爆炸荷载作用下防护门的动态响应行为与反弹机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国防与人防工程由于人员和设备的进出以及通风、给排水、排烟等需要,构筑有少量与外部连通的孔口,这些孔口战时极有可能成为爆炸冲击波的入口,其进入工程内部后产生的恶劣震动环境往往造成人员伤亡、设备失效,指挥系统失灵。而防护门作为口部最重要的防护设备,对保障工程在战时的整体安全具有决定性作用。本文以实际工程中典型的梁板式钢结构防护门和钢包钢管混凝土防护门为研究对象,对其在爆炸荷载作用下的动态响应行为和反弹现象进行了深入系统的理论和数值模拟研究。论文的主要内容和研究成果如下:
     1.建立了考虑应变率效应和温度影响的典型梁板式钢结构防护门数值分析模型,对其动力响应及抗力进行了评估,分析了骨架梁的存在,骨架梁的数量和布置方式,梁腹板的厚度和高度,梁翼缘板的厚度和宽度,上下面板的厚度,爆距、装药量、作用时间和边界条件以及门体内填充泡沫铝材料后对防护门抗爆性能的影响规律,并结合量纲分析理论,提出了合理的工程计算模型。
     2.建立了考虑应变率效应影响的混凝土和受约束混凝土的有限元分析模型,利用已有试验对模型进行了验证。基于该模型对典型钢包钢管混凝土防护门的动力响应及抗力进行了评估,分析了钢管的存在、钢管内外混凝土的强度、钢管壁的厚度、荷载作用时间等参数对防护门抗爆性能的影响规律。
     3.基于分布参数体系的动力分析方法,将防护门等效为单向板(梁)或双向板,推导了爆炸荷载作用下防护门在弹性阶段的反弹力解析解,进而得到了单向板(梁)和双向板的剪力动力系数,对影响反弹力的主要因素包括边长比、荷载作用时间、阻尼、负压以及荷载形式等进行了深入研究。
     4.基于等效单自由度体系的动力分析方法,将防护门等效为单自由度体系,推导了爆炸荷载作用下防护门在弹性阶段的反弹抗力计算公式,给出了常用爆炸荷载作用下的位移动力系数和反弹抗力曲线。
     5.进一步建立了门框-铰页-闭锁模式的典型梁板式钢结构防护门有限元模型,对其在非线性响应条件下的反弹机理进行了数值模拟研究,充分考虑了气密条、弹性模量、铰页配置、闭锁配置、比例爆距和荷载作用时间等参数对门体反弹效应的影响规律,并给出了防护门抗反弹设计的建议。
A small amount of entrances must be built in national defence and civil defenceengineering due to the needs for staff and equipment cross through, aeration, watersupply and drainage, smoke discharge and other purposes. These entrances mightbecome the entry or channel of blast shock wave at wartime, by which the destructivevibration environment that was produced after the blast shock wave would enter into theengineering and result in casualties and failure of equipments and command systeminside. However, the blast door, as the most important protective equipment of entrance,would play a decisive role on guaranteeing the overall safety of engineering during thewartime. In this paper, the theoretical and numerical simulation research on dynamicresponse and rebound mechanism for both typical stiffened steel blast door and concretefilled steel and steel tube blast door subjected to blast loading has been conducted. Themain results are as follows:
     1. The dynamic response and resistance of a typical stiffened steel blast door wasevaluated by a numerical model considering the effects of both strain rate andtemperatures. In meanwhile, all the factors that influence and regulate the blast-resistantproperties of stiffened blast door are further analyzed including the number and layoutsof stiffeners, thickness and height of beam web, thickness and width of beam flange,surface plate thickness, explosion distance, charge weight, duration of blast loading,boundary conditions and filled with aluminum foam etc. By using the dimensionalanalysis method, the more reasonable model for engineering calculations wassuccessfully established.
     2. A numerical model of concrete and confined concrete was establishedconsidering the effect of strain rate, which is then verified through a series ofexperimental data obtained before. On basis of the model, the research was focused onthe evaluation of typical concrete filled steel and steel tube blast door in thecorrespondence with dynamic response and resistance. All the factors were sufficientlyanalyzed including the existing steel tube, concrete strength inside and outside steel tube,thickness of steel tube and duration of blast loading.
     3. According to the dynamic method of distributed parameter system, the blastdoor was assumed to be a beam and plate and then the exact analytical formulas of rebound force on blast doors in elastic phase were derived, furthermore, the sheardynamic factors (SDF) of beam and plate were obtained too. All the factors wereanalyzed and deeply researched including the side-length ratio, duration, damping ratio,loading style and negative phase of blast loading etc.
     4. During using the dynamic analysis method for the equivalent single degree offreedom (SDOF) system, the blast door was assumed to be a SDOF system. Thecalculation formulas of rebound resistance for blast doors in elastic phase subjected toblast loading were derived. In meantime, the displacement dynamic factor (DDF) andelastic rebound curves subjected to six common loads were obtained too.
     5. The research further established a finite element model of typical stiffened steelblast door with regard to the door frame-hinge-latch nonlinear contact effect when therebound mechanism in plastic phase were investigated by the numerical similation. Therelevant influential effects of gaskets, modulus of elasticity, hinge and latch numbers,scaled distance, duration on the rebounding regulations were fully taken into anindividual consideration in the study. Finally, the propose and suggestions for rebounddesign of blast door were shown in the paper as well.
引文
[1]郭东,方秦,张亚栋,张虹.常规武器爆炸作用下现有防护门抗力评估.防护工程,2002,24(4):23-27.
    [2]郭海凰.新型钢结构防护门的动态响应分析及设计[硕士学位论文].南京:解放军理工大学,2005.
    [3]金丰年,欧阳科峰,蒋美荣.钢筋混凝土防护门的阻尼反弹效应.防护工程,2005,27(2):32-36.
    [4]江水德.防空地下室防护设备抗常规武器爆炸反弹作用论证报告.北京:中国建筑标准设计研究院,2006.
    [5]吴义田,张庆明,付跃升.某防护门结构防护性能的有限元分析.弹箭与制导学报,2006,27(2):245-247.
    [6]陆新征,江见鲸.抗爆门结构考虑接触影响的动力有限元分析.力学与实践,2003,25(2):24-26.
    [7]张亚栋.大型高抗力钢管混凝土组合式防护门动静力特性研究[博士学位论文].南京:解放军理工大学,2006.
    [8]李忠平,方秦,等.海军大型高抗力防护门研制.北京:海军工程设计研究局,解放军理工大学,2006.
    [9]张虹.常规武器防护门的计算与设计[硕士学位论文].南京:解放军理工大学,2003.
    [10]高强混凝土及其在大跨度拱形防护门中的应用.北京:清华大学,海军工程设计研究局,1981.
    [11]程伟,赵寿根,顾忠明,代海涛.鼓形叠层壳高抗力门静载试验研究.实验力学,2006,21(2):247-252.
    [12] NORFO TBS-20and TBS-20concrete blast door[EB/OL].(2003.02)[2011-3-19]. http://www.norfo.no/PDF/E1102.pdf.
    [13] http://www.megametusa.com/pressure.aspx[EB/OL].(200-02-20)[2011-3-19].http://www.megametusa.com/docs/pressure.pdf
    [14]网易新闻.苏联潜艇洞库是啥样[EB/OL].(2010-02-01)[2011-3-19]. http://news.163.com/10/0201/15/5UEPLA6J000120GU.html.
    [15]国家人防行业标准图集RFJ01-2008.人民防空工程防护设备选用图集.北京:中国计划出版社,2008.
    [16]石少卿,张湘冀,尹平.爆炸荷载作用下一种新型防护结构的静力分析.地下空间,2003,23(1):66-68.
    [17]韩国建.钢混凝土组合式推拉防护门抗爆能力研究[硕士学位论文].南京:解放军理工大学,1997.
    [18]姜国良.钢纤维钢筋混凝土板-钢桁架组合推拉门设计.中国土木工程学会防护工程分会第六次学术会议,昆明,1998:331-335.
    [19]黄建立,唐松林,陈太林,胡功笠,朱波.单机掩蔽库门现状及改进设想.工程力学(增刊),2001:347-349.
    [20]辛雷,范伏生,陈太林.改进第三代单机掩蔽库防护门的思考.中国土木工程学会防护工程分会第七次学术会议,井冈山,2000:742-743.
    [21]飞机掩蔽库填充式防护门抗爆性能试验研究.空军工程设计研究局,2001.
    [22]方秦,姜锡权,王年桥,张亚栋.横向受压钢管吸能特性分析.第三届全国工程结构安全防护学术会议,黄山,2000:190-195.
    [23] Hsieh M W, Hung J P, Chen D J. Investigation on the blast resistance of a stiffened doorstructure. Journal of Marine Science and Technology,2008,16(2):149-157.
    [24]胡时胜,刘剑飞.硬质聚氨酯泡沫塑料本构关系的研究.力学学报,1998,30(2):151-156.
    [25]胡时胜,刘剑飞,王悟.硬质聚氨酯泡沫塑料的缓冲吸能特性评估.爆炸与冲击,1998,18(1):42-47.
    [26]任志刚,楼梦麟,田志敏.聚氨酯泡沫复合夹层板抗爆特性分析.同济大学学报,2003,31(1):6-10.
    [27]王海福,冯顺山.爆炸载荷下聚氨酯泡沫材料中冲击波压力特性.爆炸与冲击,1999,19(1):78-83.
    [28]刘学晨,陆伟东,刘伟庆,周石磊.门前设置聚氨酯泡沫塑料对防护门抗爆性能影响的数值分析.第一届全国工程安全与防护学术会议,南京,2008:181-184.
    [29]于江,时党勇.聚丙烯纤维混凝土接触爆炸破坏效应的试验和数值分析.爆破器材,2008,37(4):1-5.
    [30]杨青顺,魏雪英,赵均海,贾萍.钢纤维混凝土板抗爆数值模拟.解放军理工大学学报,2007,8(5):530-533.
    [31]许金余,迟维胜,邵式亮,等.爆炸荷载作用下钢纤维混凝土构件试验研究.工程力学,2000(增刊):716-721.
    [32]钢纤维高强混凝土及其在防护门中的应用.中国建筑材料科学研究院,空军后勤部工程设计局,1982.
    [33]阎石,黎伟.爆炸荷载下泡沫铝复合结构耗能性能分析.水利与建筑工程学报,2010,8(1):12-14.
    [34]王永刚,胡时胜,王礼立.爆炸荷载下泡沫铝材料中冲击波衰减特性的实验和数值模拟研究.爆炸与冲击,2003,23(6):516-522.
    [35]周石磊,陆伟东,刘伟庆,刘学晨.含耗能层防护门爆炸荷载下动力有限元分析研究.第一届全国工程安全与防护学术会议,南京,2008:185-189.
    [36]袁林,龚顺风,金伟良.含泡沫铝防护层钢筋混凝土板的抗爆性能研究.浙江大学学报(工学版),2009,43(2):376-379.
    [37]宋延泽,王志华,赵隆茂,赵勇刚.撞击载荷下泡沫铝夹层板的动力响应.爆炸与冲击,2010,30(3):301-307.
    [38]王二恒,虞吉林,王飞,孙亮.泡沫铝材料准静态本构关系的理论和实验研究.力学学报,2004,36(6):673-679.
    [39]韩守红,吕振华.铝泡沫夹层结构抗爆炸性能仿真分析及优化.兵工学报,2010,31(11):1468-1474.
    [40]赵桂平,卢天健.多孔金属夹层板在冲击载荷作用下的动态响应.力学学报,2008,40(2):194-206.
    [41]康建功,石少卿,刘颖芳,汪敏.不锈钢面板与铝面板泡沫铝夹芯梁的抗爆性能.后勤工程学院学报,2009,25(6):1-5.
    [42] Theobald M D, Langdon G S, Nurick G N, Pillay S, Heyns A, Merrett R P. Large inelasticresponse of unbonded metallic foam and honeycomb core sandwich panels to blast loading.Composite Structures,2010,92(10):2465-2475.
    [43] Langdon G S, Karagiozova D, Theobald M D, Nurick G N, Luc G D, Merrett R P. Fracture ofaluminium foam core sacrificial cladding subjected to air-blast loading. International Journalof Impact Engineering,2010,37(6):638-651.
    [44] Hanssen A G, Enstock L, Langseth M. Close-range blast loading of aluminium foam panels.International Journal of Impact Engineering,2002,27(6):593-618.
    [45]史春芳,徐赵东.工程结构抗爆技术的研究现状.西安建筑科技大学学报(自然科学版),2007,39(5):616-620.
    [46] Kinney G F, Graham K J. Explosive Shocks in Air, second ed. NY, NewYork: Springer,1985.
    [47] Baker W E. Explosions in Air. TX, Austin: University of Texas Press,1973.
    [48] Baker W E, Cox P A, Westine P S, Kulesz J J, Strehlow R A. Explosions Hazards andEvaluation. The Netherlands, Amsterdam: Elsevier Science Publishers B.V,1983.
    [49] Florek J R, Benaroya H. Pulse-pressure loading effects on aviation and general engineeringstructures-review. Journal of Sound and Vibration,2005,284(1-2):421-453.
    [50] Beshara F B A. Modelling of blast loading on above ground structures-I. Generalphenomenology and external blast. Computers&Structures,1994,51(5):585-596.
    [51] Chock J M K, Kapania R K. Review of two methods for calculating explosive air blast. Shockand Vibration Digest,2001,33(2):91-102.
    [52] Kingery C N, Bulmash G. Air blast parameters from TNT spherical air burst andhemispherical surface burst. Ballistic Research Laboratory Report No.ARBRL-TR-02555,Aberdeen Proving Ground, MD,1984.
    [53] Esparza E D. Blast measurements and equivalency for spherical charges at small scaleddistances. International Journal of Impact Engineering,1986,4(1):23-40.
    [54] Gatto J A, Krznaric S. Pressure loading on a luggage container due to an internal explosion,New York:Shin Y S, Zukas J A. Structures Under Extreme Loading Conditions, ASME,1996:29-35.
    [55] Simmons M C, Schleyer G K. Pulse pressure loading of aircraft structural panels.Thin-Walled Structures,2006,44(5):496-506.
    [56] Gantes C J, Pnevmatikos N G. Elastic-plastic response spectra for exponential blast loading.International Journal of Impact Engineering,2004,30(3):323-343.
    [57] Bogosian D, Ferritto J, Shi Y, Measuring uncertainty and conservatism in simplified blastmodels. The30th Explosives Safety Seminar, Atlanta, GA,2002.
    [58]中国人民解放军军用标准(××).防护工程防核武器结构设计规范.北京:中国人民解放军总参谋部,1998.
    [59]中华人民共和国国家标准GB50225-2005.人民防空工程设计规范.北京:中国计划出版社,2006.
    [60] Borenstein E, Benaroya H. Sensitivity analysis of blast loading parameters and their trends asuncertainty increases. Journal of Sound and Vibration,2009,321(3-5):762-785.
    [61]王年桥.防护结构计算原理与设计.南京:中国人民解放军工程兵工程学院,1998.
    [62] Biggs J M. Introduction to structural dynamics. New York: McGraw-Hill Press,1964.
    [63]钱七虎,等编著.防护结构计算原理.南京:中国人民解放军工程兵工程学院,1981.
    [64] Iyengunmwena M A, Virdi K S. Numerical and analytical investigation of shear in reinforcedconcrete beams subjected to dynamic loads. UK, Edinburgh: Topping B H V. Developments inStructural Engineering Computing,Civil-Comp Press,1993:123-133.
    [65] Iyengunmwena M A. Evaluation of end reactions of reinforced concrete structures underdynamic loading conditions[MSC dissertation]. UK, London: City University,1991.
    [66]方秦,郭东,张亚栋,柳锦春.梁的剪力动力系数的确定.工程力学,2005,22(5):181-185.
    [67]郭东.脉冲荷载作用下梁板结构的剪力计算方法[硕士学位论文].南京:解放军理工大学,2003.
    [68]朱坤芬,方秦,张亚栋.爆炸荷载作用下拱型结构端部动剪力响应的数值分析.解放军理工大学学报,2006,7(1):51-54.
    [69]方秦,陈力,张亚栋,柳锦春.爆炸荷载作用下钢筋混凝土结构的动态响应与破坏模式的数值分析.工程力学(增刊),2007,24:135-154.
    [70]吴义田,张庆明,付跃升.某防护门结构防护性能的有限元分析.弹箭与制导学报,2006,27(2):245-247.
    [71]杨海平,等.新型高抗力防护门研制.北京:总参国防工程设计研究院,2004.
    [72] TM5-855-1, Fundamentals of protective design for conventional weapons, Washington D C:U S Department of the Army,1986.《常规武器防护设计原理》,方秦等译,南京:工程兵工程学院,1997.
    [73] TM5-1300, Structures to resist the effects of accidental explosions. Washington D C: U SDepartment of the Army,1990.
    [74] The Air Force Manual For Design and Analysis of Hardened Structures, AFWL-TR-74102,1974.《美国空军防护结构设计与分析手册》,空军后勤部工程设计研究局,1980.
    [75]铁摩辛柯S,沃诺斯基S.板壳理论.北京:科学出版社,1977.
    [76] Szilard R著,陈太平,戈鹤翔,周孝贤译.板的理论和分析.北京:中国铁道出版社,1984.
    [77] Mindlin R D. Flexural vibrations of rectangular plates. Journal of Applied Mechanics,1956:430-436.
    [78] Gorman J. Free vibration analysis of the completely free rectangular plate by the method ofsuperposition. Journal of Sound and Vibration,1978,57(3):437-447.
    [79] Jones N, Uran T O, Tekin S A. The Dynamic plastic behavior of fully clamped rectangularplates. International Journal of Solids and Structures,1970,6:1499-1512.
    [80] Olson M D, Nurick G N, Fagnan J R. Deformation and rupture of blast loaded squareplates-predictions and experiments. International Journal of Impact Engngeering,1993,13(2):279-291.
    [81] Nurick G N, Shave G N. The deformation and tearing thin square plates subjected toimplusive loads-an experimental study. International Journal of Impact Engngeering,1996,18(1):99-116.
    [82] Nurick G N, Olson M D, Fagnan J R, Levin A. Deformation and tearing of blast-loadedstiffened square plates. International Journal of Impact Engngeering,1995,16(2):273-291.
    [83] Langdon G S, Yueh K, Chung S, Nurick G N. Experimental and numerical studies on theresponse of quardrangular stiffened plates. Part II: Localised blast loading. InternationalJournal of Impact Engngeering,2005,31(1):85-111.
    [84] Rudrapatna N S, Vaziri R, Olson M D. Deformation and failure of blast-loaded stiffened plate.Internation Journal of Impact Engngeering,2000,24(5):457-474.
    [85] Shen W Q, Jones N. Dynamic response and failure of fully clamped circular plates underimpulsive loading. Internation Journal of Impact Engngeering,1993,13(2):259-78.
    [86] Krauthammer T. Modern protective structures design analysis and evaluation,1995.《现代防护结构设计、分析与评估》.总参工程兵科研三所译,1997.
    [87]李国豪.工程结构抗爆动力学.上海:上海科学技术出版社,1985.
    [88]曹志远,杨昇田.厚板动力学理论及其应用.北京:科学出版社,1983.
    [89]张福范.弹性薄板.北京:科学出版社,1984.
    [90]张福范,黄晓梅.弹性地基上的自由矩形板.应用数学和力学,1984,5(3):345-353.
    [91]王克林,刘俊卿,赵冬.平板的弯曲、振动和屈曲.北京:冶金工业出版社,2006.
    [92] Huang Yan. A general analytical solution for elastic vibration of rectangular thin plate. ApplMath and Mech,1988,9(11):1057-1065.
    [93]张舵,卢芳云,王瑞峰.钢筋混凝土板在爆炸作用下的破坏研究.弹道学报,2008,20(2):13-16.
    [94]陆新征,江见鲸.抗爆门在爆炸荷载作用下有限元动力数值模拟.防护工程,2003,25(1):14-17.
    [95]师燕超.爆炸荷载作用下钢筋混凝土结构的动态响应行为与损伤破坏机理[博士学位论文].天津:天津大学土木工程系,2009.
    [96] Yanchao Shi, Hong Hao, Zhong-Xian Li. Numerical derivation of pressure-impulse diagramsfor prediction of RC column damage to blast loads. International Journal of ImpactEngineering,2008,35(11):1213-1227.
    [97]史祥生.爆炸荷载作用下钢筋混凝土板的损伤破坏分析[硕士学位论文].天津:天津大学土木工程系,2008.
    [98]闫秋实.典型地铁结构内爆炸流场分布及动力反应研究[博士学位论文].北京:清华大学土木工程系,2011.
    [99]都浩.城市环境中建筑爆炸荷载模拟及钢筋混凝土构件抗爆性能分析[博士学位论文].天津:天津大学土木工程系,2008.
    [100]盛利.爆炸荷载作用下钢筋混凝土梁动力响应数值模拟[硕士学位论文].长沙:湖南大学,2007.
    [101]庄茁,张帆,岑松等. ABAQUS非线性有限元分析与实例.北京:科学出版社,2005.
    [102]刘威.钢管混凝土局部受压时的工作机理研究[博士学位论文].福州:福州大学,2005.
    [103]韩林海,杨有福.矩形钢管混凝土轴心受压构件强度承载力的试验研究.土木工程学报,2001,34(4):22-31.
    [104]韩林海.钢管混凝土结构-理论与实践(第二版).北京:科学出版社,2007.
    [105] ABAQUS, User’s Manual, Version6.10,2010.
    [106]王瑀.典型结构内部爆炸波的传播规律与超压荷载模型[硕士学位论文].天津:天津大学土木工程系,2008.
    [107]曲树盛.地铁车站内爆炸波的传播规律与超压荷载模型[硕士学位论文].天津:天津大学土木工程系,2008.
    [108] Zhou X Q, Kuznetsov V A, Hao H, Waschl J. Numerical prediction of concrete slab responseto blast loading. International Journal of Impact Engineering,2008,35(10):1186-1200.
    [109] Malvar L J, Crawford J E, Wesevich J W. A Plasticity Concrete Material Model for DYNA3D.International Journal of Impact Engineering,1997,19(9/10):847-873.
    [110] Slawson T R. Dynamic shear failure of shallow-buried flat-roofed reinforced concretestructures subjected to blast loading. Technical Report SL-84-7, U. S. Army WaterwaysExperiment Station,1984.
    [111] Krauthammer T. Shallow-buried RC box-type structures. Journal of Structural Engineering,ASCE,1984,110(3):637-651.
    [112] Krauthammer T, Bazeos N, Holmquist T J. Modified SDOF analysis of RC box-typestructures. Journal of Structural Engineering,1986,112(4):726-744.
    [113]李晓军,李世民,李清献等.国外反爆炸恐怖防护设计原理.河南洛阳:总参工程兵科研三所编,2004.
    [114]黄静华等.新型一机三用电控门研制.北京:总参国防工程设计研究院,2003.
    [115]陈江洪,刘海江.基于钢结构有限元软件的地铁隔断门门扇结构分析.同济大学学报,2002,30(7):872-875.
    [116]李文娟,沈炜良,马兆敏.弧形钢闸门三维有限元分析.山东大学学报(工学版),2003,33(3):265-270.
    [117]卢葭,王铁龙.抗爆门抗爆性能试验研究.建筑结构,2007,37(4):122-124.
    [118]王月贵,杨海杰,高明亮,姜浩.防护门抗爆炸冲击波的实验研究.第八届全国爆炸力学学术会议论文集,江西吉安,2007:184-187.
    [119]郑颖人,李秀地.防护门破坏后剩余冲击波传播规律的试验.解放军理工大学学报(自然科学版),2007,8(5):409-412.
    [120]孙延荣.钢筋混凝土平板防密(防护)门的试验与设计.中国土木工程学会防护工程分会第一次学术年会论文集,井冈山,1989.
    [121]易嘉钰.防护门破坏等级与破坏参数探讨.中国土木工程学会防护工程分会第一次学术年会论文集,井冈山,1989.
    [122]郭乙木,鲁祖统.超强冲击波作用下地下坑道防护门门框结构设计的应用研究.浙江大学学报(自然科学版),1995,29(3):282-289.
    [123]刘海江,孙玉国.升降式防密门扇静力与动力有限元分析.振动、测试与诊断,2003,23(4):271-272.
    [124]国外爆炸恐怖活动现状、破坏效应、防护技术及对策研究研究综合分析报告.河南洛阳:总参工程兵科研三所编,2007.
    [125]何翔,庞伟宾,曲建波,刘国军,李茂生.防护门在空气冲击波和破片作用下的破坏.爆炸与冲击,2004,24(5):475-479.
    [126]陈肇元.防护工程钢筋混凝土构件的抗剪性能与设计方法(一).防护工程,1993,4:1-12.
    [127]陈肇元.防护工程钢筋混凝土构件的抗剪性能与设计方法(二).防护工程,1994,1:1-7.
    [128]陈肇元.化爆冲击波动载下钢筋混凝土构件抗剪计算设计方法.北京:清华大学土木工程系抗震抗爆工程研究室,1988.
    [129]陈肇元.钢筋混凝土结构构件在冲击荷载下的性能.北京:清华大学土木工程系抗震抗爆工程研究室,1988.
    [130]孙文彬.钢筋混凝土板的爆炸荷载试验研究.辽宁工程技术大学学报(自然科学版),2009,28(2):217-220.
    [131]孙文彬.钢筋混凝土对边简支板的爆炸试验.力学与实践,2008,30(4):58-72.
    [132]方秦,谷波,张亚栋.钢结构防护门结构优化的数值分析.解放军理工大学学报(自然科学版),2006,7(6):557-561.
    [133]郁文风.防爆门在均布爆压下之力学行为探讨[硕士学位论文].台北:台湾国防大学中正理工学院,2003.
    [134]郁文风.钢质防爆门承受近距离爆炸实验与数值模拟分析[博士学位论文].台北:台湾国防大学中正理工学院,2010.
    [135]陈昱汝.防爆门振动特性之探讨[硕士学位论文].台北:台湾国防大学中正理工学院,2007.
    [136]陈宗涌.防爆门受冲击荷载之数值分析[硕士学位论文].台北:台湾国防大学中正理工学院,2009.
    [137] Louca L A, Pan Y G, Harding J E. Response of stiffened and unstiffened plates subjected toblast loading. Engineering Structure,1998,20(12):1076-1086.
    [138] Pan Y, Watson A. Effect of panel stiffness on resistance of cladding to blast loading. J EngMech ASCE,1998,124(4):414-21.
    [139] Zhu L. Transient deformation modes of square plates subjected to explosive loadings.International Journal of Solid Structures,1996,33(3):301-314.
    [140]杨超,侯日立,刘生发,韩夫亮.不同爆炸载荷作用下加筋板的动态响应分析.武汉理工大学学报,2010,32(2):56-59.
    [141]俞儒一.人防工程防护结构计算原理.南京:工程兵工程学院,1989.
    [142]李秀地,郑颖人,李列胜,石少卿.长坑道中防护门上的化爆冲击波压力研究.后勤工程学院学报,2005,(2):37-39.
    [143]卢红琴,刘伟庆.坑道截面形状对防护门上化爆冲击波压力的影响.第七届全国工程结构安全防护学术会议论文集,浙江宁波,2009:94-97.
    [144] Johnson G R, Cook W H. Fracture characteristics of three metals subjected to various strains,strain rates, temperatures and pressures. Engineering Fracture Mechanics,1985,21(1):31-48.
    [145] Masui T, Nunokawa T, Hiramastu T. Shape correction of hot-rolled sheet steel using anon-line leveller. Journal of Japan Society for Technology of Plasticity,1987,28(312):81-87.
    [146] Cowper G R, Symonds P S. Strain hardening and strain-rate effects in the impact loading ofcantilever beams. Brown University, Division of Applied Mathematics,1957.
    [147] Yu J, Jones N. Further experimental investigations on the failure of clamped beams underimpact loads. International Journal of Solids and Structures,1991,27(9):1113-37.
    [148] Marais S T, Tait R B, Cloete T J, Nurick G N. Material testing at high strain rate using thesplit-Hopkinson pressure bar. Latin American Journal of Solids and Structures,2004,1(1):319-39.
    [149] Jama H H, Bambach M R, Nurick G N, Grzebieta R H, Zhao X L. Numerical modelling ofsquare tubular steel beams subjected to transverse blast loads. Thin-Walled Structures,2009,47(12):1523-1534.
    [150] Boh J W, Louca L A, Choo Y S. Strain rate effects on the response of stainless steelcorrugated firewalls subjected to hydrocarbon explosions. Journal of Constructional SteelResearch,2004,60(1):1-29.
    [151] Rajendran R, Lee J M. Blast loaded plates. Marine Structures,2009,22(2):99-127.
    [152] Yu C J, Claar T D, Eifert H H, et al. Aplications of porous metal foams in hybrid armorsystems. Proceedings of international conference on fundamental Issues and Aplications ofshock-wave and high strain rate phenomena, Albuqueraue, USA,2000:429-436.
    [153] Radford D D, Deshpande V S, Fleck N A. The use of metal foam projectiles to simulateshock loading on a structure. International Journal of Impact Engineering,2005,31(9):1152-1171.
    [154] Fleck N A, Radford D D, McSHane G J, Deshpande V S, et al. The response of clampedsandwich plates with metallic foam cores to simulated blast loading. International Journal ofSolids and Structures,2006,43(7-8):2243-2259.
    [155] Deshpande V, Fleck N A. High strain rate compressive behaviour of aluminium alloy foams.International Journal of Impact Engineering,2000,24(3):277-298.
    [156] Hanssen A G, Hopperstad O S, Langseth M, Ilstad H. Validation of constitutivemodelsapplicable to aluminium foams. International Journal of Mechanical Sciences,2002,44(2):359-406.
    [157]钢包砼拱形防护门试验研究综合报告.北京:第二炮兵工程设计研究所,清华大学土木工程系,1987.
    [158]张湘冀,石少卿,尹平,刘颖芳.全封闭的钢-混凝土-钢夹层板抗爆性能的数值分析.四川建筑科学研究,2004,30(4):17-19.
    [159]方秦,陈力,杜茂林.端部设置弹簧和阻尼器提高防护门抗力的理论与数值分析.工程力学,2008,25(3):194-199.
    [160] Chen L, Fang Q, Zhang Y D, Zhang Y, Fan J Y. Numerical and experimental investigations onthe blast-resistant properties of arched RC blast doors. International Journal of ProtectiveStructures,2010,1(3):425-441.
    [161]李恩奇,盛秀成,王江枫.核常爆炸下拱形防护门动力学分析.防护工程,2011,33(4):16-21.
    [162]张亚栋,方秦,李忠平,王全胜,李浩.某大型防护门结构计算分析.中国土木工程学会防护工程分会第九次学术会议,长春,2004:703-711.
    [163]战颂,徐永君,张均锋.钢包砼拱形防护门有限元模态分析.地下空间与工程学报.2006,2(6):967-970.
    [164]李忠平,王全胜,方秦,张亚栋,李浩.某大型防护门结构方案优化设计计算研究.中国土木工程学会防护工程分会第九次学术会议,长春,2004:362-368.
    [165]侯晓峰.大型高抗力防护门抗爆性能试验与数值模拟研究[博士学位论文].南京:解放军理工大学,2006.
    [166] Lubliner J, Oliver J, Oller S, Onate E. A plastic-damage model for concrete. InternationalJournal of Solids and Structures,1989,25(3):299-326.
    [167] Lee J, Fenves G L.Plastic-damage model for cyclic loading of concrete structures. Journal ofEngineering Mechanics,1998,124(8):892-900.
    [168]杜成斌,苏擎柱.混凝土材料动力本构模型研究进展.世界地震工程,2002,18(2):94-98.
    [169]张凤国,李恩征.大应变、高应变率及高压强条件下混凝土的计算模型.爆炸与冲击,2002,22(3):198-202.
    [170]王道荣,胡时胜.冲击载荷下混凝土材料损伤演化规律的研究.岩石力学与工程学报,2003,22(2):223-226.
    [171] Izzuddin B A, Fang Q. Rate-sensitive analysis of framed structures Part I: Model formulationand verification. Structural Engineering and Mechanics,1997,5(3):221-237.
    [172] Ngo T D, Mendis P A, Teo D, Kusuma G. Behavior of high-strength concrete columnssubjected to blast loading.http://www.civenv.unimelb.edu.au/aptes/publications/hsc_column_blast.pdf,2005.
    [173] Wei J, Quintero R, Galati N, Nanni A. Failure modeling of bridge components subjected toblast loading part I: strain rate-dependent damage model for concrete. International Journal ofConcrete Structures and Materials,2007,1(1):19-28.
    [174] Comite Euro-International Du Beton, CEB-FIP Model Code1990, Design Code, ThomasTelford, Trowbridge, Wiltshire, UK,1993.
    [175]过镇海.混凝土的强度和变形试验基础和本构关系.北京:清华大学出版社,1997.
    [176]沈聚敏,王传志,江见鲸.钢筋混凝土有限元与板壳极限分析.北京:清华大学出版社,1993.
    [177] Razaqpur A Ghani, Ahmed Tolba, Ettore Contestabile. Blast loading response of reinforcedconcrete panels reinforced with externally bonded GFRP laminates. Composites Part BEngineering,2007,38(5-6):535-546.
    [178]王蕊.钢管混凝土结构构件在侧向撞击下动力响应及其损伤破坏的研究[博士学位论文].太原:太原理工大学,2008.
    [179]李文亮.侧向冲击钢管混凝土构件的试验研究和仿真数值分析[硕士学位论文].太原:太原理工大学,2007.
    [180]王克政.钢管混凝土试件侧向冲击的试验研究[硕士学位论文].太原:太原理工大学,2005.
    [181]张斌.钢管混凝土构件侧向冲击作用下的性能分析[硕士学位论文].太原:太原理工大学,2006.
    [182]冯红波.爆炸荷载作用下钢管混凝土柱的动力响应研究[硕士学位论文].西安:长安大学,2008.
    [183]冯红波,赵均海,魏雪英,等.爆炸荷载作用下钢管混凝土柱的有限元分析[J].解放军理工大学学报(自然科学版),2007,8(6):680-684.
    [184]马云玲,谢冰,何大治,聂建新.圆钢管混凝土爆炸响应的数值分析,武汉理工大学学报,2010,32(14):120-125.
    [185] Hou C C, Han L H, Tao Z.Simulation on concrete-filled steel tubular members undertransverse impact. Advances in Structural Engineering and Mechanics, Korea, Seoul,2011:4189-4196.
    [186]侯川川,韩林海.低速横向冲击下钢管混凝土构件的有限元模拟.第20届全国结构工程会议,宁波,2011.
    [187]郭东,刘晶波,闫秋实.考虑阻尼比和冲击波负压影响的防护门反弹效应分析.防护工程,2010,32(4):35-40.
    [188] Guo Dong, Liu Jingbo, Yan Qiushi. Analysis of rebound effect for blast door under blastloading. UK, Manchester: The First International Conference of Protective Structures,2010.
    [189] Fang Qin, Guo Dong, Xiang Hengbo. Determination of shear magnification factor in beamsand plates subjected to blast loads. Norman Jones,C. A. Brebbia. Structures under shock andimpact VIII, WITPress, Crete, Greece,2004:139-150.
    [190]付跃升,张庆明.爆炸荷载作用下弹性薄板的动态响应.北京理工大学学报,2007,27(7):572-575.
    [191]盖京波,王善,唐平.薄板在接触爆炸载荷作用下的破坏分析.哈尔滨工业大学学报,2006,27(4):523-525.
    [192]何建,王善,唐平.爆炸载荷作用下混凝土板的塑性动力响应.哈尔滨工业大学学报,2005,37(6):798-800.
    [193]冯艳.平面装药爆炸作用下钢筋混凝土板的塑性动力响应.工程力学,2001(增刊):357-362.
    [194]吴平安.化爆条件下钢筋混凝土梁的剪切破坏分析[硕士学位论文].南京:解放军工程兵工程学院,1999.
    [195]吴平安.常规武器爆炸条件下浅埋钢筋混凝土框架结构抗剪计算分析[博士学位论文].南京:解放军理工大学,2002.
    [196]吴平安,方秦,张亚栋,等.化爆条件下钢筋混凝土梁破坏模式预报方法.中国土木工程学会防护工程分会第七次学术会议,井冈山,2000:278-284.
    [197]吴平安,方秦,张亚栋.脉冲荷载作用下钢筋混凝土梁破坏形态分析.解放军理工大学学报,2000,1(6):1-5.
    [198] Jacinto A C, Ambrosini R D, Danesi R F. Experimental and computational analysis of platesunder air blast loading. International Journal of Impact Engineering,2001,25(10):927-947.
    [199] Rose T A, Smith P D. Influence of the principal geometrical parameters of straight city streetson positive and negative phase blast wave impulses. International Journal of ImpactEngineering,2002,27(4):359-376.
    [200] Krauthammer T, Altenberg A. Negative phase blast effects on glass panels. InternationalJournal of Impact Engineering,2000,24(1):1-17.
    [201] Norris G H, H ansen R J, et al, Structural design for dynamic loads. N.Y, New York:McGraw-Hill Press,1959.
    [202]孙建运,李国强,陆勇.爆炸冲击荷载作用下SRC柱等效单自由度模型.振动与冲击,2007,26(6):82-89.
    [203] Li Q M, Meng H. Pressure-impulse diagram for blast loads based on dimensional analysis andsingle-degree-of-freedom model. Journal of Engineering Mechanics,2002,128(1):87-92.
    [204] Li Q M, Meng H. Pulse loading shape effects on pressure-impulse diagram of an elastic-plastic, single-degree-of-freedom structural model. International Journal of MechanicalSciences,2002,44(9):1985-1998.
    [205]史恒通,聂向东.单自由度系统在爆炸荷载作用下的弹塑性动力时程分析方法及应用.工业建筑,2010,40(增刊):201-206.
    [206]陈春.基于单自由度体系的钢筋混凝土抗爆墙设计.特种结构,2010,27(2):17-21.
    [207] Blast resistant doors, section08390. Unified facilities guide specification,U.S.Army Corp ofengineering.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700