2-(4-甲基苯基)苯并咪唑的合成机理及其红外与微波辅助合成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苯并咪唑类化合物是一类重要的杂环化合物,具有抗病毒、抗菌、消炎等多种生理活性,在药物化学中具有非常重要的意义,因此一直是人们研究的热点。邻苯二胺和醛的反应是合成苯并咪唑类化合物的重要反应,目前未见该类反应机理的研究报道,而研究反应机理,对于理解反应历程,优化反应条件,提高反应收率有重要作用。微波作为一种新型的加热方式已经被广泛应用于有机合成领域。与常规加热相比,微波加热能够大大缩短反应时间或提高反应的产率,有时还表现出与常规加热不同的选择性。而红外作为另一种可以加热的电磁波,却较少被用于有机合成反应,如果红外也可以像微波一样明显促进反应的进行或改变反应的选择性,这种更加环保的加热方式将对有机合成领域产生重大影响。本文以合成2-(4-甲基苯基)苯并咪唑的反应为对象研究了该类反应的反应机理,并在微波辐射和红外辐射两种加热方式下进行该反应,考察了辐射加热对该反应的影响。本文亦对微波辅助N-芳基乙酰胺类化合物的合成及红外辅助水杨酸异丙酯的合成进行了研究,进一步考察了辐射加热对有机反应的影响。
     本论文由三部分构成,主要内容如下:
     第一部分由第2章构成。该部分以邻苯二胺和醛合成2-(4-甲基苯基)苯并咪唑的反应为研究对象,以高效液相色谱监测反应进程,对反应过程中的中间体和产物通过1H NMR、FT-IR及HPLC-MS等手段进行了结构确证,通过实验验证了该反应的机理。邻苯二胺和醛首先反应生成单席夫碱和双席夫碱,它们分别再转化为单取代苯并咪唑和双取代苯并咪唑;在胺和醛的摩尔比为1:1时,可同时生成单取代苯并咪唑与双取代苯并咪唑;单取代苯并咪唑的生成需要氧化过程,可被抗氧剂抑制;双取代苯并咪唑的生成是一个需要质子催化的过程,可被缚酸剂抑制,并且与反应溶剂的给质子能力有关。
     第二部分由第3章构成。该部分以邻苯二胺和醛合成2-(4-甲基苯基)苯并咪唑的反应为研究对象,采用商业化微波合成仪和自组装红外辐射反应器分别进行了该反应的微波辅助合成研究和红外辅助合成研究,考察了辐射加热对该反应的影响。在控制其他条件一致的情况下,微波加热下反应的产率比常规加热下略高,但差距不大,仅为1~10%;红外加热下的反应产率与常规加热下没有明显差别,红外辐射并不能明显促进该反应的进行。
     第三部分由第4章和第5章构成,该部分进行了辐射辅助其他有机反应的研究。首先研究了微波辐射对N-芳基乙酰胺类化合物的合成的影响,发现在相同的反应温度下,与常规加热相比,微波辐射能够促进该类反应的进行,产率能够提高4~25%,而且由于电子效应而产率较低的反应,微波对其促进作用更明显。然后研究了红外辐射对水杨酸异丙酯的合成的影响,发现在相同的温度下,红外辐射下的产率与常规加热下的产率几乎一致,说明红外辐射并不能促进该反应的进行。
Benzimidazole is a very important class of heterocyclic compounds with antiviral, antibacterial, anti-inflammatory and other physiological activities, so it has become the focus of research. The reaction of o-phenylenediamine and aldehydes is an important way for the synthesis of benzimidazole, at present the mechanism of this reaction has not been reported. And the mechanism of reaction plays an important role in optimizing the reaction conditions and improving the reaction yield. The microwave technology is widely used in organic synthesis. Compared with conventional heating, microwave heating can increase the yield or shorten the reaction time significantly, and sometimes shows a different selectivity. Infrared is another electromagnetic wave which can provide heat. But infrared is less to be used in organic synthesis. If infrared can promote reactions or change the reaction selectivity as obviously as microwave, it will make a significant impact on the organic synthesis as a more environmentally friendly heating way. In this paper, the synthesis of 2-(4-methylphenyl) benzimidazole was studied for the mechanism of such reactions, and this reaction was heated by microwave and infrared radiation heating. Microwave-assisted the synthesis of N-aryl acetylamines and infrared-assisted the synthesis of isopropyl salicylate were studied, the influence of the radiation heating was investigated.
     This paper consists of three parts, the main contents are as follows:
     The first part includes Chapter 2. In this part, the reaction mechanism of the synthesis of 2-(4-methylphenyl) benzimidazole by o-phenylenediamine and aldehydes was studied. The reaction process was monitored by HPLC, and the structures of related intermediates and products were identified by 1H NMR, FT-IR and HPLC-MS. The results indicate that mono-schiff base and bis-schiff base could both be synthesized, and they could form mono-substituted and disubstituted benzimidazole respectively. In addition, it was found that an oxidation process was included in the transformation of mono-substituted benzimidazole from mono-schiff base. Furthermore, proton catalysis was necessary in the formation of disubstituted benzimidazole.
     The second part includes Chapter 3. In this part, Microwave-assisted and infrared-assisted the synthesis of 2-(4-methylphenyl) benzimidazole by o-phenylenediamine and aldehydes were studied using the commercial microwave synthesis instrument and self-assembly infrared radiation reactor. The influence of the radiation heating was investigated. Under the same experimental conditions, the reaction yield under microwave heating was slightly higher than that under conventional heating, but the difference between them was only 1~10%. There was no significant difference between the reaction yield under infrared heating and conventional heating. Infrared radiation has not promoted the reaction.
     The third part includes Chapter 4 and 5. In this part, radiation-assisted other organic reactions were studied. First, the reactions for the synthesis of N-aryl acetylamines synthesis were heated by microwave radiation and conventional heating in the same temperature. By comparison of the reaction yields in the two conditions, it was found that microwave radiation could promote reactions, the yields could be increased by 4~25%, and especially the reactions which were difficult to proceed because of the electronic effects. Then, infrared-assisted the synthesis of isopropyl salicylate was studied. The yield of infrared radiation and conventional heating were almost the same, so infrared radiation did not promote this reaction.
引文
[1] Tebbe M. J., Spitzer W. A., Victor F., et al. Antirhino/Enteroviral Vinylacetylene Benzimidazoles: A Study of Their Activity and Oral Plasma Levels in Mice[J]. J. Med. Chem., 1997, 40(24): 3937-3946.
    [2] Scott L. J., Dunn C. J., Mallarkey G., Sharpe M. Esomeprazole - A review of its use in the management of acid-related disorders[J]. Drugs, 2002, 62(10): 1503-1538.
    [3] Nakano H., Inoue T., Kawasaki N., et al. Synthesis and biological activities of novel antiallergic agents with 5-lipoxygenase inhibiting action[J]. Bioorg. Med. Chem., 2000, 8(2): 373-380.
    [4] Zhu Z., Lippa B., Drach J. C., et al. Design, synthesis, and biological evaluation of tricyclic nucleosides (dimensional probes) as analogues of certain antiviral polyhalogenated benzimidazole ribonucleosides[J]. J. Med. Chem., 2000, 43(12): 2430-2437.
    [5] Sharma S., Gangal S., Rauf A. Convenient one-pot synthesis of novel 2-substituted benzimidazoles, tetrahydrobenzimidazoles and imidazoles and evaluation of their in vitro antibacterial and antifungal activities[J]. Eur. J. Med. Chem., 2009, 44(4): 1751-1757.
    [6] Dekhane D. V., Pawar S. S., Gupta S. V., et al. Lithium bromide catalyzed solvent free method for synthesis of 2-substituted benzimidazoles and imidazopyridines[J]. Chin. Chem. Lett., 2010, 21(5): 519-523.
    [7] Fonseca T., Gigante B., Gilchrist T. L. A short synthesis of phenanthro[2, 3-d]imidazoles from dehydroabietic acid. Application of the methodology as a convenient route to benzimidazoles [J]. Tetrahedron, 2001, 57(9): 1793-1799.
    [8]王清华,胡泽祥,娄方,杨官汉.苯并咪唑的衍生物对润滑油抗磨及抗腐性能的影响[J].润滑与密封, 2001, 4: 21-22.
    [9]王继刚,郭全贵,刘朗,宋进仁.炭材料的高温粘结剂(Ⅱ)[J].兵器材料科学与工程, 2003, 26(5): 68-72.
    [10] Gedye R., Smith F., Westaway K., et al. The use of microwave ovens for rapid organic synthesis[J]. Tetrahedron Lett., 1986, 27(3): 279-282.
    [11]金钦汉,戴树珊,黄卡玛.微波化学[M].北京:科学出版社, 1999, 126.
    [12]李炎,马会强,王玉炉.苯并咪唑及其衍生物合成与应用研究进展[J].有机化学, 2008, 28(2): 210-217.
    [13] Wang R., Lu X. X., Yu X. Q., et al. Acid-catalyzed solvent-free synthesis of 2-arylbenzimidazoles under microwave irradiation[J]. J. Mol. Catal. A: Chem., 2007, 266:198-201.
    [14] Boufatah N., Gellis A., Maldonado J., et al. Efficient microwave-assisted synthesis of new sulfonylbenzimidazole-4, 7-diones: heterocyclic quinones with potential antitumor activity[J]. Tetrehedron, 2004, 60(41): 9131-9137.
    [15] Lin S. Y., Isome Y., Stewart E., et al. Microwave-assisted one step high-throughput synthesis of benzimidazoles[J]. Tetrahedron Lett., 2006, 47(17): 2883–2886.
    [16]王陆瑶,胡文祥,杨秉勤,史真.微波辐射下2-取代苯并咪唑衍生物库的平行合成[J].化学通报, 2007, 7: 547-551.
    [17] Zhang Z. H., Yin L., Wang Y. M. An expeditious synthesis of benzimidazole derivatives catalyzed by Lewis acids[J]. Cataly. Commun., 2007, 8(7): 1126–1131.
    [18] Sharma S., Gangal S., Rauf A. Convenient one-pot synthesis of novel 2-substituted benzimidazoles, tetrahydrobenzimidazoles and imidazoles and evaluation of their invitro antibacterial and antifungal activities[J]. Eur. J. Med. Chem., 2009, 44(4): 1751-1757.
    [19] Trivedi R., De S. K., Gibbs R. A. A convenient one-pot synthesis of 2-substituted benzimidazoles[J]. J. Mol. Catal. A: Chem., 2006, 245: 8–11.
    [20] Srinivas U., Srinivas C., Narender P., et al. Polyaniline-sulfate salt as an effcient and reusable catalyst for the synthesis of 1,5-benzodiazepines and 2-phenyl benzimidazoles[J]. Cataly. Commun., 2007, 8: 107–110.
    [21]田敉,王孝科.二醋酸碘苯促进苯并咪唑类化合物的合成[J].有机化学, 2009, 29(10): 1654-1658.
    [22] Azarifar D., Pirhayati M., Maleki B., et al. Acetic acid-promoted condensation of o-phenylenediamine with aldehydes into 2-aryl-1-(arylmethyl)-1H-benzimidazoles under microwave irradiation[J]. J. Serb. Chem. Soc., 2010, 75(9): 1181–1189.
    [23] Shingalapur R. V., Hosamani K. M. An Efficient and Eco-Friendly Tungstate Promoted Zirconia(WOx/ZrO2) Solid Acid Catalyst for the Synthesis of 2-Aryl Benzimidazoles[J]. Catal. Lett., 2010, 137: 63–68.
    [24] Chari M. A., Shobha D., Kenawy E. R., et al. Nanoporous aluminosilicate catalyst with 3D cage-type porous structure as an efficient catalyst for the synthesis of benzimidazole derivatives[J]. Tetrahedron Lett., 2010, 51(39): 5195–5199.
    [25] Hornberger K. R., Adjabeng G. M., Dickson H. D., et al. A mild, one-pot synthesis of Disubstituted benzimidazoles from 2-nitroanilines[J]. Tetrahedron Lett., 2006, 47(30): 5359–5361.
    [26] Carpenter R. D., DeBerdt P. B., Lam K. S., et al. Carbodiimide-Based Benzimidazole Library Method[J]. J. Comb. Chem., 2006, 8(6): 907-914.
    [27] Xing R. G., Li Y. N., Liu Q. A., et al. Facile and Efficient Synthesis of Benzoxazoles and Benzimidazoles: The Application of Hantzsch Ester 1,4-Dihydropyridines in Reductive Cyclization Reactions[J]. Eur. J. Org. Chem., 2010, 34: 6627–6632.
    [28]毛郑州,汪朝阳,侯晓娜,宋秀美,罗玉芬.苯并咪唑类化合物的合成研究进展[J].有机化学, 2008, 28(3): 542-547.
    [29] Brittany L. H. Microwave synthesis-chemistry at the speed of light[M].CEM, 2002.
    [30] Martinez R. P. Ionic liquid and Microwave-Assisted Organic Synthesis: A“Green”and synergic couple[J]. Journal of the Mexican Chemical Society, 2007, 51(4): 252-264.
    [31] Ranu B. C., Jana R.. Catalysis by ionic liquid. A green protocol for the stereoselective debromination of vicinal-dibromides by pmIm BF4 under microwave irradiation[J]. J. Org. Chem., 2005, 70 (21): 8621-8624.
    [32] Yi F. P., Peng Y. Q., Song G. H. Microwave-assisted liquid-phase synthesis of methyl 6-amino-5-cyano-4-aryl-2-methyl-4H-pyran-3-carboxylate using functional ionic liquid as soluble support[J]. Tetrahedron Lett., 2005, 46(22): 3931-3933.
    [33] Zhang Z. H., Zhao Z. B. K. Microwave-assisted conversion of lignocellulosic biomass into furans in ionic liquid[J]. Bioresource Technology, 2010, 101 (3): 1111-1114.
    [34] Pelle L., Jason T., Bernard W., et al. Microwave assisted organic synthesis-a Review[J]. Tetrahedron, 2001, 57(45): 9225-9283.
    [35] Erdelyi M., Gogoll A. Rapid microwave promoted sonogashira coupling reactions on solid phase[J]. J. Org. Chem., 2003, 68(16): 6431-6434.
    [36] Kappe C. O. Controlled Microwave Heating in Modern Organic Synthesis[J]. Angew. Chem. Int. Ed., 2004, 43(46): 6250-6284.
    [37] Oskooie H. A., Alimohammadi Z., Heravi M. M. Microwave-assisted solid-phase synthesis of 2,4,5-triaryl imidazoles in solventless system: An improved protocol[J]. Heteroatom Chemistry, 2006, 17(7): 699-702.
    [38] Kappe C. O. Microwave dielectric heating in synthetic organic chemistry[J]. Chemical Society Reviews, 2008, 37(6): 1127-1139.
    [39] Caddick S., Fitzmaurice R. Microwave enhanced synthesis[J]. Tetrahedron, 2009, 65(17): 3325-3355.
    [40] Pineiro M., Melo T. Microwave-Assisted 1,3-Dipolar Cycloaddition: an Eco-Friendly Approach to Five-Membered Heterocycles[J]. Eur. J. Org. Chem., 2009, 31: 5287-5307.
    [41] Strauss C. R. On Scale Up of Organic Reactions in Closed Vessel Microwave Systems[J]. Organic Process Research & Development, 2009, 13(5): 915-923.
    [42] Cohen A., Crozet M. D., Rathelot P., et al. An efficient aqueous microwave-assistedSuzuki-Miyaura cross-coupling reaction in the thiazole series [J]. Green Chem., 2009, 11(11): 1736-1742.
    [43] Mata Y., Pamies O., Dieguez M. Screening of a Modular Suger-Based Phosphite-Oxazoline Ligand Library in Asymetric Pd-Catalyzed Heck Reactions[J]. Chem. Eur. J., 2007, 13(12): 3296-3304.
    [44] Kabalka G. W., Wang L., Namboodiri V., et al. Rapid microwave-enhanced, solventless Sonogashira coupling reaction on alumina [J]. Tetrahedron Lett., 2000, 41(27): 5151-5154.
    [45] Heguaburu V., Sa M. M., Schapiro V., et al. Stille reaction over cis-halocyclohexadienediol derivatives[J]. Tetrahedron Lett., 2008, 49(48): 6787-6790.
    [46] Bagley M. C., Dix M. C., Fusillo V. Rapid Ullmann-type synthesis of aryl sulfides using a copper(I) catalyst and ligand under microwave irradiation[J]. Tetrahedron Lett., 2009, 50(26): 3661-3664.
    [47] Besselievre F., Mahuteau-Betzer F., Grierson D. S., et al. Ligandless Microwave-Assissted Pd/Cu-Catalyzed Direct Arylation of Oxazoles[J]. J. Org. Chem., 2008, 73(8): 3278-3280.
    [48]孙林,夏之宁.微波辅助水相有机合成研究进展[J].化学研究与应用, 2009, 21(8): 1089-1097.
    [49] Dallinger D., Kappe C. O. Microwave-Assisted Synthesis in Water as Solvent[J]. Chem. Rev., 2007, 107(6): 2563?2591.
    [50] Leadbeater N. E., Marco M. Ligand-free palladium catalysis of the Suzuki reaction in water using microwave heating[J]. Org. Lett., 2002, 4(17): 2973-2976.
    [51] Leadbeater N. E., Marco M. Transition-metal-free Suzuki-type coupling reactions: scope and limitation of the methodology[J]. J. Org. Chem., 2003, 68(14): 5660-5667.
    [52] Leadbeater N. E., Marco M. Transition-mteal-free Suzuki-type coupling reactions [J]. Angew. Chem. Int. Ed., 2003, 42(12):1407-1409.
    [53] Arvela R. K., Leadbeater N. E., Sangi M. S., et al. A reassessment of the transition-metal free Suzuki-type coupling methodology[J]. J. Org. Chem., 2005, 70(1):161-168.
    [54] Dransfield P. G. , Dilley A. S., Wang S. H., et al. A unified synthetic strategy toward oroidin-derived alkaloid premised on a biosynthetic proposal[J]. Tetrahedron, 2006, 62: 5223–5247.
    [55]周建峰,贡桂霞,安礼涛,孙小军,朱凤霞.微波辐射下氨磺酸催化水相合成3, 3-亚芳基双(4-羟基香豆素)[J].有机化学, 2009, 29(12): 1988-1991.
    [56]施小宁,王进贤.水相中3, 5-二芳基异恶衍生物的微波辐射合成[J].应用化学, 2010, 27(5): 539-543.
    [57]王俊岭.微波辐射固相合成5-(取代吲哚基-3-次甲基)(硫代)巴比妥酸[J].化学世界,2010, 7: 421-423.
    [58] Safari J., Khalili S. D., Banitaba S. H. A novel and an efficient catalyst for one-pot synthesis of 2,4,5-trisubstituted imidazoles by using microwave irradiation under solvent-free conditions[J]. J. Chem. Sci., 2010, 122(3): 437–441.
    [59]李心忠,林棋,吾满江·艾力. 2-取代-4(3H)-喹唑啉酮在Br?nsted酸性功能化离子液体中的微波合成[J].有机化学, 2010, 30(3): 452-455.
    [60] Shelke K.F., Sapkal S.B., Shitole N. V., et al. Shingare. Microwave-Assisted Synthesis of 3-Styrylchromones in Alkaline Ionic Liquid[J]. Bull. Korean Chem. Soc., 2009, 30(12): 2883-2886.
    [61] Davoodnia A., Bakavoli M., Moloudi R., et al. Highly efficient, one-pot, solvent-free synthesis of 2, 4, 6-triarylpyridines using a Br?nsted-acidic ionic liquid as reusable catalyst[J]. Monatsh. Chem., 2010, 141: 867–870.
    [62] Delgado F., Cano A. C., García O., et al. A Direct Synthesis of Aromatic Nitriles from Aldehydes Using a Mexican Bentonite and Microwave or Infrared Irradiation, in Absence of Solvent[J]. Synth. Commun., 1992, 22(14): 2125-2128.
    [63] Delgado F. , Tamariz J., Zepeda G., et al. Knoevenagel Condensation Catalyzed by a Mexican Bentonite Using Infrared Irradiation[J]. Synth. Commun., 1995, 25(5): 753-759.
    [64] Obrador E., Castro M., Tamaríz J., et al. Knoevenagel Condensation in Heterogeneous Phase Catalyzed Atalyzed by IR Radiation and Tonsil Actisil FF[J]. Synth. Commun., 1998, 28(24): 4649-4663.
    [65] Alcerreca G., Sanabria R., Miranda R., et al. Preparation of Benzylidene Barbituric Acids Promoted by Infrared Irradiation in Absence of Solvent[J]. Synth. Commun., 2000, 30(7): 1295-1301.
    [66] Salmón M., Osnaya R., Gómez L., et al. Contribution to the Biginelli Reaction, using a Bentonitic Clay as Catalyst and a Solventless Procedure[J]. Chem. Soc., 2001, 45(4): 206-207.
    [67] Vázquez M. A., Landa M., Reyes L., et al. Infrared Irradiation: Effective Promoter in the Formation of N- Benzylideneanilines in the Absence of Solvent[J]. Synth. Commun., 2004, 34(15): 2705-2718.
    [68] Pliego R. G., Osnaya R., Zamora I., et al. The Hantzsch Ester Production in a Water-based Biphasic Medium, Using Infrared Irradiation as the Activating Source[J]. J. Mex. Chem. Soc., 2007, 51(4): 181-184.
    [69] Penieres C. G., Bonifas I., Lopez J. G., et al. Synthesis of benzimidazoles in dry medium[J]. Synth. Commun., 2000, 30(12): 2191-2195.
    [70] Lee K. J., Janda K. D. Traceless solid-phase synthesis of 5-benzoylbenzimidazoles[J]. Can. J. Chem. 2001, 79(11): 1556-1561.
    [71] Alloum A. B., Bakkas S., Soufiaoui M. Synthèse chimiosélective des benzimidazoles sur silice traitée par le chlorure du thionyle[J]. Tetrahedron Lett., 2003, 44(31):5935-5937.
    [72] Oskooie H. A., Heravi M. M., Sadnia A., et al. Solventless synthesis of 2-aryl-1- arylmethyl-1H-1,3-benzimidazoles catalyzed by Fe(ClO4)3 at room temperature[J]. Chin. Chem. Lett., 2007, 18(11): 1357-1360.
    [73] Lin S. N., Yang L. A simple and efficient procedure for the synthesis of benzimidazoles using air as the oxidant[J]. Tetrahedron Lett., 2005, 46(25): 4315-4319.
    [74] Mao Z. Z., Wang Z. Y., Li J. N., et al. Rapid and Cheap Synthesis of Benzimidazoles via Intermittent Microwave Promotion: A Simple and Potential Industrial Application of Air as Oxidant[J]. Synth. Commun., 2010, 40(13): 1963-1977.
    [75]李莹莹,周永花,郭玉芬等.苯并咪唑衍生物的合成改进[J].有机化学, 2006, 26(8): 1097-1099.
    [76] Salehi P., Dabiri M., Zolfigol M. A. Et al. Selective synthesis of 2-aryl-1-arylmethyl-1H-1, 3-benzimidazoles in water at ambient temperature[J]. Tetrahedron Lett., 2006, 47(15): 2557-2560.
    [77] Jacob R. G., Dutra L. G., Radatz C. S., et al. Synthesis of 1,2-disubstitued benzimidazoles using SiO2/ZnCl2[J]. Tetrahedron Lett., 2009, 50(13): 1495-1497.
    [78] Dabiri M., Salehi P., Baghbanzadeh M., et al. Water-Accelerated Selective Synthesis of 1, 2-Disubstituted Benzimidazoles at Room Temperature Catalyzed by Brnsted Acidic Ionic Liquid[J]. Synth. Commun., 2008, 38(23): 4272-4281.
    [79] Pawar S. S., Dekhane D.V., Shingare M. S., et al. Glyoxylic acid as catalyst: A simple selective synthesis of 1, 2-disubstituted benzimidazoles in aqueous media[J]. Chin. Chem. Lett. 2008, 19(9): 1055-1058.
    [80] Kuznetsov D. V., Raev V. A., Kuranov G. L., et al. Microwave activation in organic synthesis[J].Russ. J. Org. Chem., 2005, 41(12): 1719-1749.
    [81] Panunzio M., Bandini E., D'Aurizio A., et al. Synthesis of venlafaxine from azadiene via a hetero-Diels- Alder approach: New microwave-assisted transketalization and hydroxyl lmethylation reactions [J]. Synthesis(Stuttgart), 2008 ,11: 1753-1756.
    [82] Perreux L., Loupy A. A tentative rationalization of microwave effects in organic synthesis according to the reaction medium, and mechanistic considerations[J]. Tetrahedron, 2001, 57(45): 9199-9223.
    [83]许家喜.微波与有机化学反应的选择性[J].化学进展, 2007, 19(5): 700-712.
    [84]陈新秀,徐盼,夏之宁.微波辅助有机合成中“非热效应”的研究方法[J].化学通报, 2009, 8: 674-680.
    [85]肖美添,林金清.红外加热干燥技术及其应用[J].节能技术, 1998, 2: 38-40.
    [86]张建奇,方小平.红外物理[M].西安:西安电子科技大学出版社, 2004: 36-42.
    [87]赵举廉.红外加热干燥机理探讨[J].红外加热, 1985, 7(1): 12-15.
    [88] Song E. Y., Kaur N., Park M. Y., et al. Synthesis of amide and urea derivatives of benzothiazole as Raf-1 inhibitor[J]. Eur. J. Med. Chem., 2008, 43(7): 1519-1524.
    [89] Chiang P. C., Kim Y., Bode J. W. Catalytic amide formation with alpha'-hydroxyenones as acylating reagents[J]. Chem. Commun., 2009, 30: 4566-4568.
    [90] Ghosh S. C., Hong S. H. Simple RuCl3-Catalyzed Amide Synthesis from Alcohols and Amines[J]. Eur. J. Org. Chem., 2010, 22: 4266-4270.
    [91] Lin K. I., Yang C. H., Huang C. W., et al. Synthesis and Structure-Activity Relationships of Fenbufen Amide Analogs[J]. Molecules, 2010, 15(12): 8796-8803.
    [92] Belskaya N. P., Dehaen W., Bakulev V. A. Synthesis and properties of hydrazones bearing amide, thioamide and amidine functions[J]. Arkivoc, 2010, Part 1 Sp. Iss. SI: 275-332.
    [93]陈虹,马燮,黄斌.微波合成乙酰苯胺的工艺研究[J].四川化工, 2007, 10(2): 7-9.
    [94]苏文伟,刘学东.几种酰胺类除草剂毒力、药效及安全性评价[J].杂草科学, 2004, 3: 45-47.
    [95] Kiyota H., Dixon D. J., Luscombe C. K., et al. Synthesis, Structure Revision, and Absolute Configuration of (+)-Didemniserinolipid B, a Serinol Marine Natural Product from a Tunicate Didemnum sp[J]. Org. Lett., 2002, 4(19): 3223-3226.
    [96] Marvin C. C., Voight E. A., Burke S.D. Synthesis of (+)-Didemniserinolipid B via Ketalization/Ring-Closing Metathesis[J]. Org. Lett., 2007, 9(26): 5357-5359.
    [97] Vazqueztato M. P. Microwave-mediated synthesis of amides[J]. Synlett, 1993, 7: 506.
    [98] Kumar K. N., Sreeramamurthy K., Palle S., et al. Dithiocarbamate and DBU-promoted amide bond formation under microwave condition[J]. Tetrahedron Lett., 2010, 51(6): 899-902.
    [99] Sondhi S. M., Singh J., Kumar A., et al. Synthesis of amidine and amide derivatives and their evaluation for anti-inflammatory and analgesic activities[J]. Eur. J. Med. Chem., 2009, 44(3): 1010-1015.
    [100] Reddy C. S., Nagaraj A., Jalapathi P. Zirconyl chloride promoted highly efficient solid phase synthesis of amide derivatives[J]. Chin. Chem. Lett., 2007, 18: 1213-1217.
    [101] Gelens E., Smeets L., Sliedregt LAJM., et al. An atom efficient and solvent-free synthesis of structurally diverse amides using microwaves[J]. Tetrahedron Lett., 2005, 46(21): 3751-3754.
    [102] Perreux L., Loupy A., Volatron F. Solvent-free preparation of amides from acids and primaryamines under microwave irradiation[J] .Tetrahedron, 2002, 58 (11): 2155-2162.
    [103]周金梅,林敏,杨俐峰.微波法合成乙酰苯胺[J].厦门大学学报(自然科学版), 2003, 42(5): 679-681.
    [104] Wang X. J., Yang Q., Liu F., et al. Microwave-assisted synthesis of amide under solvent-free conditions[J]. Synth. Commun., 2008, 38: 1028-1035.
    [105] Smith PAS., Ashby B. The influence of substituents on the Schmidt reaction on some benzophenones[J]. J. Am. Chem. Soc., 1950, 72(6): 2503-2505.
    [106] Alcock J. F., Baker R. J., Diamantis A. A. The N-acylhydrazine grouping as a ligand[J]. Aust. J. Chem., 1972, 25 (2): 289-302.
    [107] Reese A. L., Mcmartin K., Miller D., et al. Reactions of bismuth triacetate with organic compounds[J]. J. Org. Chem., 1973, 38 (4): 764-768.
    [108]卢泽楷,朱万仁.固体铁系超强酸的制备及催化水杨酸异丙酯的合成[J].有机化学, 2004, 22(6): 450-452.
    [109]栗云天,尹应武.微波合成水杨酸异丙酯[J].有机化学, 2002, 22(10): 750-753.
    [110] Croxall W. J. Sowa F. J. Organic reactions with boron fluoride (Ⅶ): the rearrangement of isopropyl salicylate and the condensation of propylene with salicylic acid[J]. J. Am. Chem. Soc., 1934, 56: 2054-2056.
    [111] Croxall W. J. Sowa F. J. Nieuwland J. A. Organic reactions with boron fluoride (Ⅶ) :the rearrangement of alkyl salicylated and the reaction of alcohols with salicylic acid[J]. J. Am. Chem. Soc., 1937, 59: 253-259.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700