高温高压环境下金属材料的本构关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高温高压条件下固体材料的本构关系是研究化学炸药爆轰、高能离子束或激光束以及高速撞击作用下,固体中状态量变化规律和运动特性必不可少的材料特性方程。为了精准描述和预测上述的状态量变化和运动学特征,本文根据陈大年等人[高压物理学报,19(2005)193]和彭建祥[博士论文,中国工程物理研究院研究生部,2006]的见解,着重分析了目前受到广泛应用的由Steinberg等人提出的[J. Appl. Phys.,51(1980)1498; J. Appl. Phys.,65(1989)1528]金属本构模型中存在的固有问题,并提出了一个新的金属本构函数表示式。获得的主要结果有:
     (1)在全面分析了Burakovsky等人[Phys. Rev. B,71(2005)184118]、Nadal等人[J. Appl. Phys.,93(2003)2472]和俞宇颖等人[Chin. Phys. ett.,17(2008)64]针对Steinberg等人的金属材料本构模型提出的若干质疑及修改意见的基础上,提出了一个新的适用于密堆集晶体金属的本构模型,具体的函数表示式是式中,G和Y为剪切模量和屈服强度;β和n为硬化系数,εp为塑性应变;T0为参考温度,通常取零温或室温。式中的G(P,T0), ((?)G/(?)T)P,β,n和εp等值均可通过实验和理论计算方法求得。这个模型具有如下优点:
     ——与Steinberg等人、Nadal等人和俞宇颖等人的意见相比较,本模型中G随P的变化没有采用在一阶导数项截断的近似表示,而是采用了G(P)的全函数表示形式;
     ——与Steinberg等人、Nadal等人、Burakovsky等人的意见相比较,本模型中G随T的变化虽然仍采用了一阶导数项的近似表达,但抛弃了把(aG/(?)T)P用(aG/(?)T)0代替的做法,而是在向士凯等人[Phy.Rev. B70 (2004)174102]第一原理计算结果启示下采用了把((?)G/(?)T)P表示为以P为参数的函数式;
     (2)以LY12铝合金为例,本文给出的本构函数式是
     这组本构函数式的有效性得到了以下检验结果的支持:
     ——上列G(P,T)本构函数式是基于Sin'ko等人[J. Phys.:Condens. Matter, 4(2002)6989]和向士凯等人的第一原理计算结果导出的,因而具有坚实物理基础。此外,它的有效性还得到了Hiigoniot压缩线上声速测量结果和等熵压缩线上剪切模量计算结果(通过有限形变理论的Birch-Murnaghan方程)的支持;
     ——上列Y(P,T)本构模型的构建尽管在其物理构思上沿袭了Steinberg等人的做法,但由于本文G(P,T)本构函数式的不同,故在Y(P,T)本构函数式的具体形式上是与Steinberg等人的有所不同的。它的有效性得到了本文冲击加载实验结果(采用了Asay和Chhabildas基于各向同性硬化模型的数据处理方法)的支持。特别值得提出的是:实验结果再一次支持了G(P,T)/Y(P,T)常数近似关系在高压区的有效性(对于LY12铝合金,这个高压区的阀值是Pc≥30GPa);但若关注到Pc的低压区,则G(P,T)/Y*(P,T)≈常数近似关系(式中Y*=Y/[1+β(εP+εPi)]n)也是成立的。其实,这个结果也正是Steinberg等人构建他们本构模型的初衷。
     ——为了综合检验本文G(P,T)和Y(P,T)本构函数式在描述冲击加载下LY12铝合金状态量变化及其运动特性的有效性,文中利用冲击/卸载、冲击/冲击/卸载、冲击/再冲击以及冲击/卸载/冲击等四类复合加载过程的样品/窗口界面速度剖面实验结果进行了检验,发现模型预测值与实测值的符合程度是令人满意的,从而全面认定了本文本构模型的有效性。
     (3)在发展实验技术方面,本文采用Asay等人[SAND-85-2009]建议的组合靶实验方案,解决了前人未能给出-20GPa以上压力区冲击/再冲击实验数据的难题(本文中给出了高达-70GPa预冲击压力点的实验数据),从而为满足今后精准测定更高压力区屈服强度的要求打通了一条新的技术途径。
     最后应该说明,本文提出的高温高压区金属本构模型与前人提出的相比,尽管它具有更为坚实的物理基础和更少的近似假设,但仅能看着是初步的结果,因为它的普适性还需要通过更多类别金属的检验。即使对LY12铝合金来说,也还需要更多的实验数据和理论计算结果的检验,因为,只有这样才能对本构函数式中的有关材料参数值进行精确化修正。,为此目的,发展或优化现有的实验和理论计算方法也是值得重视的。在发展实验技术方面,看来进一步发展高温高压条件下的激光-超声(Laser-ultrasonic)和静态压缩下的屈服强度测量技术是必要的。
The constitutive relationship of solids in high-pressure and high-temperature conditions is a specific equation which is necessary for the research of chemical detonation, high-energy ion or laser beam, and high velocity impact. Some shortcomings in Steinberg and his colleagues'work [J. Appl. Phys.,51(1980) 1498; J. Appl. Phys.,65(1989) 1528] on high-pressure constitutive relationship were discussed, according to some viewpoints from Chen et al [Chin. J. High Pres. Phys, 19 (2005) 193] and Peng [Ph.D.Thesis(Mianyang, CAEP)(2006)], and then a new constitutive model was presented. The main conclusions are as following:
     (1) A new constitutive model for closed packed crystal material was presented based on the analysis on researches of Burakovsky et al [Phys. Rev.,B71(2005)184118], Nadal et al [J.Appl.Phys.,93(2003)2472], and Yu et al [Chin.Phys. Lett.,17(2008) 64] on Steinberg's constitutive model. The new functions are Here G and Y are shear modulus and yield strength, respectively,βand n are work hardening coefficients,εP is plastic strain, To is the reference temperature, usually taken as room temperature. The values of G(P,T0), ((?)G/(?0T)p,β, n andεP can be obtained from experiments or calculations.
     The merits of this model are:——Compared with the methods of Steinberg et al, Nadal et al, and Yu et al, the total function, rather than the first order approximate, was applied in describing the relationship between G and P.——Although the first order approximate function was still applied to describe the change of G with T in the new functions, ((?)G/(?)T)P was used instead of ((?)G/(?)T)0, in the light of Ab initio calculation results presented by Xiang et al [Phys. Rev. B70 (2004) 174102].
     (2) Taken aluminum as an example, the constitutive functions are Following issues supports the validation of these functions:——The G(P,T) function which was deduced from the Ab initio calculation results presented by Sin'ko et al [J.Phys.:Condens. Matter,4(2002) 6989] and Xiang et al has an explicit physical foundation. It is also supported by the sound velocity measurement along Hugoniot and shear modulus calculations along isentropic (with Birch- Murnaghan equation which is based on finite strain theory).——Although the physical conception of the new Y(P,T) function is still followed Steinberg's work, the constitutive form is different because the G(P,T) has a different form. And the calculation with this model is in good agreement with shock experiment results (according to Asay and Chhabildas's isotropy hardening model). Specially, the hypothesis of G(P,T)/Y(P,T)≈cons. is validated by experimental results at high pressures (for LY12 alloy, the threshold is Pc>30GPa). While under low pressures, G(P,T)lY*P,T)≈cons. is suggested (here Y*=Y/[1+β(εP+εPi)]n). In fact, this hypothesis is also the original intention of Steinberg's work.——Experimental measured velocity profiles of sample-window interface in shock/release, shock/reshock/release, shock/reshock, and shock/ release/reshock experiments on LY12 alloy were analyzed to verify the G(P,T) and Y(P,T) functions. The experimental results are in good agreement with the constitutive model. Thus the validation of the new functions is thoroughly confirmed.
     (3) In experiment technique field, the assembly sample method suggested by Asay et al [SAND-85-2009] was utilized, with which the puzzle that there are no reloading experiment data beyond 20GPa for aluminum was solved (~70GPa shock stress experiment data are reached in our experiments.). This is a new approach to measure yield strength accurately at higher pressures.
     Finally, though the constitutive model presented in this paper is based on explicit physical foundation with less approximate, it is worth pointing out that more experiments on different metals are needed to confirm its universality. Even for LY12 alloy, it is needed more experimental data or calculation results to deduce precise parameters of the model. For this purpose, it is important to develop or optimize present experimental and calculation methods. So it is necessary to develop; the laser-ultrasonic technique and static high-pressure yield strength measurements under high-temperature and high-pressure.
引文
[1]21世纪初科学发展趋势课题组.21世纪科学发展趋势[M].(北京:科学出版社,1996)165-167.
    [2]Wilkins M. L. Calculation of elastic—plastic flow [A]. In:Methods of Computational Physics, Vol.3 [C], (Eds.) Alder B, Fernbach S, and Rosenberg M. (Academic Press,1964) 211-263.
    [3]徐秉业,刘信声.应用弹塑性力学[M].(北京:清华大学出版社,1995).
    [4]经福谦.实验物态方程导引.第二版[M]. (北京:科学出版社,1999)61-68.
    [5]Eliezer S, Ghatak A, Hora H, and Teller E. An Introduction to Equation of State: Theory and Applications [M]. (Cambridge:Cambridge University Press,1986).
    [6]Zharkov V N and Kalinin V A. Equation of State for Solids at High Pressures and Temperatures [M]. (New York & London:Consultants Bureau,1971).
    [7]徐锡申,张万箱等.实用物态方程理论导引[M].(北京:科学出版社,1986)
    [8]汤文辉,张若棋.物态方程理论及计算概论[M].(长沙:国防科技大学出版社,1999)
    [9]Eremts M. I. High Pressure Experimental Methods [M]. (Oxford:Oxford University Press,1996).
    [10]经福谦.实验物态方程导引.第二版[M].(北京:科学出版社,1999)
    [11]王礼立.爆炸力学数值模拟中本构建模问题的讨论[J].爆炸与冲击,2007,37:361-374.
    [12]徐秉业,刘信声.应用弹塑性力学[M].(北京:清华大学出版社,1995)112.
    [13]Johnson G R and Cook W H. A constitutive model and data for metals subjected to large strain, high strain rates and high temperatures[A]. In:Proc.7th Int. Symposium on Ballistics [C]. (the Netherlands:the Hague,1983) 163-265.
    [14]Ubbelohde A. R. Melting and Crystal Structure [M]. (Oxford:Clarendon Press, 1995).
    [15]Zerilli F J and Armstrong R W. Dislocation-mechanics-based constitutive relations for material dynamics calculations [J]. J. Appl. Phys.,1987,61 (5):1816-1825.
    [16]Meyers M A and Murr L E. Propagation of stress wave in metals [A]. In:Explosive Welding, Forming and Compaction [C]. (Eds.) Blazynski T Z. (London & New York: Applied Science Publisher,1983).17-82.
    [17]Meyers M A. Dynamic Behavior of Materials. [M]. (New York:John Wiley & Sons, Inc.,1994)386-387.
    [18]Steinberg D J, Cochran S G, and Guinan M W. A constitutive model for metals applicable at high strain rate [J]. J. Appl. Phys.,1980,51 (3):1498-1503.
    [19]Kammer E, Cardinal L, Vold C, and Gricksman M. The elastic constants for single-crystal bismuth and tin from room temperature to melting point [J]. J.Phys. Chem. Solids,1972,33:1891-1898.
    [20]Vold C, Grickmas M, Kammer E, and Cardinal L. The elastic constants for single-crystal lead and indium from room temperature to the melting point [J]. J. Phys. Chem. Solids,1977,38:157-160.
    [21]Simmons G and Wang H. Single-Crystal Elastic Constants and Calculated Aggregate Properties, edition [M]. (Cambridge:MIT Press,1977).
    [22]Chua J 0 and Ruoff A L. Pressure dependence of the yield stress of potassium at low homologous temperature [J]. J. Appl. Phys.,1975,46(11):4659-4663.
    [23]Steinberg D J and Lund C M. A constitutive model for strain rates from 10-4 to 106 s-1 [J]. J. Appl. Phys.,1989,65(4):1528-1533.
    [24]Hoge K G and Mukherjee A K. The temperature and strain rate dependence of the flow stress of tantalum [J]. J. Mater. Sci.,1977,12:1666-1672.
    [25]陈大年,刘国庆,俞宇颖,王焕然,谢书港.高压、高应变率与低压、高应变率实验的本构关联性[J].高压物理学报,2005,19(3):193-200.
    [26]彭建祥Johnson-Cook本构模型和Steinberg本构模型的比较研究[博士学位论文].绵阳:中国工程物理研究院,2006.
    [27]Yu Y Y, Tan H, Hu J B, and Dai C D. Shear modulus of shock compressed LY12 aluminum up to melting point[J]. Chin. Phys. B,2008,17 (1):264-269.
    [28]Yu Y Y, Tan H, and Dai C D, Hu J B, and Chen D N. Sound velocity and release behavior of shock compressed LY12 Al [J].Chin. Phys. Lett.,2005,22 (7):1742-1745.
    [29]McQueen R G, Fritz J N, and Morris C E. The velocity of sound behind strong shockwaves in 2024 Al. In:Shock Waves in Condensed Matter—1983, (Eds.) Asay J R, Graham R A, Straub G K (New York:Elseviser Science 1984) 95-98.
    [30]Nadal M H and Poac P L. Continuous model for the shear modulus as a function of pressure and temperature up to the melting point:Analysis and ultrasonic validation [J]. J. Appl. Phys.,2003,93:2472-2480.
    [31]Born M. Thermodynamic of crystals and melting [J]. J. Chem. Phys.,1939, 7:591-603.
    [32]Fraizier E, Nadal M, and Oltra R. Noncontact determination of the elastic moduli of β-Sn up and through the melting point [J]. J. Appl. Phys.,2003, 93(1):649-654.
    [33]Kamioka H, Jump in sound velocity between solid and liquid phases at melting point in pure metals [J]. J. Phys. Soc. Jpn.,1983,52(10):3432-3436.
    [34]Kamioko H. Change of ultrasonic wave velocity in indium.near the melting point [J].J. Phys. Soc. Jpn.,1983,52(8):2784-2785.
    [35]Gilvarry J J. The Lindemann and Gruneisen laws [J]. Phys. Rev.,1956, 102(2):308-316.
    [36]Gilvarry J J. Amplitudes of thermal vibration at fusion [J]. Phys. Rev.,1956, 103(6):1700-1704.
    [37]Gilvarry J J. Variation of the amplitude of thermal vibration on the fusion curve [J].Phys. Rev.1956,104(4):908-913.
    [38]Webber G M B and Stepnens R W B. Transmission of sound in molten metals [A]. In:Physical Acoustics [C]. (Eds.) Mason W P. (New York:Academic Press,1968) Vol. B, Chap.11,56.
    [39]Walker E and Bujard P. Anomalous temperature behavior of the shear elastic constant C44 in tantalum [J]. Solid state Commu.,1980,34:691.
    [40]Lu K and Li Y. Homogeneous nucleation catastrophe as kinetic stability limit for superheated crystal [J]. Phys. Rev. Lett.,1998,80(20):4474-4477.
    [41]An Q, Zheng L S, Fu R S, Ni S D, and Luo S N. Solid-liquid transitions of sodium chloride at high pressure [J]. J. Chem. Phys.,2006,125:154510.
    [42]Burakovsky L and Dean L P. Generalized Guinan-Steinberg formula for the shear modulus at all pressures [J]. Phys Rev. B,2005,71:184118(7).
    [43]Young D A. Phase Diagrams of the Elements [M]. (Berkeley:University of California Press,1991).
    [44]Burakovsky L and Preston D L. Dislocation-mediated melting:The one-component plasma limit [J]. Phys. Rev. E,2001,63:067402(4).
    [45]Burakovsky L, Greeff C W, and Preston D L. Analytic model of the shear modulus at all temperatures and densities [J]. Phys. Rev. B,2003,67:094107(9).
    [46]Preston D L and Wallace D C. A model of the shear modulus [J]. Solid State Commun.,1992,81:277-281.
    [47]Burakovsky L, Preston D L, and Silbar R R. Analysis of dislocation mechanism for melting elements:Pressure dependence [J]. J. Appl. Phys.,2000,88(11): 6294-6301.
    [48]Burakovsky L and Preston D L. Analytic model of the Gruneisen parameter at all densities [J]. J. Phys. Chem. Solids,2004,65:1581-1587.
    [49]Burakovsky L, Preston D L, and Wang Y. Cold shear modulus and Gruneisen parameter at all densities [J]. Solid State Commn.,2004,132:151-156.
    [50]Holzapfel W B. Equation of state for solids under strong compression [J].High Press. Res.,1988,16(2):81-126.
    [51]Holzapfel W B. Equation of state for ideal and real solids under strong compression [J]. Europhys. Lett.,1991,16:67-72.
    [52]Duff T S, Shen G, Shu J, Mao H K, Hemley R J, and Singh A K. Elasticity, shear strength, and equation of state of molybdenum and gold from x-ray diffraction under nonhydro static compression to 24 GPa [J]. J. Appl. Phys.,1999,86(12): 6729-6736.
    [53]Duff T S, Shu J, Mao H K, Hemley R J, and Singh A K. Lattice strains in gold and rhenium under nonhydrostatic compression to 37 GPa [J]. Phys. Rev. B,1999, 60(22):15063-15073.
    [54]Trunin R F. Shock Compression of Condensed Materials [M]. (Cambridge: Cambridge University Press,1988)23.
    [55]Boehler R J, Errandonea D, and Ross M. Melting curve of iron:the never ending story? [J].High Press. Res.,2002,22:479.
    [56]Ruiz-Fuertez J, Karandica A, Boehler R, and Errandonea. Microscopic evidence of a flat melting curve of tantalum [J]. Phys. Earth Planet Inter.,2010,181: 69-72.
    [57]Dewaele A, Mazoura M, Guignot N, and Loubeyre P. High melting points of tantalum in a laser-heated diamond anvil cell [J]. Phys. Rev. Lett.,2010,104:255701.
    [58]Burakosky L, Chen S P, Preston D L, Belonoshko A B, Rosengren A, Mikhaylushkin A S, Simak S I, and Moriaty J A. High-pressure-high-temperature polymorphism in Ta:Resolving an ongoing experimental controversy [J]. Phys. Rev. Lett. 2010,104:255702.
    [59]Sin'ko G V and Smirnov N A. Ab initio calculation of elastic constants and thermodynamic properties of bcc fcc, and hcp Al crystals under pressure [J]. J. Phys.:Condens. Matter,2002,14:6989-7005.
    [60]Duffy T S and Ahrens T J. Sound velocities at high pressure and temperature and their geophysical implications [J]. J. Geophys. Res.,1992,97:1503-4520.
    [61]Kinslow R (Ed.). High-Velocity Impact Phenomena [M]. (New York and London: Academic Press,1970)530.
    [62]Xiang S K, Cai L C, Jing F Q, and Wang S J. Thermal properties of Al at high pressures and temperatures [J]. Phys. Rev. B,2004,70:174102(6).
    [63]王春奎,LF6A1及LY12A1高温凝聚态动力学性质研究—高温剪切模量的测量[J].高压物理学报,1994,8(3):213-219.
    [64]汤文辉,张若棋.物态方程理论及计算概论[M].(长沙:国防科技大学出版社,1999)273和274.
    [65]Asay J R, Chhabildas L C, Kerley G I, and Trucano T G. High pressure strength of shocked aluminum. In:Shock Waves in Condensed Matter-1985[C]. (Eds.)Meyer M A and Murr L E. (New York:Plenum Press,1986) 145-149.
    [66]Guinan M W and Steinberg D J. Pressure and temperature derivatives of the isotropic polycrystalline shear modulus for 65 elements [J]. J. Phys. Solids, 1974,35:1501-1512.
    [67]汤文辉,张若棋.物态方程理论及计算概论[M].(长沙:国防科技大学出版社,1999)264-270.
    [68]张婷,毕延,赵敏光.静高压加载下LY12铝的超声测量与等温状态方程[J].高压物理报,2005,19:35-40.
    [69]经福谦,陈俊祥(主编).动高压原理与技术[M].(北京:科学出版社,2006)第一章.
    [70]Meyers M A. Dynamic Behavior of Materials [M]. (NewYork:John Wiley & Sons, 1994) section 7.2.
    [71]谭华.实验冲击波物理导引[M].(北京:国防工业出版社,2007)6.1节.
    [72]Asay J R and Chhabildas L C. Shear strength of shock-loaded polycrystalline tungsten [J]. J. Appl. Phys.,1980,51(2):4774-4783.
    [73]Asay J R and Chhabialdas L C. Determination of shear strength of shock compressed 6061-T6 aluminum. In:Shock Waves and High-Strain-Rate Phenomena in Metals [C]. (Eds.) Meyer M A and Murr L E (New York:Plenum Press, 1981)417-423.
    [74]Barker L M and Hollenbach R E. Laser interferometer for measuring high velocities of any reflecting surface. J. Appl. Phys.,1972,43:4669-4675.
    [75]胡绍楼.激光干涉测速技术[M].(北京:国防工业出版社.2001).
    [76]Weng J D, Tan H, Wang X, Ma Y, Hu S L, and Wang X S. Optical-fiber interometer for velocity measurement with picosecond resolution [J]. Appl. Phys. Lett. 2006,89:111101(3).
    [77]谭华.实验冲击波物理导引[M].(北京:国防工业出版社,2007).5.4.1-5.4.3节.
    [78]经福谦.实验物态方程导引,第二版[M].(北京:科学出版社,1999).4.2.1节.
    [79]Huang H and Asay J R. Compressive strength measurements in aluminum for shock compression over the stress range of 4-22GPa [J]. J. Appl. Phys.,2005,98: 033524(16).
    [80]Yu Y Y, Tan H, Hu J B, Dai C D, Chen D N, and Wang H R. Determination of effective shear modulus of shock-compressed LY12 Al from particle velocity profile measurements [J]. J. Appl. Phys.,2008,103:103529(9).
    [81]胡建波,谭华,俞宇颖,戴诚达,冉宪文.铝的动屈服强度测量及再加载弹塑性前驱波的形成机理分析[J].物理学报,2008,57(1):405-409.
    [82]胡建波.经退火处理的LY12铝在强动载荷下的剪切模量和屈服强度:[硕士论文].绵阳:中国工程物理研究院,2005.
    [83]Aasy J R, Chhabildas L C, and Barker L M. Projectile and impactor designs for plate-impact experiments[R]. SAND-85-2009,1985.
    [84]Huang H and Asay J R. Reshock and release response of aluminum single crystal [J]. J. Appl. Phys.,2007,101:063350(8).
    [85]Kinslow R. (ed.) High-Velocity Impact Phenomena [M]. (New York and London: Academic Press,1970)530.
    [86]热尔诺科列托夫MB,祖巴列夫B H,特宁鲁PΦ,佛勒托夫B E.高能量密度下凝聚物质的冲击压缩和绝热膨胀的实验数据[M].(绵阳:中国工程物理研究院流体物理研究所.1997)
    [87]Crockett S, Chisolm E, and Wallace D A. A comparison of theory and experiment of the bulk sound velocity in aluminum using a two-phase EOS. In:Shock Compression of Condensed Matter-2003[C]. (Eds.)Furnish M D, Gupta Y M, and Forbe J W. (New York:American Institute of Physics,2004).45-48.
    [88]俞宇颖,谭华,胡建波,戴诚达,马云,陈大年.利用VISAR测量LY12铝在冲击压缩下的声速[J].高压物理学报,2006,20(2):145-152.
    [89]Morris C E, Fritz J N and Brand L H. Quasi-elastic high pressure wave in 2024 Al and Cu. In:Shock Wave in Condensed Matter-1983[C]. (eds.) Asay J R, Graham R A, and Straub G K. (New York:Elseviser Science,1984).382-386.
    [90]俞宇颖.强冲击载荷作用下LY12铝合金的准弹性卸载特性及层裂研究:[博士论文].绵阳:中国工程物理研究院,2006.
    [91]经福谦.实验物态方程导引,第二版[M].(北京:科学出版社,1999).4.2.2节.
    [92]Menikoff R. Constitutive model for PMMA at high pressure[R].LA-UR-04-1899, 2004.
    [93]胡建波,戴诚达,俞宇颖,谭华.双屈服面法测量金属材料动高压屈服强度的若干改进[J].爆炸与冲击,2006.26(6):516-521.
    [94]Huang H and Asay J R. Reshock response of shock deformed aluminum [J]. J. Appl. Phys.,2006,100:043514(18).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700