基于生长模型的温室黄瓜氮素管理决策支持系统
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮素是影响作物生长、产量和品质形成的重要营养元素。我国温室作物生产中采用大肥大水的粗放管理方式,不仅导致温室作物生产氮肥利用率低下,而且因氮肥的大量淋洗而造成地下水污染等环境问题。温室作物生产中氮肥管理的优化是提高氮肥利用率、保证作物产量和品质、实现无公害生产的重要措施之一。生长模型可以预测不同氮素供应条件下作物的生长与产量,是作物生产中氮素优化管理决策的有力工具。黄瓜为世界也是我国温室主要栽培作物之一。本研究通过不同氮素处理的试验,对已有的温室黄瓜生长模拟模型进行检验。收集温室周年气象数据、作物信息、栽培管理等信息,建立了系统的数据库。在此基础上,将数据库、温室黄瓜生长模拟模型与氮素优化管理决策模型有机集成,建立了基于生长模型的温室黄瓜氮素管理决策支持系统。并用不同定植期、不同氮素营养液浓度下的温室黄瓜生产实验数据对系统的氮素管理决策进行了案例分析。具体研究结果如下:
     (1)模型检验:通过2007年至2008年在上海农科院Venlo型温室里不同氮素处理(40、80、120、160mg·L-1)下的温室黄瓜‘戴多星’的生产实验研究,获取独立完整的试验数据,对现有的氮素对温室黄瓜生长影响的模拟模型进行检验,并分析模型的可靠性和实用性。结果表明,该模型对本试验对叶面积指数、植株总干物质量、果实干重和产量的预测结果与1:1直线之间的R2和RE分别为0.92、0.94、0.93、0.95、12.1%、13.1%、9.7%、9.1%。表明该模型具有较好的预测性和可靠性。
     (2)决策模型:将温室黄瓜生长模拟模型与营养液氮素管理优化模型相结合,构建了黄瓜氮素管理决策模型。模型可以根据用户预设定的目标采收期和目标产量Y和温室环境信息计算出盛果期适宜叶片含氮量和对应的营养液浓度。目标产量Y与盛果期叶片含氮量以及对应的营养液浓度的关系如下:Y120=120×(Y/Tday) DW=Y120×DMC/HI/PIF HI=HImax×(1-exp(-c×(TEPab-13))) TEPab>13 b=0.0095+(0.042-0.0095)×exp(-0.044×NL) c=0.025+(0.059-0.025)×exp(-0.058×NL) N%=m×exp (-n/NC)×10
     式中DW为黄瓜总干重;Y120为累积采果120天的黄瓜产量。Y为黄瓜目标产量(kg.m-2);Tday为目标采果天数(day); NC为营养液浓度,mg·L-1;N%为盛果期叶片含氮量,mg·g-1;m为不同定植期黄瓜盛果期叶片含氮量的理论最大值,(mg·g-1);参数n为负指数曲线的斜率。根据本研究数据,春夏差黄瓜参数m、n取值分别为38、9.4,秋冬茬黄瓜m、n取值为42、11.3。TEPab为一定生长阶段内的累积辐热积(MJ·m-2);b为果实分配指数相对增加速率,c为采收指数相对增加速率;DMC为黄瓜的干物质含量,即黄瓜的干鲜比,(g·g-1)。
     利用不同定植期(春夏茬、秋冬茬)、不同氮素处理浓度下的温室黄瓜生产数据对决策系统进行了案例分析,结果表明:随着目标产量的增大盛果期叶片氮浓度随着增大。春夏茬温室黄瓜120天累积产量稳定在7.2kg.m-2左右,要达到这一目标产量的最小叶片氮浓度为34 mg·g-1,对应的营养液浓度为113 mg·L-1。秋冬茬黄瓜120天累积产量最后稳定在6.5kg·m-2,要达到这一目标产量,盛果期叶片氮浓度最小要32mg·g-1,对应的营养液浓度为82 mg·L-1。
     (3)系统的实现:系统以windowsXP为开发平台,利用Microsoft Acesses构建数据库,采用VB语言进行系统编程。系统数据库包括:温室环境数据、作物数据、栽培管理数据;系统模型库包括:氮素对温室黄瓜生长影响模拟模型、氮素管理决策模型。系统的输入信息主要包括温室类型、栽培管理数据和作物品种数据,系统的输出信息主要为盛果期叶片氮浓度、营养液浓度和配方。系统能够根据温室的环境信息、目标产量给出温室黄瓜生产的适宜的氮素管理方案,可以为温室黄瓜生产的氮素优化管理提供决策支持。
Nitrogen is an essential nutrient element which affects the crop growth and the yield and quality. The extensive management used in china greenhouse crop production leads not only to reduction of nitrogen utilization, but also to the environment problems such as the pollution of groundwater caused by the leaching of excessive nitrogen fertilizer. Optimizing the nitrogen management in greenhouse production is one of the most important measures to improve nitrogen utilization, ensure the yield and quality, and achieve the pollution-free production. As a powerful tool to optimize nitrogen management and decision-making in crop production, crop growth model is able to predict the crop growth and yield under various levels of nitrogen supply. Cucumber is one of the major cultivated crops in china. Combined with gathering annual meteorological data, crop information, cultivation management information, etc, the research validates the existed greenhouse cucumber growth simulation model through the experiment of various nitrogen treatments, sets up a systematic data-base, establishes nitrogen management and decision-making system of greenhouse cucumber based on the growth model by organic integration of date-base, greenhouse cucumber growth simulation model and optimized model of nutrient solution nitrogen management. Then experimental data obtained in different planting date and nitrogen concentration of nutrient solution are used to analysis the nitrogen management and decision-making system. The concrete results including:
     (1) Model validation:independent and complete experimental data acquired from the practice research of greenhouse cucumber'daiduoxing'under different nitrogen treatments (40,80,120,160mg·L-1) in Shanghai Academy of Agriculture Sciences Venlo-type greenhouse from the year 2007 to 2008 were used to validate the effects of existed nitrogen treatments on greenhouse cucumber growth simulation model and analysis the reliability and practicality. The results showed that the coefficient of determination (R2) and the relative error (RE) between the measured and simulated leaf area index (LAI), total dry weight, fruit dry weight and yield are 0.92,0.94,0.93,0.95 and 12.1%,13.1%,9.7%,9.1%, respectively, indicate preferable predictability and reliability of this model.
     (2) Decision model:combining the greenhouse cucumber growth simulation model with optimized nutrient solution nitrogen management model, a decision-making model of cucumber nitrogen management has been established. According to the greenhouse environment information and the user's presetting target harvesting time and target yield Y, the model calculates the suitable leaf nitrogen concentration NL and the corresponded nutrient solution concentration NC. The relationships among Y, NL, and NC can be derived:
     Y120=120×(Y/Tday)
     DW=Y120*DMC/HI/PIF
     N%=m*exp(-n/NC)*10
     HI=HImax×(1-exp(-c*(TEPab-13))) TEPab>13
     b=0.0095+(0.042-0.0095)×exp(-0.044×NL)
     c=0.025+(0.059-0.025)×exp(-0.058×NL)
     Where DW is total dry weight, Y120 is the accumulated yield in 120 days. Y, Tday, NC, N%, m, N,10 represent the target yield (kg·m-2), harvest days (day), nutrient solution concentration (mg·L-1), leaf nitrogen concentration (mg·g-1), theoretical maximum value of leaf nitrogen concentration in full fruit period under different planting date, the slope of negative exponential curve, and conversion factor, respectively. According to our research, the parameter m and n took value at 38,9.4 in spring-summer season respectively, and at 42, 11.3 in autumn-winter season respectively.; PIF is portioning index of fruit, HI is harvest index, and TEPab (MJ·m-2) is the accumulated product of thermal effectiveness and PAR during certain growth stage. NL, b, c, DMC represent leaf nitrogen concentration in full fruit period (mg·g-1), relative increasing rate of PIF, relative increasing rate of HI, and cucumber dry matter content (g·g-1).
     The case analysis of decision-making model focused on greenhouse cucumber production data obtained from different planting date and various nitrogen concentration treatments, indicated that in full fruit period the leaf nitrogen concentration increases along with the increase of the accumulated yield in 120 days. To attain the target yield that 7.2kg·m-2 in the spring-summer season and 6.5kg·m-2 in the autumn-winter season, the minimum leaf nitrogen concentration at least reached at 34 mg·g-1 and 3.2 mg·g-1 in full fruit period which required the nutrient solution concentration at 113 mg·L-1 and 82 mg·L-1, respectively.
     (3) System realization:based on windows XP as a platform, the system uses Microsoft Accesses to construct date-base and adopts VB to system programming. Its database includes greenhouse environment data, crop data, and cultivation management data, while its model base includes the model of simulating the effect of nitrogen on greenhouse cucumber growth, the model of nitrogen management decision-making model. The inputs of the system include the type of greenhouse, crop varieties data and cultivation management data. The outputs of the system contain leaf nitrogen concentration, the concentration and formula of nutrient solution. Base on the greenhouse environmental information and the suitable nitrogen scheme given by the target yield, the system can provide the decision support for the nitrogen optimal management of greenhouse cucumber production.
引文
[1]张英,许晓红,田子玉.我国设施园艺的现状,问题及发展对策[J].现代园艺科技,2008,12:83-86.
    [2]李天来.我国设施园艺发展的方向[J].专家论坛,2005,5:4-5.
    [3]李式军.高级设施园艺学[M].北京:中国农业出版社,2002.
    [4]郑志英,李龙等.温室蔬菜生产中施肥存在的问题及对策[J].农业科技与信息,2004,11:18-21.
    [5]王子崇,杨丽红.影响日光温室蔬菜高产高效的因素及改进措施[J].安徽农业科学,2007,12:3521-3523.
    [6]陈淑芳,窦锟贤.不同营养液浓度对黄瓜幼苗生长的影响[J].安徽农业科学,2007,34:11056-11057.
    [7]刘慧瑾,侯海生.氮素对黄瓜生长发育的影响[J].北方园艺,2005,5:50-51.
    [8]王忠.植物生理学[M].北京:中国农业出版社,2000:84-85.
    [9]杨旭,郇志荣.蔬菜无士栽培营养液中的氮素及其调控[J].西北植物学报,2003,23(9):1644-1649.
    [10]马永生,韩秋香.温室蔬菜生产施肥存在的问题及改进措施[J].吉林蔬菜,2006,06:23-25.
    [11]Vos J R, Biemond H. Effects of nitrogen on the development and growth of the potato plant [J]. Annals of botany,1992,70:27-25.
    [12]孙忠富,陈人杰.温室作物模型与环境控制管理研究[J].中国农业生态学报,2003,10(4):1-3.
    [13]李冬梅,魏珉,孔祥波,等.氮磷钾不同用量及配比对日光温室黄瓜产量和品质的影响[J].中国农学通报,2005,21(7):262-265.
    [14]曹卫星,罗卫红.作物系统模拟及智能管理[M].北京:农业出版社,2003,2
    [15]谢云,James R Kiniry.国外作物生长模型发展综述[J].作物学报,2002,28(2):190-195.
    [16]de Wit C T,Photosynthesis of leaf canopies[R].Wageningen.Netherlands,1965.
    [17]de Wit C T,Simulation of Assimmdon,Respiration and Transpiration of Crops[J].Simulation Monographs Pudoc Wageningen,1991:269-284
    [18]Penning de Vires. Simulation and Systems analysis for rice production [J]. Simulation Monographs,1989:73-115
    [19]Penning de Vires F W T,Jansen D M,Ten Berge H F M, et al. Simulation of ecophysiological processes of growth in several annual crops. [J] Wageningen, Netherlands, PUDOC,1989.1-204
    [20]Goudriaan J,Montith JL.Amathematical function for crop growth based on light interception and leaf area expansion. [J].Annals of Botany,1990,66:695-701
    [21]Duncan W G, Hesketh J D. Net photosynthetic rates, relative leaf growth rates, and leaf numbers of 22 races of maize grown at eight temperatures [J].Crop Science,1968, (8):670-674
    [22]Ritchie J T, OTTER S. Description and performance of CERES— Wheat:A User—oriented wheat yield model[J].USDAARSARS.1985,38:159-175.
    [23]D.N.Baker, J.D.Hesketh,Simulation of growth and yield in cotton:respiration and the carbon balance[J].Crop Science society of America,1971,11:394-398
    [24]BAKER. D M. Simulation of growth and yield in cotton:a computer analysis of nutritional theory[J]. Proc Beltwide Cotton Prod Res Conf,1971,78:26-34.
    [25]曹永华.美国CERES作物模拟模型及其应用[J].世界农业,1991,(9)1:52-55
    [26]Acock B. Crop modeling in the USA[J].Acta Horticulture,1989,248:356-372
    [27]Marcelis L.F.M. Effect of sink demand on photosynthesis in cucumber[J].Journal of Experimental Botany,1991,42(244):1387-1392
    [28]Marcelis L.F.M. Fruit growth and biomass allocation to the fruits on cucumber:1.Effect of fruit load and temperature[J].Sciatica Horticulture,1993b,54:107-121
    [29]Marcelis L.F.M. Simulation of biomass allocation in greenhouse crops-a review[J].Acta Horticul-ture,1993,328:49-68
    [30]Marcelis L.F.M. A simulation model for dry matter partitioning in cucumber [J]. Annuals of Botany,1994,74(l):43-52
    [31]Marcelis L. F. M, Heuvelink and Goudriaan J. Modeling biomass production and yield of horticultural crop:a review [J]. Science Horticulture,1998,74 (1):83-111.
    [32]Dewar R C. A root-shoot partitioning model based on carbon-nitrogen-water interactions and Munch phloem flow [J]. Functional ecology,1993,7:356-368.
    [33]Hopper D A, Hammer P A, Wilson J R. A simulation model of Rosa hybrid growth response to constant irradiance and day and night temperature [J]. Am sci,1994,119:903-914
    [34]Lee.H, Goudriaan J, Challa H. Using the explainer growth equation for modeling crop growth in year-round cut chrysanthemum [J]. Annals of Botany,2003,92:697-708.
    [35]Fisher Paul R, Heins Royal D.A Decision-support System for Real-time Management of Easter Lily (Lilium IongzjTorum Thumb.) Scheduling and Height-1. System Description [J]. Agricultural System,1997,54(1):23-37
    [36]NEDERNOFF E M. A dynamic simulation model for greenhouse cucumber:validation of the sub model for crop photosynthesis [J]. Acta Horticulture,1982,248:255-263
    [37]Gijzer H, Heuvelink E, Marcelis L F M. HORTISM:A model for greenhouse crops and climate[J]. Acta Horticulture,1998,2:443-456
    [38]李军.作物生长模拟模型的开发应用进展[J].西北农业大学学报,1997.25(4):102-107.
    [39]伍德林,毛罕平.我国设施园艺作物模型研究进展[J].长江蔬,2007,2:36-41.
    [40]高亮之,金之庆,黄耀.水稻计算机模拟模型及应用一中国长江流域水稻气候生态系统研究第一号,南京:江苏省农业科学院,1989.
    [41]曹卫星,江海东.小麦温光反应与发育进程的模拟,南京农业大学学报.,1996.19(1):9-1635.
    [42]陈杰,杨京平.大麦生长发育的模拟研究[J].农业系统科学与综合研究,1999,15(4):262-265
    [43]刘铁梅,曹卫星,罗卫红,等.小麦器官问干物质分配动态的定量模拟[J].麦类作物学报,2001,21(1):25-31.
    [44]陈晴,孙忠富.温室黄瓜生长机理性模型与试验研究[D].中国农业科学院硕士学位论文,2005.
    [45]吴帆,毛罕平.可控环境下的黄瓜生物量积累[D].江苏大学硕士学位论文,2009
    [46]李永秀,罗卫红,倪纪恒,等.温室黄瓜干物质分配与产量预测模拟模型初步研究[J].农业工程学报,2006,22(2):116-121.
    [47]韩利,罗卫红.氮素对温室黄瓜花后干物质分配与产量形成影响的模拟[J].农业工程学报,2008,24(6):206-214
    [48]陈永山,罗卫红.叶片氮浓度对温室黄瓜花后叶片最大光合速率影响的模拟[J].农业工程学报,2007,24(27):13-20
    [49]R. Xu,J. Dai,W. Luo, A photothermal model of leaf area index for greenhouse crops,[J] Agricultural and Forest Meteorology,2010,150:541-552.
    [50]袁昌梅,罗卫红,邰翔等.温室网纹甜瓜干物质分配、产量形成与采收期模拟研究[J].中国农业科学,2006,39(2):353-360.
    [51]张生飞,罗卫红.温室黄瓜无土栽培营养液管理模型[J].灌溉排水学报,2009,28(2):41-45
    [52]曹永华.农业决策支持系统研究综述[J].中国农业气象,18(4):46-51
    [53]曹卫星,李存东,李旭,等.基于作物模型的专家系统-预测和决策功能的结合[J].计算机与农业,1998,(2):8-10.
    [54]Ginzberg M J, Stohr. EA. Decision support system:issues and perspective [J]. Decision Support System,1982:355-363.
    [55]Henk G.Sol. Conflicting experience with DSS[J]. Decision support systems,1987.3 (3):203-210.
    [56]Parsons D.J,Benjamin L.R. Weed Management-A model-based decision support system for weed management in arable crops[J].Computers and Electronics in Agriculture,2009,65:155-167
    [57]Savin R, Satorre E H, Hall A J, et al. Assessing strategies for wheat cropping in the monsoonal climate of the Pampas using the CERES-Wheat simulation model [J]. Field Crops Research,1995,42(2-3):81-91.
    [58]Keating B A, Carberry P S, Hammer R L, et al. An overview of APSIM, a model designed for farming systems simulation [J]. European Journal of Agronomy,2003,18(3-4):267-288.
    [59]Fisher Paul R, Heins Royal D.A Decision-support System for Real-time Management of Easter Lily (Lilium IongzjTorum Thumb.) Scheduling and Height-II.Validation [J]. Agricultural System,1997, 54(1):39-55
    [60]Clarke N.D,Shipp J.L. Development of the Harrow Greenhouse Manange:a decision support sys-tem for greenhouse cucumber and tomato[J].Computers and Electronics in Agricultur-e,1999,24:195-204
    [61]Xuan Zhu, McCosker J, Dale A.P. Web-based decision support system for regional vegetation management [J].Computers, Environment and Urban System,2001,25:605-62.
    [62]N.D. Clarke. Development of the Harrow Greenhouse Manager:a decision-support system for greenhouse cucumber and tomato [J]. Computers and Electronics in Agriculture,1999 (24) 195-204
    [63]Iftikhar U, Sikder. WEB-based decision support systems:An assessment of environmental adaptability of crops[J].Expert System with Applicatios,2009,3:5341-5347
    [64]徐寿军,顾小莉,王志刚.我国主要作物生长模拟模型研究进展[J].内蒙古民族大学学报(自然科学版),2005,20(4):415-421.
    [65]郑建华.农业生态经济决策支持系统[M].重庆:西南师范大学出版社,1994:41-42.
    [66]高亮之,金之庆,黄耀.水稻栽培计算机模拟优化决策系统[M].北京:中国农业科技出版社,1992,43.
    [67]戚昌瀚,殷新佑,刘桃菊.水稻生长日历模拟模型(RICAM)的调控决策系统(RICOS)研究[J].江西农业大学,1994.
    [68]高聚林.多媒体玉米优化栽培管理决策支持系统研究[D].山东农业大学,2001.
    [69]朱艳.基于知识模型的小麦管理决策支持系统的研究[D].南京农业大学,2003.
    [70]冯利平.棉花栽培计算机模拟决策系统(COTSYS) [J].棉花学报,1999,11(5):251-254
    [71]高亮之,金之庆,郑国清.小麦栽培模拟优化决策系统(WC-SODS)[J].江苏农业学报,2000.16(2):65-72.
    [72]许善祥.基于生长模型的温室番茄栽培管理专家系统研究[D].浙江大学,2003.
    [73]贾倩,孙忠富.基于番茄模型的温室环境管理系统研究[D].中国农业科学院,2009
    [1]张英,许晓红,田子玉.我国设施园艺的现状,问题及发展对策[J].现代园艺科技,2008,12:83-86.
    [2]李永秀,罗卫红,倪纪恒,等.温室黄瓜干物质分配与产量预测模拟模型初步研究[J].农业工程学报,2006,22(2):116-121.
    [3]Muchow R.C., T.R.Sinclair.Nitrogen response of leaf photosynthesis and canopy radiation use efficiency in field-grown Maize and Sorghum [J].crop Science.1994,34:721-727.
    [4]Kristofer Klein, UDO Blum. Effect of soil nitrogen level on ferulic acid inhabition of cucumber leaf expansion [J]. Journal of chemical ecology,1990,16:1371-1383.
    [5]马永生,韩秋香.温室蔬菜生产施肥存在的问题及改进措施[J].吉林蔬菜,2006,06:23-25.
    [6]李式军.高级设施园艺学[M].北京:中国农业出版社,2002.
    [7]李天来.我国设施园艺发展的方向[J].专家论坛,2005,5:4-5.
    [8]Guo, R., et al., Tracking nitrogen losses in a greenhouse crop rotation experiment in North China the EU-Rotate_N simulation model, Environ. Pollut. (2010), doi:10.1016/j.envpol.2010.02.014
    [9]H.-P. Klaring,C. Hauschild, Model-based control of CO2 concentration in greenhouses at ambient levels increases cucumber yield,[J]Agricultural and Forest Meteorology 143 (2007):208-216
    [10]Challa Hogo, Heuelink E. Photosynthesis driven crop models for greenhouse cultivation:advances and bottle-neck [J]. Acta horticulture,1996,417:9-22.
    [11]Marcelis L F M, Heuvlink E,Goudriaan J. Modeling biomass production and yield of horticultural crops:a review[J].Science horticulture,1998,74:83-111.
    [12]Marcelis L F M, Heuvlink E,Goudriaan J. Modeling biomass production and yield of horticultural crops:a review[J].Science horticulture,1998,74:83-111.
    [13]Le Bot J, Adamowicz S, Robin P. Modeling plant nutrition of horticultural crops:a review [J].Science Horticulture,1978,74:47-82.
    [14]Penning de Vries F W T, Van laar H H. Simulation of growth processes and the model BACROS. Simulation of plant growth and crop production. Pudoc, Wageningen,1982,114-135.
    [15]Alt C, Kage H, Stutzel H. Modeling nitrogen content and distribution in cauliflower [J]. Annals of botany,2000,86:963-973.
    [16]Peri P. L, Moot D.J, McNei D.L, et al. Modeling net photosynthetic rate of field-grown cocksfoot leaves under different nitrogen, water and temperature regimes [J]. Blakwell Science Ltd, Grass and Forage Science,2002,57:61-71.
    [17]Vos J R, Biemond H. Effects of nitrogen on the development and growth of the potato plant [J] Annals of botany,1992,70:27-25.
    [18]Cechin Ines, Terezinha de Fatima Fumis. Effect of nitrogen supply on growth and photosynthesis of sunflower plant grown in greenhouse [J].Plant science 2004,166:1379-1385.
    [19]J. Vos, P.E.L. van der putten, C.J.Brich. Effect of nitrogen supply on leaf appearance, leaf growth, leaf nitrogen economy and photosynthetic capacity in maize [J]. Field crops research 2005,93: 64-73
    [20]陈永山,罗卫红.叶片氮浓度对温室黄瓜花后叶片最大光合速率影响的模拟[J].农业工程学报,2007,24(27):13-20
    [21]韩利,罗卫红.氮素对温室黄瓜花后干物质分配与产量形成影响的模拟[J].农业工程学报,2008,24(6):206-214
    [22]张生飞,罗卫红.温室黄瓜无土栽培营养液管理模型[J].灌溉排水学报,2009,28(2):41-45
    [23]R. Xu, J. Dai, W. Luo, A photothermal model of leaf area index for greenhouse crops [J]. Agricul-tural and Forest Meteorology,2010,150:541-552.
    [24]Evan. Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivum L.)[J].Plant physiology,1983,72:297-302.
    [25]Xinyou YIN. Some quanritative relationships between leaf area index and canopy nitrogen content and distribution [J] Annals Of Botany,2003,91(7):893-903
    [26]Goudriaan J, van Laar HH. Modeling potential crop growth processes [M]. Kluwer academic Publishers, the Netherlands,1994:149-165.
    [27]Daia T, Wiegert R.G. A field study of photosynthetic capacity and its response to nitrogen fertilization in spartina alterniflora [J]. Estuarine, Costal and Shelf Science,1997,45:173-283.
    [28]Amthor J S. The role of maintenance respiration in plant growth [J]. Plant Cell Envoriment,1984, 7:561-569.
    [29]Amthor J S. Respiration and crop production Springer-Verlag, New York,1989,43:155-169.
    [1]王子崇,杨丽红.影响日光温室蔬菜高产高效的因素及改进措施[J].安徽农业科学,2007,12:3521-3523.
    [2]林克惠.施肥对农产品品质的影响[J].云南农业大学学报,1996,11(6):114-120.
    [3]李冬梅,魏珉,孔祥波,等.氮磷钾不同用量及配比对日光温室黄瓜产量和品质的影响[J].中国农学通报,2005,21(7):262-265.
    [4]刘慧瑾,侯海生.氮素对黄瓜生长发育的影响[J].北方园艺,2005,5:50-51.
    [5]李永秀,罗卫红,倪纪恒.用辐热积法模拟温室黄瓜叶面积、光合速率与干物质产量[J].农业工程学报,2005,21(12):131-136.
    [6]李永秀,罗卫红,倪纪恒,等.温室黄瓜干物质分配与产量预测模拟模型初步研究[J].农业工程学报,2006,22(2):116-121.
    [7]韩利,戴剑峰,罗卫红.氮素等温室黄瓜开花后干物质分配的影响模拟研究[J].农业工程学报,2008,24(6):206-213.
    [8]吴帆,毛罕平.可控环境下的黄瓜生物量积累模型研究[J].江苏大学优秀硕士学位论文,2009,06.
    [9]曹卫星,罗卫红.作物系统模拟及智能管理[M].北京:农业出版社,1995,43.
    [10]王纪章,李萍萍.基于作物生长和控制成本的温室气候控制决策支持系统[J].农业工程学报2006,22(9):168-172
    [11]李萍萍,夏志军.温室黄瓜环境管理智能决策支持系统初探[J].江苏大学学报,2004,25(1):5-9
    [12]陈步英.基于WEB的温室黄瓜病虫害专家系统的开发应用[J].农业工程学报,2007,3:159-162
    [13]N.D. Clarke, J.L. Shipp. Development of the Harrow Greenhouse Manager:a decision-support system for greenhouse cucumber and tomato[J].Computers and Electronics in Agriculture,24 (1999)195-204
    [14]王子崇,杨红丽.基于web的温室黄瓜生产专家系统的研究[J].北方园艺,2009(7):254-256
    [15]朱艳,曹卫星,王其猛,等.基于知识模型和生长模型的小麦管理决策支持系统[J].中国农业科学,2004,37(6):814-820.
    [16]陈砣,吕新.基于JSP的棉花施肥管理决策系统的设计与实现[J].农业工程学报,2009,25(3):124-130
    [17]叶宏宝.基于生长模型的稻麦轮作生产管理决策支持系统研究[J].麦类作物学报,2007,27(2):276-281
    [18]Mckinion J M, Baker D M. Application of t he GOSSYM/COMAX system to cotton management [J]. Agricultural Systems,1989,312:55-65.
    [19]高亮之,金之庆,郑国清,等.小麦栽培模拟优化决策系统(WCSODS)[J]江苏农业学报,2000,16(2):25-72.
    [20]Hoogenboom G, J ames W J, Chery H P, et al. DSSAT Version 4.0 overview, Volume 1[M]. University of Hawaii, Honolulu, Hawaii,2003.
    [21]宋胭脂,张建平,等.现代温室黄瓜产量规律及环境因子分析[J].西北农林科技大学学报,2005,2(33)107-112
    [22]张生飞,罗卫红.温室黄瓜无土栽培营养液管理模型[J].灌溉排水学报,2009,28(2):41-45
    [23]Iftikhar U, Sikder. WEB-based decision support systems:An assessment of environment aladaptability of crops [J]. Expert System with Applicatios,2009,3:5341-5347
    [1]李冬梅,魏珉,孔祥波,等.氮磷钾不同用量及配比对日光温室黄瓜产量和品质的影响[J].中国农学通报,2005,21(7):262-265.
    [2]陈淑芳,窦锟贤.不同营养液浓度对黄瓜幼苗生长的影响[J].安徽农业科学,2007,34:11056-11057.
    [3]刘慧瑾,侯海生.氮素对黄瓜生长发育的影响[J].北方园艺,2005,5:50-51.
    [4]Marcelis L.F.M. Fruit growth and biomass allocation to the fruits on cucumber:1.Effect of fruit load and temperature[J].Sciatica Horticulture,1993b,54:107-121
    [5]Dewar R C. A root-shoot partitioning model based on carbon-nitrogen-water interactions and Munch phloem flow [J]. Functional ecology,1993,7:356-368.
    [6]Marcelis L.F.M. Simulation of biomass allocation in greenhouse crops-a review[J].Acta Horticulture,1993,328:49-68
    [7]Vos J R, Biemond H. Effects of nitrogen on the development and growth of the potato plant [J].Annals of botany,1992,70:27-25.
    [8]Marcelis L.F.M. A simulation model for dry matter partitioning in cucumber [J]. Annuals of Botany,1994,74(1):43-52
    [9]李永秀,罗卫红,倪纪恒,等.温室黄瓜干物质分配与产量预测模拟模型初步研究[J].农业工程学报,2006,22(2):116-121.
    [10]韩利,罗卫红.氮素对温窒黄瓜花后干物质分配与产量形成影响的模拟.[J]农业工程学报,2008,24(6):206-214
    [11]Iftikhar U, Sikder. WEB-based decision support systems:An assessment of environment aladaptability of crops[J].Expert System with Applicatios,2009,3:5341-5347
    [12]曹卫星,罗卫红.作物系统模拟及智能管理[M].北京:农业出版社,2003,2

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700