小麦品种川麦42与川农16重组自交系品质及抗条锈性状遗传研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以国审小麦品种川麦42与川农16杂交,经多代培育构建的127个重组自交系(RILs)群体为供试材料,对其品质相关性状及抗条锈性状进行了遗传分析和QTL定位研究。主要结果如下:
     1.对蛋白质含量、籽粒硬度、沉淀值、面筋指数、干面筋含量、湿面筋含量、吸水率、形成时间、稳定时间、公差指数、断裂时间、粉质质量指数、降落值、迟熟α-淀粉酶活性等13个品质性状在“川麦42”和“川农16”构建的127个重组自交系(RILs)中的的变异性状,以及其与抽穗期、株高、有效穗、穗粒数、千粒重、单穗重、籽粒产量等7个农艺性状的相关性研究表明,蛋白质等13个品质性状在重组自交系群体中变异较为丰富,并且性状表现大多呈正态分布;除吸水率与其它品质性状相关较少外,蛋白质含量、籽粒硬度、干面筋含量、湿面筋含量、面筋指数、沉淀值、面团形成时间、稳定时间、断裂时间、公差指数、粉质质量指数、降落值等品质性状之间大多都表现出显著或极显著的相关关系:13个品质性状与7个农艺性状间也大多都呈显著或极显著的负相关,表明在供试材料中品质性状和农艺性状间存在一定的矛盾。同时,也检测到迟熟α-淀粉酶在群体中的分布符合一对等位基因控制的1:1的遗传分离规律。
     2.利用人工合成六倍体小麦衍生品种“川麦42”与“川农16”构建的127个重组自交系(RILs-8)群体,将179个SSR标记定位到21条染色体上,构建了总长为2251.1cM遗传连锁图,标记间的平均距离为12.5cM,平均每个染色体有8.5个标记。利用该图谱对品质性状进行了QTL分析,13个品质性状共检测到44个QTL,主要分布在1A、1B、2D、3D、4A、4D、5A、5B和7D等9条染色体。单个QTL可解释表型变异4.48%-66.15%,来自亲本川麦42的有26个(占59.1%),主要涉及蛋白质、稳定时间、形成时间、公差指数、降落值、沉淀值等重要性状,而具有正向加性效应的QTL有16个。来自亲本川农16的QTL有18个(占40.9%),主要涉及干面筋含量、湿面筋含量、粉质质量指数、断裂时间等性状,其中9个QTL具有正向加性效应。
     3.本研究采用十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)和酸性聚丙烯酰胺凝胶电泳(A-PAGE),分别对小麦品种“川麦42”和“川农16”及其构建的127个重组自交系(RILs)群体的贮藏蛋白(HMW-GS和醇溶蛋白)变异进行了检测和分析。结果表明,RILs群体的Glu-A1、Glu-B1和Glu-D1位点编码亚基分别为双亲类型的1、6+8或20,2+12或5+10,没有新的亚基类型产生,同时检测到(1,6+8,2+12)、(1,20,5+10)、(1,6+8,5+10)和(1,20,2+12)等4种亚基组合,其中重组组合(1,6+8,5+10)出现频率最高。亚基5+10比2+12有增强沉淀值、面筋指数和稳定时间,及降低干面筋、湿面筋含量和公差指数的效应,亚基6+8比20有增强面筋指数的效应,亚基组合对品质性状的影响依次为(1,6+8,5+10)>(1,20,5+10)>(1,6+8,2+12)>(1,20,2+12)。供试材料共分离出39条迁移率不同的醇溶蛋白谱带,ω区18条、γ区10条、β区4条、α区7条,平均每个供试材料分离出14-25条带。其中仅有4条共有带,共得到113种多态性带型,其中ω和γ区醇溶蛋白带纹组成最为丰富,而β区最低。在RILs群体中检测到8条不同于双亲的新带型,7条存在于ω区,1条存在于γ区。各电泳谱带在群体中出现的频率差异较大,其变化范围为0.78%-100%。聚类分析表明,RILs群体在相似系数为0.61的水平上,被划分为两个亲本类型群,其中类Ⅰ主要来源于川农16,有26个株系,其余101个株系中都与亲本川麦42聚在类Ⅱ中,每一类在不同的相似系数处又可以分成多个亚类,类群间的关系基本反映了该RILs群体的亲缘关系。
     4.对小麦品种“川麦42”与“川农16”重组自交系群体中的1BL/1RS易位和人工合成种SSR位点的遗传效应分析表明,来源于亲本“川农16”的1BL/1RS易位血缘在自交系群体中与抽穗期、单株分蘖、成穗率和小穗数等4个主要农艺性状有显著或极显著相关,而与大多数品质性状的相关性不显著。同时也发现1BL/1RS易位系通过降低沉淀值和提高公差指数影响小麦的品质:在重组自交系群体中共鉴定出40个来源于亲本“川麦42”的人工合成位点SSR位点,其中有18个人工合成种SSR位点均与所测品质性状呈显著或极显著相关关系,约占总人工合成种位点的45%,其中7个人工合成种位点对品质有正效应,5个位点有负效应,表明“川麦42”中的人工合成种血缘对后代群体的品质性状影响较大。
     5.将“川麦42”分别与高感条锈小麦品种“绵阳26”、“绵阳335”杂交和回交,获得杂交F_1、F_2、BC_1群体,其中,“川麦42×绵阳26”、“川麦42×绵阳335”F_2群体分别为208和337株,“川麦42/绵阳26//绵阳26”、“川麦42/绵阳335//绵阳335”BC_1,分别为171和216株;利用条锈菌小种条中32号(CYR32)对抗感杂交的F_1、F_2、BC_1群体接种,结果显示,所有F_1代对条中32都表现免疫或高抗,F_2代群体中抗∶感分离比例均符合3R∶1S理论比例,BC_1群体抗∶感分离比均符合1R∶1S理论比例。说明“川麦42”对“条中32”的抗性由1对显性基因控制。“川麦42”所含抗条锈基因YrCH42分别与1BS上Yr24和Yr26等位性测定表明,在分离的F_2群体中都未出现抗病株,说明YrCH42、Yr24和Yr26可能为相同基因。
After the cross between 'Chuannongl6' of high yield and good quality trait,and 'Chuanmai42',a highly yielding and resistant variety to yellow rust derived from Synthetic hexaploid wheat,127 recombinant inbred lines(RILs) were obtained.Using these RILs, the QTLs controlled the quality traits were detected,and the gene resistance to yellow rust was analyzed..The main results were described as following:
     1.The performances of 13 protein and starch characters and 7 agronomic characters were detected,and the majority of these characters had the normal distributions in this RILs population.Except for the water absorption,the protein content,grain hardness,dry glutenin content,wet glutenin content,glutenin indexes,sedimentation value,development time,stability time,time to breakdown,mixing tolerance index,farinograph quality number and falling number were significantly related to each other.The majority of the 13 quality characters were significantly negatively related to the 7 agronomic characters.The distribution of late maturity a-amylase(LMA) in RILs was 1:1,which was in accordance to the segregation rate of one pair allele.
     2.Forty-four QTLs were obtained after the analysis of 13 protein and starch characters in 127 RILs and their parents 'Chuannong 16' and 'Chuanmai42',the these QTLs were allocated to 9 chromosomes:1A,1B,2D,3D,4A,4D,5A,5Band 7D.A single QTL could explain 4.48%-66.15%of the phenotype variation.Twenty-six QTLs,mainly related to characters of protein,stability time,development time,mixing tolerance index, falling number and sedimentation value,were derived from 'Chuanmai42',among which 16 QTLs were found to be have positive addictive effects.Eighteen QTLs,mainly related to dry glutenin content,wet glutenin content,farinograph quality number and time to breakdown,were derived from 'Chuannong16',among which 9 QTLs had positive addictive effects.
     3.The results of SDS-PAGE and A-PAGE electrophoresis indicated that the parents ofRILs,'Chuannongl6' and 'Chuanmai42',had the subunit combinations of 1,6+8,2+12 and 1,20,5 + 10,respectively.No mutant subunit was detected in RILs population.In the RILs,four subunit combinations were(1,6+8,2+12),(1,20,5+10),(1,6+8,5+10) and (1,20,2+12),among which the frequency of the combination(1,6+8,5+10) were the highest.Compared to subunit 2+12,the subunit 5+10 had to the positive effects on sedimentation value,glutenin index and development time,while had the negative effects on value of glutenin,wet glutenin content and mixing tolerance index.Compared to subunit 20,subunit 6+8 resulted in the larger index of glutenin.The effects of different subunit combination on the quality characters followed the order of(1,6+8,5+10)>(1,20, 5+10)>(1,6+8,2+12)>(1,20,2+12).
     4.The 127 RILs were rich in the genetic polymorphism of gliadin.A total of 39 gliadin bands and 113 band combinations were detected.The number of protein bands in each RILs varied from 14 to 25.The frequency of each band in 127 RILs varied from 0.78%to 100%.The pattern of gliadin bands were 18,10,4 and 7 in the four zones of co,γ,β,andα,respectively.There were 4 common bands.Eight new bands were detected, among which 7 and 1 were observed in co zone andγzone,respectively.The cluster analysis indicated that two distinctive clusters were separated at the analogue index of 0.61, among which 26 RILs and 'Chuannong16' were clustered into in groupⅠ,while 101 RILs and 'Chuanmai42' were clustered into groupⅡ.
     5.The effects of 1BL/1RS translocation chromosome on quality and agronomic characters detected in RILs derived from the cross between 'Chuanmai42' and 'Chuannong 16'.The presence of 1BL/1RS translocation chromosome had the significant effectes on days from emergence to heading,tillers per plant,spikes per plant and spikelet numbers per spike,but its effects on the majority of the quality characters were not significant.The 1BL/1RS translocation chromosome could lead to lower sedimentation value and higher mixing tolerance index,and consequently the poorer wheat quality.Forty loci specific to synthetic hexaploid wheat were detected in RILs,among which 18 loci were significantly correlated to quality characters.
     6.The genes resistance to yellow rust in 'Chuanmai42' were studied in the F_1,F_2 and BC_1 populations of the crosses of 'Chuanmai42' to susceptible varieties 'Mianyang26' and 'Mianyang335'.The segregation ratios of resistant and susceptible plants after the inoculation of race CY32 of Puccinia striiformis f.sp.tritici indicated that the resistance was controlled by one dominant gene,temporally named as YrCH42.The further analyses indicated that YrCH42 was located at the same locus of Yr24 and Yr26,and no virulent isolates of P.striiformis f.sp.tritici has been found.
引文
1.北京农业大学遗传育种研究室译.小麦育种的理论基础.北京:北京农业大学出版社,1988.495-525
    2.曹张军,井金学,王美南,等.小麦品种贵农22号抗条锈基因遗传分析.西北植物学报,2004,24(6):991-996
    3.陈东升,刘丽,董建力,等.HMW-GS和LMW-GS组成及1BL/1RS易位对春小麦品质性状的影响.作物学报,2005,31(4):414-419
    4.陈华萍.四川小麦地方品种农艺性状分析.四川农业大学学报,2006,19(5):791-794
    5.代君丽,牛永春.小麦农家品种大籽糙抗条锈性的遗传分析.遗传,2003,25(3):311-313
    6.董玉琛,许树军,周荣华,等.小麦-山羊草双二倍体的合成与利用.植物细胞工程与育种,北京工业大学出版社,1990
    7.杜金哲.李文雄.春小麦籽粒蛋白质积累和产量形成规律及氮肥的调节作用.东北农业大学学报.1998,30(1):1-9
    8.杜巍,魏益民,张国权,等.小麦品质对面条品质影响因素的研究.食品科技2001,2;54-58
    9.范金平,吕国锋,张伯桥,等.SDS沉淀值在小麦良种繁育中的应用.安徽农业科学,2003,31(6):1043-1044
    10.耿蕙敏.1BL/1RS易位系对小麦HMW-GS遗传的影响初析作物学报2008,34(1):167-170
    11.管延安,黄承彦,隋新霞,等.小麦品质性状的分子改良.分子植物育种,2004,2(2):279-285
    12.郭瑞星,刘小红,荣廷昭,等.植物SSR标记的发展及其在遗传育种中的应用.玉米科学,2005,13(2):8-11
    13.韩彬,Shepherd.低分子量谷蛋白亚基与醇溶蛋白的关系及其对小麦烘烤品质的影响.中国农业科学,1991,24(4),19-25
    14.郝春燕,李建国,李雅轩,等.小麦醇溶蛋白基因克隆研究进展.首都师范大学学报(自然科学版),2006,27(2):67-70
    15.何中虎,王龙俊,肖志敏,等.中国小麦品质区划的研究.中国农业科学,2002,35(4):359-364
    16.何中虎,宴月明,庄巧生,等.中国小麦品种品质评价体系建立与分子改良技术研究.中国农业科学,2006,39(6):1091-1101
    17.侯永翠,郑有良,蒲至恩等.穗数型小麦新品种川农16与大穗型寡分蘖品系H461遗传差异研究初报.四川农业大学学报,2003,21(2):94-98
    18.胡含,王恒立.北京工业大学出版社,1990,178-183
    19.胡汉桥,王罡,张艳贞,等.春小麦穗发芽抗性鉴定及机理.麦类作物学报,2001,21(3)13-17
    20.黄东印,林作楫.冬小麦品质性状与面条品质性状关系的初步研究.华北农学报,1990,5(1):40-45
    21.贾继增,张正斌.小麦21条染色体RFLP遗传多样性分析.中国科学(C 辑),2001,31(1):13-21
    22.蹇黎,李伟,魏育明.等小麦新品种川农16与川育16的分子鉴定.四川农业大学学报,2005,23(1):8-12
    23.蹇黎,李伟,郑有良.小麦新品种川农16与川育16株系比较分析.种子,2006,25(8):62-63
    24.孔令让,董玉琛.粗山羊草抗小麦白粉病基因遗传多样性的研究.作物学报.1997,23(2):176-180
    25.兰静,王乐凯.小麦品质性状与面条加工特性关系的初步研究.黑龙江农业科学,2001(3):3-5
    26.兰秀锦,颜济.中国四倍体地方小麦品种矮兰麦与中国产节节麦的双二倍体及其在育种上的利用.四川农业大学学报,1992,10(4):581-585
    27.李根桥.川麦42抗条锈病基因YrCH42的定位及其与Yr24和Yr26的等位性检测.硕士,新疆农业大学,2006
    28.李俊,魏会廷,胡晓蓉,等.人工合成小麦衍生品质川麦47的抗条锈病SSR分析标记定位.农业生物技术学报,2007,15(2):318-322
    29.李硕碧,单明珠,王怡,等.鲜湿面条专用小麦品种品质的评价.作物学报,2001,27(3):334-338
    30.李韬,徐辰武.小麦重要品质性状的遗传分析和面条专用型小麦筛选.麦类作物学报,2002,22(3):11-16
    31.李伟,郑有良,兰秀锦,等.小麦新品种(系)的杂种优势分析.四川农业大学学报, 2003,21(4):280-283
    32.李伟,郑有良,魏育明,等.小麦新品种川农16的分子鉴定.麦类作物学报,2004,24(1):6-10
    33.李伟,郑有良,魏育明,等.小麦新品种川农16号生化标记性状研究.西南农业学报,2003,16(2):7-10
    34.李卫华,尤明山,刘伟,等.小麦GMP含量发育动态的QTL定位.作物学报,2006,7:995-1000
    35.李卫华,张世华,郅洁,等.小麦品质性状在RILs群体中的分离分布规律及与Zeleny 沉淀值的回归分析.新疆农业科学,2007,44(2):132-136
    36.李振岐,曾士迈主编.中国小麦锈病.北京:中国农业出版社,2002
    37.李宗智.冬小麦若干品质性状遗传及相关的研究.作物学报,1990,16(1):8-18
    38.廖杰,李俊,汤永禄,等.“川麦42”ד川农16”重组自交系农艺性状分析.西南农业学报,2007b,20(2):300-304
    39.廖杰,魏会廷,李俊,等.川麦42遗传背景中人工合成小麦导入位点的SSR标记检测.作物学报,2007c,33(5):703-707
    40.廖杰,曾云超,杨玉敏,等.穗重型小麦品种川麦42与穗数型品种川农遗传差异的SSR标记分析.西南农业学报,2007a,20(1):11-14
    41.林娜,吴卫,魏育明等.小麦新品种川农16的品质性状相关分析.西南农业学报,2005,18(6):684-687
    42.林作楫,雷震生.中国挂面对小麦面粉品质的要求.作物学报,1996,22(2):152-155
    43.刘广田,李宝云.小麦品质性状的遗传及其遗传改良.农业生物技术学报,2000(4):307-314
    44.刘广田.小交品质性状的遗传及其改良.超级麦育种前景研讨会会议材料汇编,北京,1999,11
    45.刘建军,何中虎,R J Pena,等.1BL/1RS易位对小麦加工品质的影响.作物学报,2004,30(2):149-153
    46.刘建军,赵振东.面条煮面品质与小麦品质性状的关系.山东农业科学,2000,4:10-12
    47.刘丽,阎俊,张艳,等.冬播麦区Glu-1和Glu-3位点变异及1B/1R易位与小麦加工品质性状的关系.中国农业科学,2005,38(10):1944-1950
    48.刘丽,周阳,何中虎,等.Glu-1和Glu-3等位变异对小麦加工品质的影响.作物学 报,2004,30:959-968
    49.刘萍,储燕宁,康振生.小麦条锈病的抗性遗传及其在育种中的利用.宁夏农学院学报,2004,25(4):49-52
    50.刘千,龙海,魏育明,等.小麦品种“川农16”的α-醇溶蛋白基因序列分析.中国农业科学,2008,41(7):2168-2173
    51.刘志华,胡尚连,韩占江,等.小麦蛋白质组分与加工品质关系.粮食与油脂,2003,(10):7-9
    52.龙海,魏育明,颜泽洪,等小麦新品种“川农16”低分子量谷蛋白亚基新基因的分子克隆.作物学报,2004,30(2):1179-1184
    53.马传喜,吴兆苏.胚乳蛋白质组分及高分量麦谷蛋白亚基与加工品质的关系.作物学报,1993,19(6):562-567
    54.马传喜,徐风,谭蕴之.在一对面包小麦杂交后代中Glu-B1控制的麦谷蛋白亚基17+18对加工品质的影响.作物学报,1995a,21(1):90-94
    55.马传喜,徐风.HMW-GS作为面包小麦品种烘烤品质评价指标的研究.安徽农业大学学报,1995b,22(2):117-122
    56.毛龙,胡含.应用RAPD分析1个抗条锈病的小麦-黑麦易位系.科学通报,1994,39(22):2088-2090
    57.毛沛,李宗智,卢少源.小麦HMW-GS对面包加工品质的效应分析.华北农学报,1995,10:55-59
    58.穆培源.CIMMYT人工合成小麦改良品系的HMW-GS和LMW-GS组成及其对面筋品质的影响.麦类作物学报.2008,28(4):607-612
    59.牛永春,乔奇,吴立人,等.豫鲁皖三省重要小麦品种抗条锈基因推导.植物病理学报,2000,30(2):122-128
    60.蒲至恩,侯永翠,郑有良,等.小麦新品种川农16与99E18的SSR及贮藏蛋白差异分析.麦类作物学报,2004,24(3):25-28
    61.蒲至恩,李伟,郑有良.小麦品种川农16后代品系营养品质分析.四川农业大学学报,2006,24(1):13-19
    62.蒲至恩,刘亚西,李伟,等.小麦品种川农16后代品系贮藏蛋白及品质性状分析.西南农业学报,2008,21(1):18-22
    63.钱惠荣,郑康乐.DNA标记和分子育种.生物工程进展,1998.18(3):12-16
    64.秦武发,李宗智.氮素供应对小麦品质的影响,Ⅱ.供氮方式.河北农业大学学报.1989,12(4):21-27
    65.邱永和.小麦淀粉之特性与制面适应性.食品工业.1988,(9):44-45
    66.任正隆.黑麦种质导入小麦及其在小麦育种中的利用方式.中国农业科学.1991,24(3):18-25
    67.任正隆.小麦遗传背景对黑麦抗叶锈基因Lr26的抗性表达影响.遗传学报.1993,20(4),312-316
    68.石培春,曹连莆,王光利,等.小麦粒籽蛋白组分含量的QTL定位.麦类作为学报,2008,28(4):550-554
    69.孙海艳,李斯深,姜鸿明.利用RILs群体分析HMW-GS对小麦品质性状的量化效应.作物学报,2004,30(3):255-257
    70.孙辉等.小麦谷蛋白亚基及其基因多态性研究进展.麦类作物学报.2000.20(1):82-86
    71.孙学永,马传喜,林国平,等.普通小麦SDS沉淀值,蛋白质含量及GMP含量的相关性分析.安徽农业科学,2002,30(2):171-174
    72.万洪深,李俊,陈华华,等.不同N、P、K营养水平下“川麦42”苗期生物学特性初步分析.西南农业学报,2007,20(2):281-285
    73.王凤乐,吴立人,谢水仙,等.我国小麦重要抗源材料抗条锈病基因推导及其成株抗病性分析.植物病理学报,1994,24(2):175-180
    74.王凤乐,吴立人,徐世昌,等.中国条锈菌新小种条中30、31号的研究.植物保护学报,1996,23(1):39-44
    75.王瑞,宁琨.一些优质小麦及其杂种后代HMW-GS组成与面包之关系.西北农业学报,1995,4(4):25-30
    76.王若兰,黄亚伟,刘毅,等.小麦储藏品质评价指标研究.仓储科技,2007(6):31-33
    77.王迎辉,卢晓霆,王江伟,等.小麦粉降落值与破损淀粉含量及小麦含芽率的关系.长春工业大学学报,2008,29(4):455-458
    78.王肇慈.沉降试验与小麦食用工艺品质的关系.中国粮油学报,1988,(2):19-23
    79.魏益民.谷物品质与食品品质-小麦籽粒品质与食品品质.陕西人民出版社,202,241-242
    80.吴云鹏,张叶伦,肖永贵,等.小麦重要品质性状的QTL.中国农业科 学,2008,41(2):331-339
    81.吴云鹏.小麦重要品质性状QTL定位.博士论文,中国农业科学,北京,2007
    82.谢皓,牛永春,陈孝,等小麦新品系YW243抗条锈性鉴定和遗传分析.植物病理学报,2003,33(3):243-247
    83.徐世昌,张敬原,赵文生,等.小麦京核891-1抗条锈病主效、微效基因的遗传分析.中国农业科学,2001,34(3):272-276
    84.许自成,段新国,贾志强,等.小麦沉淀值的研究进展.麦类作物学报,1998,18(2):27-30
    85.颜济.五十年四川小麦育种研究的回顾与前瞻.四川农业大学学报,1999,17(1):108-13
    86.杨恩年,张颞,李俊,等.川麦42/川农16重组自交系群体中小麦迟α-淀粉酶(LMA)的遗传分析.西南农业学报,2007,20(2):243-245
    87.杨武云,胡晓蓉,余毅,等.硬粒小麦-节节麦人工合成种的HMW-GS组成分析.西南农业学报,1998,11:163-166
    88.杨武云,颜济,杨俊良,等.硬粒小麦-节节麦人工合成种Decoyl/Aegilops tauschii 510抗条锈性状(条中30,条中31)遗传分析.西南农业学报,1999,12(2):38-41
    89.姚革,蒋滨,田承权,等.四川省小麦条锈病持续流行原因及防治对策.西南农业学报,2004,17(2):253-256
    90.姚占军,徐世昌,万安民,等.3个小麦条锈菌鉴别寄主的抗性遗传分析.植物遗传资源学报,植物遗传资源学报2006,7(1):39-43
    91.于美玲,崔国慧,李元清,等.小麦品质性状遗传学研究进展及改良途径.内蒙古农业科技,2003,(6):27-29
    92.袁翠平.小麦籽粒硬度及其与面包品质的关系研究[硕士].山东,山东农业大学,2004
    93.张彩英,李宗智.冬小麦若干加工品质性状遗传变异及相关性的研究.河北农业大学报,1989,12(3):8-15
    94.张海萍,阎长生,肖世和,等.小麦迟熟α-淀粉酶的研究进展.麦类作物学报,2003,23(1):81-85
    95.张立平,葛秀秀,何中虎,等.普通小麦多酚氧化酶活性的QTL分析.作物学报,2005,31:7-10
    96.张立平,阎俊,夏先春,等.普通小麦籽粒黄色素含量的QTL分析.作物学报.2006,32:41-45
    97.张玲,王宪泽.用TOM值评价中国面条品质的新方法及小麦品质对它的影响中国粮油学报,1998,13(1):49-53
    98.张颙,李伟,杨武云,等.小麦新品种川麦42蛋白及酯酶同工酶的分析.西南农业学报,2004b,17(5):600-603
    99.张颙,杨武云,胡晓蓉,等.源于硬粒小麦-节节麦人工合成种的高产抗病小麦新品种川麦42主要农艺性状分析.西南农业学报,2004a,17(2):141-145
    100.张颙,杨武云,鹏云良,等.小麦新品种川麦42抗条锈病遗传分析.植物保护学报,2006,33(3):287-290
    101.张颙,杨武云,邹欲春,等.源于CIMMYT人工合成种的小麦新品种川麦42的选育与研究.西南农业学报,2007,20(2):199-202
    102.张颙,杨武云.突破性超高产高抗条锈病优质小麦新品种川麦42.四川农业科技,2004a,17(6):694-697
    103.赵和,卢少溉,李宗智,等.普通小麦HMW-GS遗传变异及与其它性状的关系.河北农业大学学报,1993,16(1):8-12
    104.赵和,卢少源,李宗智,等.小麦高分子量麦谷蛋白遗传变异及其与品质和其它农艺性状关系的研究.作物学报,1994,20(1):67-75
    105.赵岩,李斯深,姜鸿明,等.利用RILs群体进行小麦品质性状及其与产量性状的相关分析.西北植物学报,2004,24(7):1227-1232
    106.赵友梅,王淑俭.HMW-GS的SDS-PAGE图谱在小麦品质研究中的应用.作物学报,1990,16(3):208-218
    107.郑有良,兰秀锦,魏育明,等.小麦新品种川农16农艺性状分析.四川农业大学学报,2002,20(3):194-197
    108.周青文.麦胚乳贮藏蛋白组分遗传研究进展.麦类作物学报,2000,20(2):78-83
    109.周阳,何中虎,张改生,等.1BL/1RS易位系在我国小麦育种中的应用.作物学报,2004,30(6):531-535
    110.朱桂清,朱庆顺.小麦抗秆锈病基因推导的计算机程序及应用.沈阳农业大学学报,1998,29(3):205-209
    111.朱军.《遗传模型分析方法》,中国农业出版社,1997
    112.朱军.运用混合线性模型定位复杂数量性状基因的方法.浙江大学学报(自然科学版),19993(3):327-335
    114.A S Ross, K J Quail and G B Crosbie. Physicochemical properties of Australian flours influencing the texture of yellow Alkaline noodles, Cereal Chem., 1997, 74(6):814-820
    115.AACC. Approved Methods of the American Association of Cereal Chemists, 9th ed. The Association, St. Paul, Minnesota. 1995
    116.AACC. Falling Number Determination. Method, 1983, 56-81B
    117.Ainsworth C, Tarvis M, Clark J. Isolation and analysis of cDNA clone encoding the small subunit of ADP-glucose pyrophosphorylase from wheat. Plant Molecular Biology, 1993,23:23-33
    118.Altenbach S B, Kothari K M, Lieu D. Environmental conditions during wheat grain development alter temporal regulation of major glutenin proteingenes. Cereal Chemistry, 2002, 79 (2) :279 -285
    119.Anderson O D and Green F.C. The characterization and comparative analysis ofhigh-molecular-weight gluteninin genes from genomes A and B of a hexaploid bread wheat. Theor Appl Gen,1989,77:689-700
    120.Anjum F E and C E Walker. Review on the significance of starch and protein to wheat kernel hardness J Sci Food Agric,1991, 56:1-13
    121.Assefa S, Fehrmann H. Resistance to wheat leaf rust in Aegilops tauschii Coss and inheritance of resistance in hexaploid wheat. Genetic resources and crop evolution,2000, 47(2):135-140
    122.Barbeau W E, Griffey C A, Uriyo M G, et,al. Baking performance of 1BL/1RS soft red winter wheat. J Food Quality, 2001,24 (2): 127 -139
    123.Barlow K K, Buttrose MS, et,al. The nature of the starch protein interface in wheat endosperm. Cereal Chem, 1973. 50:443-454
    124. Bartos P., Johnson R., Stubbs R.W. Postulatd genes for resistance to yellow rust in Czechoslavakian wheat cultivars. Cereal rusts Bulletin, 1987,15:79-84
    125.Bassam B J, Caetano-Anolles G, Gresshoff P M. Fast and sensitive silver staining of DNA in polyacrylamide gels. Analytical Biochemistry, 1991, 196:80-83
    126.Batey I L, Hayden M J, Cai S, et,al. Genetic mapping of commercially significant starch characteristics in wheat crosses. Australian Journal of Agricultural Research,2001,52:1287-1296
    
    127.Biffen RH.Mendel's law of inheritance and wheat breeding. Agri. Sci.,1905,1: 4-48
    128.Blanco A, Bellomo M P, Lotti C,et,al. Genetic mapping of sedimentation volume across environments using recombinant inbred lines of durum wheat. Plant Breeding,1998,117:413-417,55
    129.Blanco A, Pasqualone A, Troccoli A,et,al. Detection of grain protein content QTLs across environments in tetraploid wheats. Plant Molecular Biology, 2002,48:615-623
    130.B(?)rner A, Schumann E, Ftirste A, et,al. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticwn aestivum L.).Theoretical and Applied Genetics, 2002,105:921-936
    131.Branlard G. Diversity of grain proteins and bread wheat quality I correlation between giladin bands and flour quality characteristics.Cereal Sci, 1985, 13:329-343
    132.Brites C, Carrillo T M. Influence of high molecular weight and low molecular weight gluteninin subunits controlled by Glu-1 and Glu-3 loci on durum wheat quality. Cereal Chemistry, 2001,78(1):59 -63
    133.Bronneke V, Zimmermann G, Killermann B. Effect of high molecular weight glutenins and D zone gliadins on bread making quality in Germanwheat varieties.Cereal Research Communications, 2000,28 ( 1 -2):187 -194
    134.Brookes A S. The Essenee of SNPs, Gene, 1999,234:177-186
    135.Brooks AS, SeeDR, Brown-Guedira G.SNP-Based Improvement of a Mierosatellite Marker Assciated with Kamal Bunt Resistance in Wheat. Crop Science 2006,46:1467-1470
    136.Browder L E. Parasite host environment specificity in cereal rust. Ann. Rev. Phytopath,1985,23: 210-222
    137.Cantrell R G, Joppa L R. Genetic analysis of quantitative traits in wild emmer (Triticwn turgidum L. var dicoccoides). Crop Science, 1991, 31:645-649
    138.Carrillo J M, Rousset M, Qualset CO, et,al. Use of recombinant inbred lines of wheat for studying the associations of high-molecular-weight gluteninin subunits alleles to quantitative traits. 1. Grain yield and quality prediction tests. Theoretical and Applied Genetics, 1990, 79:321-330
    139.Carver B F, Rayburn A L. Comparison of related wheat stocks possessing 1B or T1BL/1RS chromosomes:grain and flourquality. Crop Sci., 1995, 35:1316-1321
    140.Carver B F,Rayburn A L. Comparison of related wheat stocks possessing 1B or 1RS/1BL chromosomes:agronomic performance. Crop Sci., 1994, 34:1505-1510
    141.Clark J R, Robertson M, Anisworth C C. Nucleotide sequence of a wheat (Triticum aestivum L.) cDNA clone encoding the waxy protein.Plant Molecular Biology, 1991, 16:1099-1101
    142.Clemmer C.R. and Beebe T.P Graphaite:A mimic for DNA and other biomolecules in scanning tunneling microscopy studies. Science, 1990,251:640-642
    143.Common wheat cultivar Saratovskaya 29. Hereditas, 1994,121 :131-137
    144.Cornish GB, Bekes F, Allen HM, et,al. Flour proteins linked toquality traits in an Australian doubled haploid wheat population. Australian Journal of Agricultural Research, 2001, 52:11-12
    145.Dhaliwal A S, Mares D J, Marshall D R. Effect of 1BL/1RS chromosome translocation on milling and quality characteristics of bread wheat, Cereal Chem.,1987,64:72-76
    146.Dubin H J, Johnson R, Stubbs RW. Postulated genes for resistance to stripe rust in selected CIMMYT and related wheat. Plant Dis.,1989,73: 472-475
    147.Eder C, Grausgruber H. Influence of 1BL.1RS wheat-rye chromosome translocation on genotype by environment interaction. J Cereal Sci. ,39:313-320
    148.Ehdaie B, Whitkus R W, Wines J G.. Rooot biomass, water-use efficiency, and performance of wheat-rye translocations of chromosomes 1 and 2 in spring bread wheat Pavon. Crop Sci., 2003,43:710-717
    149.FidoR J, Bekes F, GrasP W, et al.Effects of α-,β-,γ-, ω-gliadins on the dough mixing properties of wheat flour. Journal of Cereal Science, 1997,26 :271-277
    150.Flor H H. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol,1971,9:275-296
    151.Games C S, Raeker M O, Finney P L, et,al. Associations of starch Gel Hardness Hardness, Granule Size, Waxy Allelic Expression, Thermal pasting, milling quality,and kernel texture of 12 soft wheat cultivars. Cereal Chem., 2000, 7(2):163-168
    152.Gianibelli M C, Larroque O R, MacRitchie F. Biochemical, genetic, molecular characterization of wheat gluteninin and its component subunits.Cereal Chem., 2001,78:635-646
    153.Graybosch R A. Uneasy Unions:Quality effects of rye chromatin transfer to wheat. Journal of Cereal Science, 2001, 33:3-16
    154.Groos C, Robert N, Bervas E, et,al. Genetic analysis of grain protein-content, grain yield and thousand kernel weight in bread wheat. Theoretical and Applied Genetics,2003,106:1032-1040
    155.Gupta R B, Singh N K, Shepherd KW. The cumulative effect of allelic variation in LMW and HMW glutenin subunits on dough properties in the progeny of two bread wheats. Theoretical and Applied Genetics, 1989, 77 :57-64
    156.Hagrmann M G, A J Ciha. Evaluation of methods used in testing winter wheat susceptibility to pre-harvest sprouting.Crop Science, 1984, 24:249-254
    157.Harberd N. P Bartels D. Thompson R. D. DNA restriction fragment variation in the gene family encoding high-molecular-weight(HMW)-gluteninin subunits of wheat.Biochem Genet, 1986.24:579-596
    158.He Z H, Liu L, Xia X C, et al. Composition of HMW and LMW gluteninin subunits and their effects on dough properties, pan bread, and noodle quality of Chinese bread wheats. Cereal Chemistry, 2005, 82:345-350
    159.He, Z H, Rajaram S, Xin Z Y, (eds.). A History of wheat Breeding in China, 2001,Mexico, D. F.:CIMMYT
    160.Hermansson A M, Svegmark K. Developmentsin if starch functionality. Food Sci.Techol.,1996, 7:345-353
    161.Hsam S L K, Kieffer R, Zeller F J. Significance of Aegilops tauschii gluteninin genes on bread making properties of wheat. Cereal Chemistry, 2001, 78:521-525
    162.Huang W N, Hoseney R C. Isolation and identification of a wheat flour compound causing Sticky dough, Cereal Chemistry, 1999, 76(2):276-281
    163.Huang X Q, Cloutier S, Lycar L, et,al. Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theoretical and Applied Genetics, 2006,113:753-766
    164.Jaaska V.A spartate amino transferase and alcohol dehydrogenase isoenzymes:intraspecific differentiation in Aegilops tauschii and the origin of the D genome polyploids in the wheat group . Plant Syst, Evol. ,1981, 137:259-273
    165.Johnson J M. Comparative effects of 1BL/ 1RS translocation in relation to protein composition and milling and baking quality of soft red winter wheat [J ] 1 Cereal Chem., 1999, 76 :467-4721
    166.Johnson R, Stubbs RW, Kirmani MAS et al. Discussion of a method resulting in erroneous postulation of the gene Yr8 for resistance to Puccinia striiformis in Pakistani wheat cultivars. Cereal Rusts and Powdery Mildews Bulletin, 1987. 15: 13-19
    167.Joppa L R, Du C, Hart G E, et,al. Mapping a QTL for grain protein in tetraploid wheat {Triticum turgidum L.) using a population of recombinant inbred chromosome lines.Crop Science, 1997, 37:1586-1589
    168.Kasarda D D, Autran J C, Lew EJ L, et al. N-terminal amino acid sequences of ω-gliadinsan ω-secaline:implications for the evolution of porlamin genes.Bichimica et Biophysica Acta., 1983,74 7:138-150
    169.KasardaD D, AdalsteinsA E, LairdN F.γ- Gliadins with a-type structure coded on chromosome 6B of the wheat (Trincum aesdvumL) cultivar Chinese-Spring.In:Proceedings of the 3rd Workshop on Glutenin Proteins, 1987
    170.KasardaD D, OkitaT W, Bernardin J E, et al.Nucleic acid(cDNA)and Amino acid sequences of a-type giladins from wheat(Triticuma estimm).Proceedings of the National Academy of Sciences of the USA, 1984, 81:4712-4716
    171.Kema G.H.J., Lange W., and van Silfhout C.H.. Differential suppression of stripe rust in synthetic wheat hexaploid from Triticum turgidum subsp. dicoccodides and Aegilops squarrosa, Phytopathology, 1995, 85:425-429
    172.Khatkar B S, Fido R J, Tatham A S, et,al. Functional properties of wheat gliadin : I .Effects on mixing characteristics and bread making quality.J Cereal Sci., 2002,35 :299 306
    173.Kolster P, Eeuwijk F A, Van Gelder W M.et,al.Additive and epistatic effecfs of allelic variation at the high-molecular-weight gluteninin subunit loci in determining the bread making quality of breeding lines of wheat. Euphytica, 1991, 55 :277-285
    174.Kolster P, Krechting C. F et al. Quantification of individual high molecular weight gluteninin subunits of wheat gluteninin using SDS-PAGE and scanning densitometry. J cereal Sci.,1992,15:49-61
    175.Kosmolak F G, Dexter J E, Matsuo R R, et al.A relationship between durum wheat quality and gliadin electrophoregrams . Plant Sci., 1980,60:427-432
    176.Kruger J E, K Preston.The nature and role of proteolytic enzymes during early germination.Cereal Research Communication, 1976, 4(2):213-217
    177.Lagudah E S, O'Brien L and Halloran GM. Influence of gliadin composition and high molecular weight subunits of gluteninin on dough properties in an F3 population of a bread wheat cross. Journal of Cereal Science, 1998, 7:33-42
    178.Lawrence G J. Payne P. I. Detection by gel electrophoresis of oligomers formed by the association of high-molecular-weight gluteninin protein subunits of wheat endosperm.Experimental Botany, 1983. 34:254-267
    179.Lawrence GJ, MacRitchie F, Wrigley CW. Dough and baking quality of wheat lines deficient in gluteninin subunits controlled by the Glu-A1, Glu-B1 and Glu-D1 loci.Journal of Cereal Science, 1988, 7 :109 -112
    180.LelleyT, EderC, Grausgruber H.Influence of 1BL/1RS wheat-rye chromosome translocation on genotype by environment interaction. Journal of Cereal Science, 2004,39:313-320
    181.Li B Y(李保云),Wang Y G(王岳光),Liu F M(刘凤鸣),et,al.Relationships between high moleculaur weight gluteninin subunits(HMW-GS)and quality traits in wheat.Acta Agronomica Sinica(作物学报),2000,26(3):322-326
    182.LI G P(李桂平),LIU H W(刘宏伟),zHAN G G SH(张改生),et,al..Hetero sis and co rrelation analysis on some quality characters in wheat.Acta Bot.Boreal-Occid ent.S in.(西北植物学报),2003,23(1):82-85(in Ch inese)
    183.Li Z Y,Mouille G,Kosar-Hashemi B,Rahman S,Clarke B,Gale K R,Appels R,Morell M K.The structure and expression of wheat starch synthase Ⅲ gene.Motif in the expressed gene define the line age of the starch synthase Ⅲ gene family.Plant Physiology,2000,123:612-624
    184.Li Z.F.,Xia X.C,Zhou X.C,et al..Seedling and slow rusting resistances to stripe rust in Chinese common wheat.Plant Dis,2006.90(10):1302-1312
    185.LI ZH ZH(李宗智).Studies on inheritance and co rrelation of some quality characteristics in w inter wheat.Acta Agronomica Sinica(作物学报),1990,16(1):8-18
    186.Liu L,Zhou Y,He Z H,Wang D S,Zhang Y,Pe(?)a R J.Effect of allelic variation in HMW and LMW gluteninin subunits on the processing quality in common wheat.Scientia Agricultura Sinica,2004,37:8-14.(in Chinese)
    187.Liu L,Zhou Y,He Z H,et,al.Effect of allelic variation at Glu-1 and Glu-3 loci on processing quality in common wheat.Acta Agronomica Sinica,2004,30:959-968.(in Chinese)
    188.Loegering W Q,McIntosh RA,Burton CH.Computer analysis of disease data to derive hypothetical genotypes for reaction of host varieties to pathogens.Can.J.Genet.Cytol.,1971,13:742-48
    189.Lukaszewski AJ.Frequency of 1RS·1AL and 1RS·1BL translocations in United States wheats.Crop Sci.,1990,30:1151 1153
    190.Lukow O.M.Payne P I.and Tkachu K.R.The HMW gluteninin subunit composition of Canadian wheat cultivars and their association with Bread-making quality.Sci.Food Agric.,1989:451-460
    191.Lupton F G H,Macer R C F.Inheritance of resistance to yellow rust in seven varieties of wheat,.Trans.Brit.Mycol.Soc.,1962,45(1):21-45
    192.Ma H,Singh R P,Mujeeb KA.Supp ression / exp ression of resistance to stripe rust in synthetic hexap loid wheat ( Triicum turgidum ×T.tauschii). Euphytica, 1995, 83(2) :87 - 93
    193.Macarthur L A, B L D-Appolonia, O J VBanasik, The falling number test-what is it and how does it work? North Dakota Farm Research,1981.38(5):15-18,22
    194.Mares, D J KMrva. Characterization of the high a2amylase in grain ofthe wheat cultuvar, BD 159. Aus J Agri Res., 1994,45:1003 -1011
    195.McKendry A L, Tague D N, Miskin K E. Effect of 1BL.1RS on agronomic performance of soft redwinterwheat.Crop Sci., 1996a, 36:844-847
    196.McKendry A L. Effect of 1BL/1RS on milling and baking quality of soft red winter wheat. Crop Sci., 1996b, 36 :848 - 851
    197.MetakovskyE V.Relationship between gliadin alleles and dough strength in itailan wheat.Cultivars J Cereal Sci., 1997, 25 :229-236
    198.Miles, M.J. Carr, HJ. et al.Scanning tunneling microscopy of a wheat seed storage protein reveals details of an unusual supersecondary structure. Proc.Natl.Acad.Sci.USA,1991.88:68-71
    199.Moreno-Sevilla B, Baenziger P S, Peterson C J, et al. The 1BL/1RS translocation:Agronomic performance of F3-derived lines from a winter wheat cross.Crop Sci., 1995a, 35,1051-1055
    200.Mrva K, MaresD J. Control of late maturity a-amylase synthesis compared to enzyme synthesis during germination. in Preharvest Sp routing in Cereals 1995Noda, K, Mares,D. J. (eds). Centre for Academic Societies Japan, Osaka, 1996. 419-426.
    201.Mujeeb KaziA, RosasV, Roldan S. Conservation of the genetic varia2tion of Triticum tauschii (Coss.) Schmalh. (Aegilops squarrosa auct.non L. ) in synthetic hexap loid wheats ( T. turgidum L. S. lat.×T.tauschii;2n = 6x = 42, AABBDD ) and its potential utilization for wheat improvement. Genetic Resources and Crop Evolution, 1996,43:129-134
    202.Mujeeb-Kazi A, William M D H M, Villareal R L, et al. Registration of 10 isogenic chromosome 1 and 10 T1BL.1RS chromosome translocation bread wheat germplasms.Crop Sci, 2001,41:280-281
    203.Mujeeb-KaziA, Riera2Lizarazu O, William M D H M. Production of polyhap loid wheat p lants usingmaize and Tripsacum. In:Mujeeb2Kazi A, Hettel G P (eds.),UtilizingWild GrassBiodiversity in Wheat Improvement: 15 Years of Wide Cross Research at CIMMYT, CIMMYT Research Report No. 2, Mexico, CIMMYT, 1995,pp. 47-65 (6):694-697
    204.Nelson J C, Andreescu C, Breseghello F, et,al.. Quantitative trait locus analysis of wheat quality traits. Euphytica, 2006,149:145-159
    205.Niu Y C, Liu H Y, Zhong M, et al. RAPD markers linked to yellow rust resistance genes in wheat.In: The Ninth European Congress on Biotechnology CD ROM Proceedings. Brussels: Branche Beige de la Societe de C Himie Industrielle.1999
    206.Olmos S, Distelfeld A, Chicaiza O, et,al. Precise mapping of a locus affecting grain protein content in durum wheat. Theoretical and Applied Genetics, 2003,107:1243-125
    207.Omebor J, Wahlgren M, EliassonA C, et al.Adsorption of α-, β-,γ-andω-giladins onto hydrophobic surfaces. Journal of Cereal Science, 1999, 30:105-11
    208.Osbornet.T.B.The vegetable proteins, p154 London:Longmans, Green&CO
    209.Payne P I Genetics of wheat storage protein and t he effect in allelic variatuin in bread making quality. Ann1 Rev1 Plant Physioll, 1987,38 :141-153
    210.Payne P I, Coifield K G. Subunit composition of wheat gluteninin proteins isolated by gel filcration in a dissociating medium. Planta, 1979,145(1) :83 -88
    211.Payne P I, Corfield K G, Blackman J A. Correlation between the inheritance of certain high-molecular-weight subunits of gluteninin and bread-making quality in progenies of six crosses of bread wheat. Journal of Science of Food and Agriculture, 1981,32 :51-60
    212.Payne P I, Lawrence GJ. Catalogue of alleles for the complex gene loci, Glu-A1,Glu-B1, and Glu-D1 which code for high molecular weight subunits of gluteninin in hexaploid wheat. Cereal Research Communications, 1983, 11 :29-35
    213.Payne P I, Nightingale MA, Krattiger A F, et,al. The relationship between HMW gluteninin subunit composition and the bread-making quality of British grown wheat varieties. J Sci Food Agric, 1987, 40 :51 -65
    214.Payne P I.. Relationship between HMW Gluteninin subunit composition and measures of the Breeding-making quality of wheat Varieties grown in Spain. J.Cereal Sci. 1988,7:229-236
    215.Payne P.I. Law C. N. Mudd E. E Control by homologous group 1 chromosomes of the high-molecular-weight subunits of gtutenin in hexaploid wheat. Theor. Appol.Genet.,1980,58:113-120
    216.Perwaiz M S., Johnson R. Genes for resistance to yellow rust in seedlings of wheat cultivars from Pakistan tested with British isolates of Puccinia striiformis. Plant Breeding,1986,97: 289-296
    217.Pestsova E, Korzun V, Goncharov N P, et,al. Microsatellite analysis of Aegilops tauschii germplasm.Theoretical and Applied Genetics, 2000,101:100-106
    218.PeterR, NigelG. Cereal seeds to rage proteins:structures, properties and roleing rain utiilzation.Journal of Experimental Bortany, 2002, 53 :370-374
    219.Pfliiger L A, Suatez E Y, Afiandra D L. Relationships between wheat high molecular weigh quality subunits compositions, IRS translocations and SDS sedimentation volume. J Genet &Breed, 1998, 52:271-279
    220.Ppogna N E :Recombination mapping of Gli-1 a new gliadin-coding locu on comosomes 1A and1B in common wheat.Theor Appl Genet, 1993, 87 :113-121
    221.Prasad M, Kumar N, Kulwal P L, et,al. QTL analysis for grain protein content using SSR markers and validation studies using NILs in bread wheat. Theoretical and Applied Genetics, 2003, 106:659-667
    222.Prasad M, Varshney R K, Kumar A, et,al.. A microsatellite marker associated with a QTL for grain protein content on chromosome arm 2DL of bread wheat. Theoretical and Applied Genetics, 1999, 99:341-345
    223.Rabinovich S V. Importance of wheat-rye translocations for breeding modern cultivars of TriticumaestivumL.Euphytica, 1998,100:323-340
    224.Rahman S, Li Z, Batey I, Cochrane M P, et ,al. Genetic alteration of starch functionality in wheat. Journal of Cereal Science, 2000, 31:91-110
    225.Rajaram S, E Villegas. Breeding wheat (Triticum aestivum L.) for aluminium toxicity tolerance at CIMMYT. In:N. El Bassam, M. Dambroth, and BC Loughman (eds), Genetic Aspects of Plant Mineral Nutrition, 1990,489-495
    226.Rajaram S, Mann C E, Oriz-Ferrara G, et al. Adaptation, stability and high yield potential of certain 1B/1R CIMMYT wheats. In:Proceedings of the Sixth International Wheat General Symposium.Kyoto, Japan, 1983,613-621
    227.Reddy MSS. Hypothetical genotypes for low reaction to Puccinia recondite in eight wheat cultivars of India. Phytopathology, 1980,70:392-93
    228.Redelli R. Two dimensional mapping of gliadins using biotypes and nullmutants of common wheat.Cultivar Saratovskaya 29 Heteditas, 1994:121:131-137
    229.Robert O, et al. Combination of resistance tests and molecular tests to postulate the yellow rust resistance gene Yr17 in bread wheat lines. Plant Breeding, 2000,(119):467-472
    230.R(?)der M S, Korzun V, Wendehake K, et,al. A microsatellite map of wheat. Genetics,1998,149:2007-2023
    231.Rogers WJ, Payne P I, Harinder K1 The HMW gluteninin subunit and gliadin compositions of German grown wheat varieties and their relationship with bread2making quality . Plant Breed, 1989,103 :89-1001
    232.Rogers WJ, Sayers E J, Law C N1 Dosage effects of chromosomes of homoeologous groups 1 and 6 upon bread2making quality in hexaploid wheat. Theor Appl Genet.,1990, 80 :81-2871
    233.Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning-A Laboratory Manual. (2nd ed). Cold Spring Habour Laboratory Press, New York, 1989
    234.Schlegel R, V Korzun. About the origin of 1RS.1BLwheat-rye chromosome translocations from Germany. Plant Breed, 1997,116:537-540
    235.Schwarzlaff S S, Uriyo M G, Johnson J M, et,al. Apparent dough stickiness of selected 1B-1R translocated soft wheat flours. Cereal Chem., 2001, 78 (1) :93 -96
    236.Sehwarz G, Sift A, Wenzel G, Mohler V.D HPLC scoring of a SNP between Promoter Sequences of HMW gluteninin x-type alleles at the Glu-Dl locus in wheat. Journal of Agricultural and Food Chemistry,2003, 51:4263-4267
    237.Shewry P R. Miflin B. J. and Kasarda D. D. The structural and evolutionary relationships of the prolamin storage proteins of barley, rye, and wheat.Phil Trans.R.Soc.Lond.Ser.B, 1984.29 7-304
    238.Shewry P. R. Halford N. G Tatham A. S. High-molecular-weight subunits of wheat gluteninin. J Cereal Sci. 1992. 15:105-120
    239.Shewry PR.TathamA.S.and Lazzeri P. Biotechnology of wheat quality.J Sci Food Aric,1997, 73:397-406
    240.Sissons M J, Bekes F, Skerritt J H. Isolation and functionality of low molecular weight glutenin subunits. Cereal Chemistry, 1998, 75:30-36
    241.Song Q J, Fickus E W, Cregan P B. Characterization of trinucleotide SSR motifs in wheat. Theoretical and Applied Genetics, 2002, 104:286-293
    242.Sourdille P, Guyomarc'h H, Baron C, et,al. Improvement of the genetic maps of wheat using new microsatellite markers. Plant Animal Genome IX Abstracts, 2001:167
    243.Stenvert N L and Kingswood K.The influence of the physical structure of the protein matrix on wheat hardness. J Sci. Fd. Agrc. ,1977, 28:11-19
    244.Sutton K. H. Qualitative and quantitative variation among high molecular weight subunits of gluteninin detected by reverse-phase high performance liquid chromatography . J Cereal Sci. ,1991,14:25-34
    245.Taenzler B, Esposti R F, Vaccino P, et,al. Molecular linkage map of Einkorn wheat:mapping of storage-protein and soft-glume genes and bread-making quality QTLs. Genetical Research, 2002, 80:131-143
    246.Tanaka, M. Geographical distribution of Aegilops species based on the collections at the Alant Germplasm Institute, Kyoto University. Proc.6~(th).intern. Wheat, Genet. Symp.Kyoto. Japan, 1983,1009-1024
    247.TathamA.S. DrakeA.E and Shewry P R.Conformational studies of peptides derived by enzymatic hydrolysis of αγ-type gliadin. J Cereal Sci.,1990a, 11 :1-13.
    248.Tester R F, Morrison W R.S welling and gelatinization of cereal starches, Waxy rice starches Cereal Chem, 1990, 67:558-563
    249.Tomoko Sasski, Takesht Yasui, Iunko Matsuki. Effect of amylose content on gelatinization retrogradation and pasting properties of starches from Waxy and Nonwaxy wheat and their F_1 seeds. Cereal Chem., 2000, 77(1):58-65
    250.Toyokawa H Rubenthaler G L et al. Japanese noodle qualities I Flour components. J Cereal Chem., 1989, 66 (5) :387-391
    251.Udall J A, Souza E, Anderson J, Sorrells M E, Zemetra R S. Quantitative trait loci for flour viscosity in winter wheat. Crop Science, 1999, 39:238-242
    252.Uthayakumaran S, Beasley HL, Stoddard FL,et ,al. Synergistic and additive effects of three highmolecular weight gluteninin subunit loci Effects on wheat dough rheology.Cereal Chemistry, 2002, 79(2) :294 -300
    253.Van Ginkle M, Francis O. 2007. Novel genetic diversity from synthetic wheats in breeding cultivars for changing production conditions. Field Crops Research 104,86-94
    254.Villareal R L, Bafluelos O, Mujeeb-Kazi A, et al. Agronomic performance of chromosomes 1B and T1BL/1RS near-isolines in spring Bread wheat Seri M82.Euphytica, 1998, 103:195-202
    255.Villareal R L, Banuelos O, Mujeeb-Kazi A. Agronomic performance of related durum wheat (Triticum turgidum L.) stocks possessing the chromosome substitution T1BL/1RS.Crop Sci., 1997, 37:1735-1740
    256.Villareal R L, Mujeeb-Kazi A, Rajaram S, et al. Associated effect of chromosome1B/1R translocation on the agronomic traits in hexaploid wheat. Breeding Sci., 1994,44:7-11
    257.Villareal R L, Rajaram S, Mujeeb-kazi A, Del Toro E. The effect of chromosome 1BL/1RS translocation on the yield potential of certain spring wheat (Triticum aestivumL.).Plant Breed, 1991, 106:77-81
    258.Wang, G, J.W.SnaPe, H.Hu.and W.J.ROgers. The high-molecular -weight giutenin subunit compesition of Chinese bread wheat varieties and their relationship with bread-making quality.Euphytica, 1993,68:205-212
    259.Wei Y-M(魏育明), Zheng Y-L(郑有良), Zhou Y-H(周永红),et,al. The effects of chromosome 1RS/1BL translocation on the agronomic characters of common wheat revealed by RFLP markers. Southwest China J Agric Sci.(西南农业学报), 1999,12:105 110(in Chinese with English abstract)
    260.Wiener H, Moudl A, Seilmeier W, et al.High-performance liquid chromatography of giladins from different wheat varieties:amino acid composition and N -terminal amino acid sequence of components. Zeitschrift Lebensmitel Untersuchung and Forschung,1987;185:371-378
    261.Wieser H, Kieffer R, Lelley T. The influence of 1B/1R chromosome translocation on giutenin protein composition and technological properties of bread wheat. J Sci Food Agric, 2000, 80:1640-1647
    262.Worland T. and Snape J. W. Genetic basis of worldwide wheat varietal improvement,P59-102, in The World Wheat Book. A history of Wheat Breeding OA.P. Bonjean and W.J. Angus(eds), 2000, Lavoisier Publishing
    263.Woychick JH, Boundy JA, Dimler R A. Starch gel electrophoresis of wheat giutenin proteins with concentrated uera. Archives of Biochemistry and Biophysics, 1961,94:477-482
    264.Wrigley C W, Robinson P J, Williams W T. Association between individual gliadin proteins and quality, agronomic and morphological attribute of wheat cultivars.Aust Agric Res., 1982, 33:409-418
    
    265.Wrigley C. W. Giant proteins with flour power. Nature. 1996. 381:738-739
    266.Yang W Y, Yu Y, Zhang Y, et al. Inheritance and exp ression of stripe rust resistance in common wheat ( Triticum aestivum ) trans-ferred from Aegilops tauschii and its utilization. Hereditas, 2003,139 (1) :49 - 55
    267.Zanetti M, Winzeler C, Feuillet B, Keller B, Messmer M. Genetic analysis of bread-making quality in wheat and spelt. Plant Breeding, 2001, 120:13-19
    268.Zeleny, L. A simple sedimentation test for estimating the bread baking quality and giutenin qualities of wheat flour.Cereal Chemistry, 1947, 24:465-475
    269.Zeller F J, Hsam S L K. Broadening the genetic variability of cultivated wheat by utilizing rye chromatin. In:Proceedings of the 6th International Wheat Genetics Symposium.Kyoto University,Kyoto,Japan,1983,161-173
    270.Zeng Z B,Precision mapping of quantitative trait loci,Genetics,1994,136:1457-1468
    271.Zhang L P,Ge X X,He Z H,et,al.Mapping QTLs for polyphenol oxidase activity in a DH population from common wheat.Acta Agronomica Sinica,2005,31:7-10.(in Chinese)
    272.Zhang Y,He Z H,Ye G Y,et,al.Effect of environment and genotype on bread-making quality of spring-sown spring wheat cultivars in China.Euphytica,2004,139:75-83
    273.Zhang Y,Zhang Y,He Z H,et,al.Milling quality and protein properties of autumn-sown Chinese winter wheats evaluated through multi-location trials.Euphytica,2005,143:209-222
    274.Zhao Y M(赵友梅),Wang S J(王淑俭).The application of HMWgluteninin subunits in the study of wheat baking quality property.Acta Agronomica Sinica(作物学报),1990,16(3):208-218
    275.Zhuang Q S,Du Z H.Advance in wheat breeding research in China.Beijing:Chinese Agricultural Press,1996:234-240.(in Chinese)
    276.Zoldan S M,Barcellos A L.Postulation of genes(Lr) for resistance to leaf rust in Brazilian wheat cultivars.Fitopatol.Bras.,2002,27(5),508-516

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700