J.H. Geiger, G.L. Baker, M.L. Bruening, Polymer Brush-Modified Magnetic Nanoparticles forHis-Tagged Protein Purification, Langmuir27(2011)3106-3112.
    [34] A.A. Vertegel, R.W. Siegel, J.S. Dordick, Silica Nanoparticle Size Influences the Structure andEnzymatic Activity of Adsorbed Lysozyme, Langmuir20(2004)6800-6807.
    [35] P.C. Lianwen Zhu, Yang Guo, Yingying Song, Xiudong Xue, Xuebo Cao, Ternary ZnO/ZnS/γ-Fe2O3Hollow Sphere with Surface Hole: Microwave-enhanced Rapid Synthesis, Bifunctional Property,and Immobilization of Serum Protein., Colloids Surf., A360(2010)111.
    [36] X.S. Zhao, X.Y. Bao, W. Guo, F.Y. Lee, Immobilizing catalysts on porous materials, Materials Today9(2006)32-39.
    [37] H. Takahashi, B. Li, T. Sasaki, C. Miyazaki, etc., Catalytic Activity in Organic Solvents and Stability ofImmobilized Enzymes Depend on the Pore Size and Surface Characteristics of Mesoporous Silica,Chem. Mater.12(2000)3301-3305.
    [38] Z.-G. Wang, L.-S. Wan, Z.-M. Liu, X.-J. Huang, Z.-K. Xu, Enzyme immobilization on electrospunpolymer nanofibers: An overview, Journal of Molecular Catalysis B: Enzymatic56(2009)189-195.
    [39] B.X. Gu, C.X. Xu, G.P. Zhu, etc., Layer by Layer Immobilized Horseradish Peroxidase on Zinc OxideNanorods for Biosensing, J. Phys. Chem. B113(2009)6553-6557.
    [40] S. Nair, J. Kim, B. Crawford, S.H. Kim, Improving Biocatalytic Activity of Enzyme-Loaded Nanofibersby Dispersing Entangled Nanofiber Structure, Biomacromolecules8(2007)1266-1270.
    [41] S.S. Karajanagi, A.A. Vertegel, R.S. Kane, J.S. Dordick, Structure and Function of Enzymes Adsorbedonto Single-Walled Carbon Nanotubes, Langmuir20(2004)11594-11599.
    [42] W. Feng, P. Ji, Enzymes immobilized on carbon nanotubes, Biotechnology Advances29(2011)889-895.
    [43] S.S.B. Prashanth Asuri, Ravindra C. Pangule, Dhiral A. Shah, etc., Structure, Function, and Stabilityof Enzymes Covalently Attached to Single-Walled Carbon Nanotubes, Langmuir23(2007)12318.
    [44] G.R. Dieckmann, A.B. Dalton, P.A. Johnson, etc., Controlled Assembly of Carbon Nanotubes byDesigned Amphiphilic Peptide Helices, J. Am. Chem. Soc.125(2003)1770-1777.
    [45] R.J. Chen, Y. Zhang, D. Wang, H. Dai, Noncovalent Sidewall Functionalization of Single-WalledCarbon Nanotubes for Protein Immobilization, J. Am. Chem. Soc.123(2001)3838-3839.
    [46] D. Nepal, K.E. Geckeler, pH-Sensitive Dispersion and Debundling of Single-Walled CarbonNanotubes: Lysozyme as a Tool, Small2(2006)406-412.
    [47] S.S. Karajanagi, H. Yang, P. Asuri, E. Sellitto, J.S. Dordick, R.S. Kane, Protein-Assisted Solubilizationof Single-Walled Carbon Nanotubes, Langmuir22(2006)1392-1395.
    [48] G. Wang, H. Huang, G. Zhang, X. Zhang, B. Fang, L. Wang, Gold nanoparticles/L-cysteine/graphenecomposite based immobilization strategy for an electrochemical immunosensor, AnalyticalMethods2(2010)1692-1697.
    [49]杨勇,李彦锋,拜永孝等,酶固定化技术用载体材料的研究进展化学通报70(2007)257-263.
    [50]李树本,酶化学,化学工程出版社,北京,2008.
    [51] I.V. Pavlidis, T. Vorhaben, D. Gournis, G.K. Papadopoulos, U.T. Bornscheuer, H. Stamatis, Regulationof catalytic behaviour of hydrolases through interactions with functionalized carbon-basednanomaterials, Journal of Nanoparticle Research14(2012).
    [52]陈宁,酶工程,中国轻工业出版社,北京,2005.
    [53]袁勤生,现代酶学,华东理工大学出版社,上海,2007.
    [54] I. Alemzadeh, S. Nejati, Phenols Removal by Immobilized Horseradish Peroxidase, J. Hazard. Mater.166(2009)1082-1086.
    [55] M. Banerjee, S. Debnath, M.S. K., Production of Fructose Syrup by Immobilized Glucose Isomeraseof Streptomyces Kanamyceticus in Batch and Continuous Process, J. Microbiol. Biotechn.8(1993)44-50.
    [56] I. Chibata, T. Tosa, Use of Immobilized Cells, Ann. Rev. Biophys. Bioeng.10(1981)197-216.
    [57] E.D. Hyman, A new method of sequencing DNA, Analytical Biochemistry174(1988)423-436.
    [58] U.T. Bornscheuer, Immobilizing Enzymes: How to Create More Suitable Biocatalysts, Angew. Chem.Int. Ed.42(2003)3336-3337.
    [59] C.J. Pederen, Cyclic Polyethers and Their Complexes with Metal Salts, J. Am. Chem. Soc.89(1967)7017-7036.
    [60] M.W. Hosseini, J.M. Lehn, L. Maggiora, K.B. Mertes, M.P. Mertes, Supramolecular catalysis in thehydrolysis of ATP facilitated by macrocyclic polyamines: mechanistic studies, Journal of theAmerican Chemical Society109(1987)537-544.
    [61] M.W. Hosseini, J.-M. Lehn, M.P. Mertes, Efficient Molecular Catalysis of ATP-Hydrolysis byProtonated Macrocyclic Polyamines, Helvetica Chimica Acta66(1983)2454-2466.
    [62] Z. Liu, R. Cai, L. Mao, H. Huang, W. Ma, Highly sensitive spectrofluorimetric determination ofhydrogen peroxide with β-cyclodextrin–hemin ascatalyst Analyst124(1999)173-176.
    [63] P. Molenveld, J.F.J. Engbersen, H. Kooijman, A.L. Spek, D.N. Reinhoudt, Efficient CatalyticPhosphate Diester Cleavage by the Synergetic Action of Two Cu(II) Centers in a DinuclearCis-Diaqua Cu(II) Calix[4]arene Enzyme Model, J. Am. Chem. Soc.120(1998)6726-6737.
    [64] P. Molenveld, J.F.J. Engbersen, D.N. Reinhoudt, Dinuclear Metallo-Phosphodiesterase Models:Application of Calix[4] Arenes as Molecular Scaffolds, Chem. Soc. Rev.29(2000)75-86.
    [65] Y. Kitamura, K. Mori, M. Yamamoto, etc., Peroxidase-Like Catalytic Activity of Aqueous-andImmobilized-Mn3+-octabromo-porphyrins on Ion-Exchange Resin Supplied as Mimetic ofHorseradish Peroxidase, Chemical and Pharmaceutical Bulletin56(2008)1364-1366.
    [66] Y. Guo, L. Deng, J. Li, S. Guo, E. Wang, S. Dong, Hemin-Graphene Hybrid Nanosheets with IntrinsicPeroxidase-like Activity for Label-free Colorimetric Detection of Single-Nucleotide Polymorphism,ACS Nano5(2011)1282-1290.
    [67] T. Xue, S. Jiang, Y. Qu, etc., Graphene-Supported Hemin as a Highly Active Biomimetic OxidationCatalyst, Angewandte Chemie International Edition51(2012)3822-3825.
    [68] R.P. Bonar, J.K.M. Sanders, Polyol Recognition by a Steroid-Capped Porphyrin. Enhancement andModulation of Misfit Guest Binding by Added Water or Methanol, Journal of the AmericanChemical Society117(1995)259-271.
    [69] Y.-z. Li, N. He, X. Wang, W.-b. Chang, Y.-x. Ci, Mimicry of peroxidase by immobilization of hemin onN-isopropylacrylamide-based hydrogel, Analyst123(1998)359-364.
    [70] G. Zhang, P.K. Dasgupta, Hematin as a peroxidase substitute in hydrogen peroxide determinations,Analytical chemistry64(1992)517-522.
    [71] C. Huang, H. Bai, C. Li, G. Shi, A graphene oxide/hemoglobin composite hydrogel for enzymaticcatalysis in organic solvents, Chemical Communications47(2011)4962.
    [72] F. Manea, F.B. Houillon, L. Pasquato, P. Scrimin, Nanozymes: Gold-Nanoparticle-BasedTransphosphorylation Catalysts, Angewandte Chemie International Edition43(2004)6165-6169.
    [73] R. Cacciapaglia, A. Casnati, L. Mandolini, A. Peracchi, etc., Efficient and Selective Cleavage of RNAOligonucleotides by Calix[4]arene-Based Synthetic Metallonucleases, J. Am. Chem. Soc.129(2007)12512-12520.
    [74] M. Comotti, C. Della Pina, R. Matarrese, M. Rossi, The Catalytic Activity of "Naked" Gold Particles,Angewandte Chemie International Edition43(2004)5812-5815.
    [75] L. Gao, J. Zhuang, L. Nie, etc., Intrinsic peroxidase-like activity of ferromagnetic nanoparticles,Nature Nanotechnology2(2007)577-583.
    [76] W. He, Y. Liu, J. Yuan, etc., Au@Pt nanostructures as oxidase and peroxidase mimetics for use inimmunoassays, Biomaterials32(2011)1139-1147.
    [77] H. Wei, E. Wang, Fe3O4Magnetic Nanoparticles as Peroxidase mimetics Mimetics and TheirApplications in H2O2and Glucose Detection, Anal. Chem.80(2008)2250-2254.
    [78] Y. Ma, Z. Zhang, C. Ren, G. Liu, X. Chen, A novel colorimetric determination of reduced glutathionein A549cells based on Fe3O4magnetic nanoparticles as peroxidase mimetics, The Analyst137(2012)485.
    [79] Y. Jv, B. Li, R. Cao, Positively-charged gold nanoparticles as peroxidiase mimic and their applicationin hydrogen peroxide and glucose detection, Chemical Communications46(2010)8017.
    [80] X.-X. Wang, Q. Wu, Z. Shan, Q.-M. Huang, BSA-stabilized Au clusters as peroxidase mimetics for usein xanthine detection, Biosensors and Bioelectronics26(2011)3614-3619.
    [81] A.K. Dutta, S.K. Maji, D.N. Srivastava, etc., Synthesis of FeS and FeSe Nanoparticles from a SingleSource Precursor: A Study of Their Photocatalytic Activity, Peroxidase-Like Behavior, andElectrochemical Sensing of H2O2, ACS Applied Materials&Interfaces4(2012)1919-1927.
    [82] X. Cao, N. Wang, A novel non-enzymatic glucose sensor modified with Fe2O3nanowire arrays, TheAnalyst136(2011)4241.
    [83] R. André, F. Natálio, M. Humanes, etc., V2O5Nanowires with an Intrinsic Peroxidase-Like Activity,Advanced Functional Materials21(2011)501-509.
    [84] J. Yin, H. Cao, Y. Lu, Self-assembly into Magnetic Co3O4Complex Nanostructures as Peroxidase, J.Mater. Chem.22(2012)527-534.
    [85] W. Chen, J. Chen, Y.-B. Feng, etc., Peroxidase-like activity of water-soluble cupric oxidenanoparticles and its analytical application for detection of hydrogen peroxide and glucose, TheAnalyst137(2012)1706.
    [86] Y. Fan, Y. Huang, The effective peroxidase-like activity of chitosan-functionalized CoFe2O4nanoparticles for chemiluminescence sensing of hydrogen peroxide and glucose, The Analyst137(2012)1225.
    [87] Y.J. Long, Y.F. Li, Y. Liu, etc., Visual observation of the mercury-stimulated peroxidase mimeticactivity of gold nanoparticles, Chemical Communications47(2011)11939.
    [88] Y. Song, K. Qu, C. Zhao, J. Ren, X. Qu, Graphene Oxide: Intrinsic Peroxidase Catalytic Activity and ItsApplication to Glucose Detection, Advanced Materials22(2010)2206-2210.
    [89] W. Shi, Q. Wang, Y. Long, etc., Carbon nanodots as peroxidase mimetics and their applications toglucose detection, Chemical Communications47(2011)6695.
    [90] X. Wang, K. Qu, B. Xu, J. Ren, X. Qu, Multicolor luminescent carbon nanoparticles: Synthesis,supramolecular assembly with porphyrin, intrinsic peroxidase-like catalytic activity andapplications, Nano Research4(2011)908-920.
    [91] B. Shi, Y. Wang, Y. Guo, Y. Wang, etc., Aminopropyl-functionalized silicas synthesized by W/Omicroemulsion for immobilization of penicillin G acylase, Catalysis Today148(2009)184-188.
    [92] Y. Luo, H. Liu, Q. Rui, Y. Tian, Detection of Extracellular H2O2Released from Human Liver CancerCells Based on TiO2Nanoneedles with Enhanced Electron Transfer of Cytochrome c, Analyticalchemistry81(2009)3035-3041.
    [93] L.C. Clark Jr, Clark, Electrode systems for continuous monitoring in cardiovascular surgery, Annalsof the New York Academy of Sciences102(1962)29.
    [94] S.J. Updike, G.P. Hicks, The enzyme electrode, Nature214(1967)986-988.
    [95] C. Chouteau, S. Dzyadevych, C. Durrieu, J. Chovelon, A Bi-Enzymatic Whole Cell ConductometricBiosensor for Heavy Metal Ions and Pesticides Detection in Water Samples, Biosens. Bioelectron.21(2005)273-281.
    [96] D.R.S. Jeykumari, S.S. Narayanan, Functionalized Carbon Nanotube-bienzyme Biocomposite forAmperometric Sensing, Carbon47(2009)957-966.
    [97] D. Mackey, A.J. Killard, A. Ambrosi, M.R. Smyth, Optimizing the Ratio of Horseradish Peroxidaseand Glucose Oxidase on a Bienzyme Electrode: Comparison of a Theoretical and ExperimentalApproach, Sens. Actuators, B122(2007)395-402.
    [98] G. Zeng, Y. Xing, J. Gao, Z. Wang, X. Zhang, Unconventional Layer-by-Layer Assembly of GrapheneMultilayer Films for Enzyme-Based Glucose and Maltose Biosensing, Langmuir26(2010)15022-15026.
    [99] R. Capra, M. Strumia, P. Vadgama, A. Baruzzi, Mucin/carbopol Matrix to Immobilize OxalateOxidase in a Urine Oxalate Amperometric Biosensor, Anal. Chim. Acta530(2005)49-54.
    [100]彭图治,杨丽菊,生命科学中的电分析化学,杭州大学出版社,杭州,1999,50pp.
    [101] J.Y. Lucisano, D.A. Gough, Transient response of the two-dimensional glucose sensor, AnalyticalChemistry60(1988)1272-1281.
    [102] A.E.G. Cass, G. Davis, G.D. Francis, etc., Ferrocene-mediated enzyme electrode for amperometricdetermination of glucose, Analytical Chemistry56(1984)667-671.
    [103] F. Mao, N. Mano, A. Heller, Long Tethers Binding Redox Centers to Polymer Backbones EnhanceElectron Transport in Enzyme “Wiring” Hydrogels, J. Am. Chem. Soc.125(2003)4951-4957.
    [104]卢宪波,室温离子液体和纳米材料在酶和蛋白质的直接电化学和生物传感器中的应用研究,中国科学技术大学,2007
    [105] T. Shimomura, T. Itoh, T. Sumiya, F. Mizukami, M. Ono, Electrochemical biosensor for the detectionof formaldehyde based on enzyme immobilization in mesoporous silica materials, Sensors andActuators B: Chemical135(2008)268-275.
    [106] Y. Bai, H. Yang, W. Yang, Y. Li, C. Sun, Gold nanoparticles-mesoporous silica composite used as anenzyme immobilization matrix for amperometric glucose biosensor construction, Sensors andActuators B: Chemical124(2007)179-186.
    [107] C.-X. Lei, S.-Q. Hu, G.-L. Shen, R.-Q. Yu, Immobilization of Horseradish Peroxidase to a Nano-AuMonolayer Modified Chitosan-Entrapped Carbon Paste Electrode for the Detection of HydrogenPeroxide, Talanta59(2003)981-988.
    [108] C.-X. Lei, S.-Q. Hu, N. Gao, etc., An amperometric hydrogen peroxide biosensor based onimmobilizing horseradish peroxidase to a nano-Au monolayer supported by sol–gel derived carbonceramic electrode, Bioelectrochemistry65(2004)33-39.
    [109] W. Yang, K.R. Ratinac, S.P. Ringer, etc., Carbon Nanomaterials in Biosensors: Should You UseNanotubes or Graphene?, Angewandte Chemie International Edition49(2010)2114-2138.
    [110] J. Wang, Carbon-Nanotube Based Electrochemical Biosensors: A Review, Electroanalysis17(2005)7-14.
    [111] X. Zuo, S. He, D. Li, etc., Graphene Oxide-Facilitated Electron Transfer of Metalloproteins atElectrode Surfaces, Langmuir26(2010)1936-1939.
    [112] C. Shan, H. Yang, J. Song, D. Han, A. Ivaska, L. Niu, Direct Electrochemistry of Glucose Oxidase andBiosensing for Glucose Based on Graphene, Analytical Chemistry81(2009)2378-2382.
    [113] P. Wu, Q. Shao, Y. Hu, etc., Direct Electrochemistry of Glucose Oxidase Assembled on Grapheneand Application to Glucose Detection, Electrochimica Acta55(2010)8606–8614.
    [114] A.A. Karyakin, O.V. Gitelmacher, E.E. Karyakina, Prussian Blue-Based First-Generation Biosensor. ASensitive Amperometric Electrode for Glucose, Analytical Chemistry67(1995)2419-2423.
    [115] M. Situmorang, J.J. Gooding, D.B. Hibbert, D. Barnett, Electrodeposited Polytyramine as anImmobilisation Matrix for Enzyme Biosensors, Biosens. Bioelectron.13(1998)953-962.
    [116]庄瑞舫,杨铁柱,化学修饰电极的制备方法,化学传感器8(1988)1-9.
    [117] Q. Zeng, J. Cheng, L. Tang, etc., Self-Assembled Graphene-Enzyme Hierarchical Nanostructures forElectrochemical Biosensing, Advanced Functional Materials20(2010)3366-3372.
    [118] F. Patolsky, Y. Weizmann, I. Willner, Long-Range Electrical Contacting of Redox Enzymes by SWCNTConnectors, Angewandte Chemie International Edition43(2004)2113-2117.
    [119] Z. Wang, X. Zhou, J. Zhang, F. Boey, H. Zhang, Direct Electrochemical Reduction of Single-LayerGraphene Oxide and Subsequent Functionalization with Glucose Oxidase, J. Phys. Chem. C113(2009)14071-14075.
    [120] F. Zhang, B. Zheng, J. Zhang, etc., Horseradish Peroxidase Immobilized on Graphene Oxide:Physical Properties and Applications in Phenolic Compound Removal, J. Phys. Chem. C114(2010)8469-8473.
    [121] S.F. D'Souza, J.S. Melo, A. Deshpande, G.B. Nadkarni, Immobilization of Yeast Cells by Adhesion toGlass Surface using Polyethylenimine, Biotechnol. Lett.8(1986)643-648.
    [122] S. Ye, K.T. Nguyen, A.P. Boughton, C.M. Mello, Z. Chen, Orientation Difference of ChemicallyImmobilized and Physically Adsorbed Biological Molecules on Polymers Detected at theSolid/Liquid Interfaces in Situ, Langmuir26(2010)6471-6477.
    [123] B. Chen, N. Pernodet, M.H. Rafailovich, A. Bakhtina, R.A. Gross, Protein Immobilization onEpoxy-Activated Thin Polymer Films: Effect of Surface Wettability and Enzyme Loading, Langmuir24(2008)13457-13464.
    [124] A. Sengupta, C.K. Thai, M.S.R. Sastry, etc., A Genetic Approach for Controlling the Binding andOrientation of Proteins on Nanoparticles, Langmuir24(2008)2000-2008.
    [125] B.F. Erlanger, B.-X. Chen, M. Zhu, L. Brus, Binding of an Anti-Fullerene IgG Monoclonal Antibody toSingle Wall Carbon Nanotubes, Nano Letters1(2001)465-467.
    [126] E. Hosono, S. Fujihara, T. Kimura, H. Imal, Non-Basic Solution Routes to Prepare ZnO Nanoparticles,Journal of Sol-Gel Science and Technology29(2004)71-79.
    [127] P. Yang, H. Yan, S. Mao, etc., Controlled Growth of ZnO Nanowires and Their Optical Properties,Advanced functional materials12(2002)323-331.
    [128] A. Umar, C. Ribeiro, A. Al-Hajry, Growth of Highly c-Axis-Oriented ZnO Nanorods on ZnO/GlassSubstrate: Growth Mechanism, Structural, and Optical Properties, J. Phys. Chem. C113(2009)14715-14720.
    [129] J.Y. Lao, J.Y. Huang, D.Z. Wang, Z.F. Ren, ZnO Nanobridges and Nanonails, Nano Lett.3(2003)235-238.
    [130] Q. Li, V. Kumar, Y. Li, etc., Fabrication of ZnO Nanorods and Nanotubes in Aqueous Solutions,Chemistry of materials17(2005)1001-1006.
    [131] Y. Zhang, J. Mu, Controllable synthesis of flower-and rod-like ZnO nanostructures by simply tuningthe ratio of sodium hydroxide to zinc acetate, Nanotechnology18(2007).
    [132] H. Zhang, L. Shen, S. Guo, Insight into the structures and properties of morphology-controlled legsof tetrapod-like ZnO nanostructures, J. Phys. Chem. C111(2007)12939-12943.
    [133] S. Kobayashi, H. Kurioka, H. Uyama, Enzymatic Synthesis of a Soluble Polyphenol Derivative from4,4′‐biphenyldiol, Macromol. Rapid Comm.17(1996)503-508.
    [134] N.C. Veitch, Horseradish Peroxidase: a Modern view of a Classic Enzyme, Phytochemistry65(2004)249-259.
    [135] J.A. Nicell, H. Wright, A model of peroxidase activity with inhibition by hydrogen peroxide, Enzymeand Microbial Technology21(1997)302-310.
    [136] A. Degen, M. Kosec, Effect of pH and impurities on the surface charge of zinc oxide in aqueoussolution, Journal of the European Ceramic Society20(2000)667-673.
    [137] Y. Guo, H. Wang, C. He, L. Qiu, X. Cao, Uniform Carbon-Coated ZnO Nanorods: Microwave-AssistedPreparation, Cytotoxicity, and Photocatalytic Activity, Langmuir25(2009).
    [138] J. Zhang, Y. Yang, SujuanWu, etc., Improved photovoltage and performance byaminosilane-modified PEO/P(VDF-HFP) composite polymer electrolyte dye-sensitized solar cells,Electrochimica Acta53(2008)5415-5422.
    [139]王镜岩,生物化学(上),高等教育出版社,北京,2002.
    [140] L. Cao, Immobilised enzymes: science or art?, Current Opinion in Chemical Biology9(2005)217-226.
    [141] C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, A. Govindaraj, Graphene: The New Two-DimensionalNanomaterial, Angew. Chem. Int. Ed.48(2009)7752-7777.
    [142] J.W. Suk, R.D. Piner, J. An, R.S. Ruoff, Mechanical Properties of Monolayer Graphene Oxide, ACSNANO4(2010)6557-6564.
    [143] W. Cai, R.D. Piner, F.J. Stadermann, etc., Synthesis and Solid-State NMR Structural Characterizationof13C-Labeled Graphite Oxide, Science321(2008)1815-1817.
    [144] D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide, Chemical SocietyReviews39(2010)228-240.
    [145] Y. Zhu, S. Murali, W. Cai, etc., Graphene and Graphene Oxide: Synthesis, Properties, andApplications, Advanced materials22(2010)3906-3924.
    [146] Y. Wang, J. Lu, L. Tang, H. Chang, J. Li, Graphene Oxide Amplified ElectrogeneratedChemiluminescence of Quantum Dots and Its Selective Sensing for Glutathione fromThiol-Containing Compounds Anal. Chem.81(2009)9710-9715.
    [147] O.C. Compton, S.T. Nguyen, Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene:Versatile Building Blocks for Carbon-Based Materials, Small6(2010)711-723.
    [148] N.R. Wilson, P.A. Pandey, R. Beanland, etc., Graphene Oxide: Structural Analysis and Application asa Highly Transparent Support for Electron Microscopy, ACS NANO3(2009).
    [149] Y. Wang, Z. Li, J. Wang, J. Li, Y. Lin, Graphene and graphene oxide: biofunctionalization andapplications in biotechnology, Trends in Biotechnology29(2011)205-212.
    [150] X. Sun, Z. Liu, K. Welsher, etc., Nano-graphene Oxide for Cellular Imaging and Drug Delivery, NanoResearch1(2008)203-212.
    [151] C.-H. Lu, H.-H. Yang, C.-L. Zhu, X. Chen, G.-N. Chen, A Graphene Platform for Sensing Biomolecules,Angew. Chem. Int. Ed.48(2009)4785-4787.
    [152] Y. Wang, Z. Li, D. Hu, etc., Aptamer/Graphene Oxide Nanocomplex for in Situ Molecular Probing inLiving Cells, J. Am. Chem. Soc.132(2010)9274-9276.
    [153] H. Ren, C. Wang, J. Zhang, etc., DNA Cleavage System of Nanosized Graphene Oxide Sheets andCopper Ions, ACS NANO4(2010)7169-7174.
    [154] S.K. Bhunia, N.R. Jana, Peptide-Functionalized Colloidal Graphene via Interdigited Bilayer Coatingand Fluorescence Turn-on Detection of Enzyme, ACS Applied Materials&Interfaces3(2011)3335-3341.
    [155] C. Guo, B. Book-Newell, J. Irudayaraj, Protein-directed reduction of graphene oxide andintracellular imaging, Chemical Communications47(2011)12658-12660.
    [156] Z. Liu, J.T. Robinson, X. Sun, H. Dai, PEGylated Nanographene Oxide for Delivery of Water-insolubleCancer Drugs, J. Am. Chem. Soc.130(2008)10876-10877.
    [157] G. Zhao, J. Wang, Y. Li, X. Chen, Y. Liu, Enzymes Immobilized on Superparamagnetic Fe3O4@ClaysNanocomposites: Preparation, Characterization, and a New Strategy for the Regeneration ofSupports, J. Phys. Chem. C(2011).
    [158] S. Alwarappan, C. Liu, A. Kumar, C.-Z. Li, Enzyme-Doped Graphene Nanosheets for EnhancedGlucose Biosensing, J. Phys. Chem. C114(2010)12920-12924.
    [159] W.W. Yuebiao Sheng, and P. Chen, Adsorption of an Ionic Complementary Peptide on theHydrophobic Graphite Surface, J. Phys. Chem. C114(2010)454.
    [160] G. Xu, X. Chen, J. Hu, P. Yang, D. Yang, L. Wei, Immobilization of trypsin on graphene oxide formicrowave-assisted on-plate proteolysis combined with MALDI-MS analysis, The Analyst137(2012)2757-2761.
    [161] R. Su, P. Shi, M. Zhu, F. Hong, D. Li, Studies on the properties of graphene oxide–alkaline proteasebio-composites, Bioresource Technology115(2012)136-140.
    [162] F. Schedin, A.K. Geim, S.V. Morozov, etc., Detection of Individual Gas Molecules Adsorbed onGraphene, Nat. Mater.6(2007)652-655.
    [163] G. Zuo, X. Zhou, Q. Huang, H. Fang, R. Zhou, Adsorption of Villin Headpiece onto Graphene, CarbonNanotube, and C60: Effect of Contacting Surface Curvatures on Binding Affinity, The Journal ofPhysical Chemistry C115(2011)23323-23328.
    [164] Y. Cui, S.N. Kim, S.E. Jones, etc., Chemical Functionalization of Graphene Enabled by PhageDisplayed Peptides, Nano Letters10(2010)4559-4565.
    [165] C.-H. Lu, J. Li, X.-L. Zhang, etc., General Approach for Monitoring Peptide–Protein InteractionsBased on Graphene–Peptide Complex, Analytical Chemistry83(2011)7276-7282.
    [166] T.H. Han, W.J. Lee, D.H. Lee, J.E. Kim, E.-Y. Choi, S.O. Kim, Peptide/Graphene Hybrid Assembly intoCore/Shell Nanowires, Advanced materials22(2010)2060-2064.
    [167] J. Katoch, S.N. Kim, Z. Kuang, B.L. Farmer, R.R. Naik, S.A. Tatulian, M. Ishigami, Structure of aPeptide Adsorbed on Graphene and Graphite, Nano Letters12(2012)2342-2346.
    [168] J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, S. Guo, Reduction of Graphene Oxide via L-ascorbicAcid, Chem. Commun.46(2010)1112-1114.
    [169] S. Stankovich, D.A. Dikin, G.H.B. Dommett, etc., Graphene-based composite materials, Nature442(2006)282-286.
    [170] W.S. Hummers, R. E.Offeman, Preparation of Graphitic Oxide, J. Am. Chem. Soc.80(1958)1339-1339.
    [171] C. Aguilar, U. Urzúa, C. Koenig, R. Vicu a, Oxalate Oxidase from Ceriporiopsis subvermispora:Biochemical and Cytochemical Studies, Arc. biochem. biophys.366(1999)275.
    [172] T.J.J. Sharon M. Kelly, Nicholas C. Price, How to study proteins by circular dichroism, Biochimica etBiophysica Acta1751(2005)119.
    [173]黄汉昌,姜招峰,朱宏吉,紫外圆二色光谱预测蛋白质结构的研究方法,化学通报7(2007)501-506.
    [174] D. Li, M.B. Müller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable Aqueous Dispersions of GrapheneNanosheets, Nat. Nanotechnol.3(2008).
    [175] S. Wang, Y. Zhang, N. Abidi, L. Cabrales, Wettability and Surface Free Energy of Graphene Films,Langmuir25(2009)11078-11081.
    [176] F. Winquist, B. Danielsson, J.-Y. Malpote, L. Persson, M.-B. Larssona, Determination of Oxalate inFoodstuffs by Oxalate Oxidase Immobilized to Alkylamine Glass Beads Affixed Inside a Beaker, J.Plant Biochem. Biot.9(2000)123.
    [177] V. Kalra, C.S. Pundir, Quantification of Urinary Oxalate by Immobilized Oxalate Oxidase of ForageSorghum Leaf., Indian J. Biotechnol.3(2004)52-57.
    [178] S. Godara, S. Godara, Urinary and Serum Oxalate Determination by Oxalate Oxidase Immobilizedon to Affixed Arylamine Glass Beads, Indian J. Med. Res.127(2008)370-376.
    [179] W. Kauzmann, Some Factors in the Interpretation of Protein Denaturation, in: M.L.A.K.B. C.B.Anfinsen, T.E. John,(Eds), Advances in Protein Chemistry Volume14, Academic Press,1959, pp.1-63.
    [180] E.-J. Woo, J.M. Dunwell, P.W. Goodenough, A.C. Marvier, R.W. Pickersgill, Germin is a ManganeseContaining Homohexamer with Oxalate Oxidase and Superoxide Dismutase Activities, Nat StructMol Biol7(2000)1036-1040.
    [181] G. Zuo, X. Jiang, H. Liu, J. Zhang, A novel urinary oxalate determination method via a catalasemodel compound with oxalate oxidase, Analytical Methods2(2010)254-258.
    [182] A. Ichiyama, E. Nakai, T. Funai, T. Oda, R. Katafuchi, Spectrophotometric Determination of Oxalatein Urine and Plasma with Oxalate Oxidase, J. Biochem.98(1985)1375-1385.
    [183] S. Milardovic, S. Milardovi, Milardovic, A novel biamperometric biosensor for urinary oxalatedetermination using flow-injection analysis, Talanta77(2008)222.
    [184] F. Hong, F. Hong, Rapid and Convenient Determination of Oxalic Acid Employing a Novel OxalateBiosensor Based on Oxalate Oxidase and SIRE Technology, Biosens. Bioelectron.18(2003)1173.
    [185] S. Duinhoven, R. Poort, G.V.D. Voet, etc., Driving forces for enzyme adsorption at solid-liquidinterfaces, J. colloid and interface science170(1995)340-350.
    [186] H. Sidhu, M.E. Schmidt, J.G. Cornelius, etc., Direct correlation between hyperoxaluria/oxalate stonedisease and the absence of the gastrointestinal tract-dwelling bacterium Oxalobacter formigenes:possible prevention by gut recolonization or enzyme replacement therapy, Journal of the AmericanSociety of Nephrology: JASN10Suppl14(1999) S334-340.
    [187] R. WG, P. M, The Cause of Idiopathic Calcium Stone Disease: Hypercalciuria or Hyperoxaluria?,Nephron26(1980)105-110.
    [188] W. HE, W. TR, Oxalate synthesis, transport and the hyperoxaluric syndromes., The Journal ofUrology141(1989)742-747.
    [189] C.J. Danpure, P.R. Jennings, Peroxisomal alanine:glyoxylate aminotransferase deficiency in primaryhyperoxaluria type I, FEBS Letters201(1986)20-34.
    [190] C. Danpure, P. Jennings, R.E. Watts, Enzymological Diagnosis of Primary Hyperoxaluria Type1byMeasurement of Hepatic Alanine: Glyoxylate Aminotransferase Activity, The Lancet329(1987)289-291.
    [191] Z. JE, D. E, G. J, etc., Assay of urinary oxalate: six methodologies compared., Clin Chem29(1983)1977-1980.
    [192] G. Kohlbechker, Direct spectrophotometric determination of serum and urinary oxalate withoxalate oxidase., J. Clin. Chem. Clin. Biochem.19(1981)1103-1106.
    [193] J. Costello, D.M. Landwehr, Determination of oxalate concentration in blood, Clinical Chemistry34(1988)1540-1544.
    [194] C. Thompson, J.M. Dunwell, C.E. Johnstone, etc., Degradation of Oxalic Acid by TransgenicOilseed Rape Plants Expressing Oxalate Oxidase., Euphytica85(1995)169-172.
    [195] N.O. Nilvebrant, A. Reimann, F. de Sousa, etc., Enzymatic degradation of oxalic acid for preventionof scaling, in: L. Viikari, R. Lantto,(Eds), Progress in Biotechnology Volume21, Elsevier,2002, pp.231-238.
    [196] H. Sidhu, B. Hoppe, A. Hesse, etc., Absence of Oxalobacter formigenes in cystic fibrosis patients: arisk factor for hyperoxaluria, The Lancet352(1998)1026-1029.
    [197] T.E. Benavidez, C.I. Alvarez, A.M. Baruzzi, Physicochemical Properties of a Mucin/chitosan MatrixUsed for the Development of an Oxalate Biosensor, Sens. Actuators, B143(2010)660-665.
    [198] C.S. Pundir, M. Sharma, Oxalate Biosensor: a Review, J. Sc. Ind. Res.69(2010)489-494.
    [199] S. Milardovic, I. Kerekovic, M. Nodilo, A Novel Biamperometric Biosensor for Urinary OxalateDetermination Using Flow-injection Analysis, Talanta77(2008)222-228.
    [200] F. Hong, N.-O. Nilvebrant, L.J. J nsson, Rapid and convenient determination of oxalic acidemploying a novel oxalate biosensor based on oxalate oxidase and SIRE technology, Biosensors andBioelectronics18(2003)1173-1181.
    [201] M.A. Worsley, P.J. Pauzauskie, T.Y. Olson, etc., Synthesis of Graphene Aerogel with High ElectricalConductivity, Journal of the American Chemical Society132(2010)14067–14069.
    [202] X. Xie, K. Zhao, X. Xu, etc., Study of Heterogeneous Electron Transfer on theGraphene-Self-Assembled Monolayer Modified Gold Electrode by Electrochemical Approaches, J.Phys. Chem. C114(2010)14243-14250.
    [203] D. Deng, L. Yu, X. Pan, etc., Size effect of graphene on electrocatalytic activation of oxygen,Chemical Communications47(2011)10016.
    [204] M. Pumera, Electrochemistry of graphene: new horizons for sensing and energy storage, TheChemical Record9(2009)211-223.
    [205] C. Soldano, A. Mahmood, E. Dujardin, Production, properties and potential of graphene, Carbon48(2010)2127-2150.
    [206] F. Liu, P. Ming, J. Li, Ab Initio Calculation of Ideal Strength and Phonon Instability of Grapheneunder Tension, Physical Review B76(2007)064120.
    [207] C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the Elastic Properties and Intrinsic Strength ofMonolayer Graphene, Science321(2008)385-388.
    [208] R.R. Nair, P. Blake, A.N. Grigorenko, etc., Fine Structure Constant Defines Visual Transparency ofGraphene, Science320(2008)1308.
    [209] F. Wang, Y. Zhang, C. Tian, etc., Gate-Variable Optical Transitions in Graphene, Science320(2008)206-209.
    [210] K.I. Bolotin, K.J. Sikes, Z. Jiang, etc., Ultrahigh electron mobility in suspended graphene, Solid StateCommunications146(2008)351-355.
    [211] S. Ghosh, I. Calizo, D. Teweldebrhan, etc., Extremely High Thermal Conductivity of Graphene:Prospects for Thermal Management Applications in Nanoelectronic Circuits, Applied PhysicsLetters92(2008)151911.
    [212] A.A. Balandin, S. Ghosh, W. Bao, etc., Superior Thermal Conductivity of Single-Layer Graphene,Nano Lett8(2008)902-907.
    [213] S. Liu, L. Wang, J. Zhai, Y. Luo, X. Sun, Carboxyl functionalized mesoporous polymer: A novelperoxidase-like catalyst for H2O2detection, Analytical Methods3(2011)1475.
    [214] H. Yin, Q. Ma, Y. Zhou, S. Ai, L. Zhu, Electrochemical behavior and voltammetric determination of4-aminophenol based on graphene–chitosan composite film modified glassy carbon electrode,Electrochimica Acta55(2010)7102-7108.
    [215] K. Zhou, Y. Zhu, X. Yang, C. Li, Electrocatalytic Oxidation of Glucose by the Glucose OxidaseImmobilized in Graphene-Au-Nafion Biocomposite, Electroanalysis22(2010)259-264.
    [216] X. Yi, J. Huang-Xian, C. Hong-Yuan, Direct Electrochemistry of Horseradish Peroxidase Immobilizedon a Colloid/Cysteamine-Modified Gold Electrode, Analytical Biochemistry278(2000)22-28.
    [217] S. Yadav, R. Devi, S. Kumari, etc., An Amperometric Oxalate Biosensor Based on Sorghum OxalateOxidase Bound Carboxylated Multiwalled Carbon Nanotubes–polyaniline Composite Film, J.Biotechnol.151(2011)212-217.
    [218] P.A. Fiorito, S.I. Córdoba de Torresi, Optimized Multilayer Oxalate Biosensor, Talanta62(2004)649-654.
    [219] E.F. Perez, G.d.O. Neto, L.T. Kubota, Bi-enzymatic Amperometric Biosensor for Oxalate, Sens.Actuators, B72(2001)80-85.
    [220] M.a.D.P.T. Sotomayor, I.M. Raimundo Jr, G. Oliveira Neto, L.T. Kubota, Bi-enzymatic optodedetection system for oxalate determination based on a natural source of enzyme, AnalyticaChimica Acta447(2001)33-40.
    [221]董绍俊,化学修饰电极,科学出版社,北京,2003.
    [222] S.-F. Wang, F. Xie, R.-F. Hu, Electrochemical study of brucine on an electrode modified withmagnetic carbon-coated nickel nanoparticles, Analytical and Bioanalytical Chemistry387(2007)933-939.
    [223] S.-Q. Liu, H.-X. Ju, Renewable Reagentless Hydrogen Peroxide Sensor Based on Direct ElectronTransfer of Horseradish Peroxidase Immobilized on Colloidal Gold-Modified Electrode, AnalyticalBiochemistry307(2002)110-116.
    [224] H. Luo, Z. Shi, N. Li, Z. Gu, Q. Zhuang, Investigation of the Electrochemical and ElectrocatalyticBehavior of Single-Wall Carbon Nanotube Film on a Glassy Carbon Electrode, Analytical Chemistry73(2001)915-920.
    [225]宋玉民,锰的各种氧化态化合物的制备及其标准电极电势,西北师范大学学报8(1989)93-95.
    [226] M. Ghosh, J.L. Conroy, C.T. Seto, Hydrolysis of Amides Catalyzed by4-Heterocyclohexanones: SmallMolecule Mimics of Serine Proteases, Angewandte Chemie (International ed.)38(1999)514-516.
    [227] T. Funabiki, T. Yamazaki, A. Fukui, T. Tanaka, S. Yoshida, Oxygenative Cleavage of Chlorocatecholswith Molecular Oxygen Catalyzed by Non-Heme Iron(III) Complexes and Its Relevance toChlorocatechol Dioxygenases, Angewandte Chemie International Edition37(1998)513-515.
    [228] P. Molenveld, J.F.J. Engbersen, D.N. Reinhoudt, Specific RNA Dinucleotide Cleavage by a SyntheticCalix[4]arene-Based Trinuclear Metallo(II)-phosphodiesterase, Angew. Chem. Int. Ed.38(1999)3189-3192.
    [229] M.J. Han, K.S. Yoo, J.Y. Chang, T.-K. Ha,5-(β-Cyclodextrinylamino)-5-Deoxy-α-D-Riboses as Modelsfor Nuclease, Ligase, Phosphatase, and Phosphorylase, Angewandte Chemie (International ed.)39(2000)347-349.
    [230] M.-S. Muche, M.W. G bel, Bis(guanidinium) Alcohols as Models of Staphylococcal Nuclease:Substrate Binding through Ion Pair Complexes and Fast Phosphoryl Transfer Reactions,Angewandte Chemie. International edition in English35(1996)2126-2129.
    [231] L. Yang, X. Ren, F. Tang, L. Zhang, A Practical Glucose Biosensor Based on Fe3O4Nanoparticles andChitosan/Nafion Composite Film, Biosen. Bioelectron.25(2009)889-895.
    [232] H. Chen, Y. Li, F. Zhang, G. Zhang, X. Fan, Graphene supported Au-Pd bimetallic nanoparticles withcore-shell structures and superior peroxidase-like activities, Journal of Materials Chemistry21(2011)17658.
    [233] K. Zhang, X. Hu, J. Liu, etc., Formation of PdPt Alloy Nanodots on Gold Nanorods: TuningOxidase-like Activities via Composition, Langmuir27(2011)2796-2803.
    [234] W. He, H. Jia, X. Li, etc., Understanding the formation of CuS concave superstructures withperoxidase-like activity, Nanoscale(2012).
    [235] J. Mu, Y. Wang, M. Zhao, L. Zhang, Intrinsic Peroxidase-like Activity and Catalase-like Activity ofCo3O4Nanoparticles, Chem. Commun.48(2012)2540.
    [236] J.H. Shim, Y. Lee, M. Kang, etc., Hierarchically Driven IrO2Nanowire Electrocatalysts for DirectSensing of Biomolecules, Analytical chemistry84(2012)3827-3832.
    [237] M.-Y. Hua, H.-C. Chen, R.-Y. Tsai, etc., Preparation of Polybenzimidazole-Carboxylated MultiwalledCarbon Nanotube Composite for Intrinsic Sensing of Hydrogen Peroxide, J. Phy.Chem. C115(2011)15182-15190.
    [238] Y. Shao, J. Wang, H. Wu, etc., Graphene Based Electrochemical Sensors and Biosensors: A Review,Electroanalysis22(2010)1027-1036.
    [239] S. Alwarappan, A. Erdem, C. Liu, C.-Z. Li, Probing the Electrochemical Properties of GrapheneNanosheets for Biosensing Applications, J. Phys. Chem. C113(2009)8853-8857.
    [240] M. Zhou, Y. Zhai, S. Dong, Electrochemical Sensing and Biosensing Platform Based on ChemicallyReduced Graphene Oxide, Anal. Chem.81(2009)5603-5613.
    [241] L. Tang, Y. Wang, Y. Li, etc., Preparation, Structure, and Electrochemical Properties of ReducedGraphene Sheet Films, Adv. Funct. Mater.19(2009)2782-2789.
    [242] H.-g. Liao, H. Wu, J. Wang, J. Liu, etc., Direct Electrochemistry and Electrocatalysis of MyoglobinImmobilized on Graphene-CTAB-Ionic Liquid Nanocomposite Film, Electroanalysis22(2010)2297-2302.
    [243] H. Yin, Y. Zhou, Q. Ma, etc., Electrochemical oxidation behavior of guanine and adenine ongraphene–Nafion composite film modified glassy carbon electrode and the simultaneousdetermination, Process Biochemistry45(2010)1707-1712.
    [244] H. Yin, Q. Zhang, Y. Zhou, etc., Electrochemical behavior of catechol, resorcinol and hydroquinoneat graphene–chitosan composite film modified glassy carbon electrode and their simultaneousdetermination in water samples, Electrochimica Acta56(2011)2748-2753.
    [245] J. Li, S. Guo, Y. Zhai, E. Wang, High-sensitivity Determination of Lead and Cadmium Based on TheNafion-Graphene Composite Film, Analytica Chimica Acta649(2009)196-201.
    [246] Z. Wang, J. Zhang, P. Chen, etc., Label-free, Electrochemical Detection of Methicillin-resistantStaphylococcus Aureus DNA with Reduced Graphene Oxide-Modified Electrodes, Biosen.Bioelectron.26(2011)3881-3886.
    [247] L.A. Ponomarenko, F. Schedin, M.I. Katsnelson, R. Yang, etc., Chaotic Dirac Billiard in GrapheneQuantum Dots, Science320(2008)356-358.
    [248] D. Pan, J. Zhang, Z. Li, M. Wu, Hydrothermal Route for Cutting Graphene Sheets intoBlue-Luminescent Graphene Quantum Dots, Advanced Materials22(2010)734-738.
    [249] J. Shen, Y. Zhu, X. Yang, C. Li, Graphene Quantum Dots: Emergent Nanolights for Bioimaging,Sensors, Catalysis and Photovoltaic Devices, Chem. Commun.48(2012)3686-3699.
    [250] Z. Liu, J.T. Robinson, X. Sun, H. Da, PEGylated Nanographene Oxide for Delivery of Water-InsolubleCancer Drugs, J. Am. Chem. Soc.130(2008)10876-10877.
    [251] S. Zhu, Strongly green-photoluminescent graphene quantum dots for bioimaging applications,Chemical communications (London.1996)47(2011)6858.
    [252] J.T. Robinson, Ultrasmall reduced graphene oxide with high near-infrared absorbance forphotothermal therapy, Journal of the American Chemical Society133(2011)6825.
    [253] X. Zhou, Y. Zhang, C. Wang, etc., Photo-Fenton Reaction of Graphene Oxide:A New Strategy toPrepare Graphene Quantum Dots for DNA cleavage, ACS Nano6(2012)6592-6599.
    [254] G.L. Luque, M.I. Rojas, G.A. Rivas, E.P.M. Leiva, The Origin of the Catalysis of Hydrogen PeroxideReduction by Functionalized Graphene Surfaces: A Density Functional Theory Study,Electrochimica Acta56(2010)523-530.
    [255] S.G. Rhee, H2O2, a Necessary Evil for Cell Signaling, Science312(2006)1882-1883.
    [256] J.R. Stone, S. Yang, Hydrogen Peroxide: A Signaling Messenger, Antioxidants and Redox Signaling8(2006)243-270.
    [257] Y.S. Bae, S.W. Kang, M.S. Seo, etc., Epidermal growth factor (EGF)-induced generation of hydrogenperoxide, The Journal of Biological Chemistry272(1997)217-221.
    [258] J.D. Lambeth, NOX enzymes and the biology of reactive oxygen., Nature Reviews Immunology4(2004)181-189.
    [259] W. Troll, R. Wiesner, The Role of Oxygen Radicals as a Possible Mechanism of Tumor Promotion,Annu. Rev. Pharmacol. Toxicol.25(1985)509-528.
    [260] W. Dr ge, H.M. Schipper, Oxidative Stress and Aberrant Signaling in Aging and Cognitive Decline,Aging Cell6(2007)361-370.
    [261] S. DiMauro, E.A. Schon, Mitochondrial Disorders in the Nervous System, Annual Review ofNeuroscience31(2008)91-123.
    [262] G.T. Wondrak, Redox-Directed Cancer Therapeutics: Molecular Mechanisms and Opportunities,Antioxidants and Redox Signaling11(2009)3013-3070.
    [263] P. Wu, Y. Qian, P. Du, H. Zhang, C. Cai, Facile synthesis of nitrogen-doped graphene for measuringthe releasing process of hydrogen peroxide from living cells, Journal of Materials Chemistry22(2012)6402-6412.
    [264] B.C. Dickinson, C.J. Chang, A Targetable Fluorescent Probe for Imaging Hydrogen Peroxide in theMitochondria of Living Cells, J. Am. Chem. Soc.130(2008)9638-9639.
    [265] B.C. Dickinson, C. Huynh, C.J. Chang, A Palette of Fluorescent Probes with Varying Emission Colorsfor Imaging Hydrogen Peroxide Signaling in Living Cells, J. Am. Chem. Soc.132(2010)5906-5915.
    [266] D. Srikun, A.E. Albers, C.I. Nam, etc., Organelle-Targetable Fluorescent Probes for ImagingHydrogen Peroxide in Living Cells via SNAP-Tag Protein Labeling, Journal of the American ChemicalSociety132(2010)4455-4465.
    [267] D. Casanova, C.d. Bouzigues, T.-L.m. Nguye n, etc., A. Alexandrou, Single europium-dopednanoparticles measure temporal pattern of reactive oxygen species production inside cells, NatureNanotechnology4(2009)581-585.
    [268] Y.-D. Lee, C.-K. Lim, A. Singh, etc., Dye Peroxalate Aggregated Nanoparticles with Enhanced andTunable Chemiluminescence for Biomedical Imaging of Hydrogen Peroxide, ACS Nano(2012).
    [269] G. Bartosz, Use of spectroscopic probes for detection of reactive oxygen species, Clinica ChimicaActa368(2006)53-76.
    [270] P. Wu, Z. Cai, Y. Gao, H. Zhang, C. Cai, Enhancing the electrochemical reduction of hydrogenperoxide based on nitrogen-doped graphene for measurement of its releasing process from livingcells, Chemical Communications47(2011)11327.
    [271] Y. Wu, J. Zhou, N. Fishkin, etc., Enzymatic Degradation of A2E, a Retinal Pigment EpithelialLipofuscin Bisretinoid, J. Am. Chem. Soc.133(2011)849-857.
    [272] Z. Liu, Z. Shen, T. Zhu, S. Hou, L. Ying, Organizing Single-Walled Carbon Nanotubes on Gold Using aWet Chemical Self-Assembling Technique, Langmuir16(2000)3569-3573.
    [273] Z.-M. Liu, Y. Yang, H. Wang, Y.-L. Liu, etc., A hydrogen peroxide biosensor based onnano-Au/PAMAM dendrimer/cystamine modified gold electrode, Sensors and Actuators B:Chemical106(2005)394-400.
    [274] L. Zhang, Y. Zhai, N. Gao, etc., Sensing H2O2with layer-by-layer assembled Fe3O4–PDDAnanocomposite film, Electrochemistry Communications10(2008)1524-1526.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700