肝素微图形的制备及对细胞行为的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用非平衡磁控溅射沉积技术在硅基底上制备了锐钛矿晶形为主的钛氧薄膜(Ti-O)。利用3-氨丙基瞵酸(APPA)对Ti-O进行活化,并使用傅里叶变换红外图谱分析(FTIR),接触角,X射线光电子能谱(XPS),扫描电子显微镜(SEM)和石英晶体微天平(QCM)对组装膦酸前后的Ti-O薄膜进行检测。此外,通过4-叠氮基苯胺对肝素进行修饰,利用紫外可见分光光度计和红外对改性后的肝素进行定性分析。在此基础上,利用365 nm波长的紫外灯在组装膦酸后的Ti-O薄膜(APPA/Ti-O)上固定肝素。利用甲苯胺蓝法对固定后的肝素进行定量,并进行部分凝血活酶时间(APTT)的测定,从而优化出实验所用肝素溶液的浓度。借助掩模板在APPA/Ti-O表面制备四种尺寸的肝素条纹微图形。使用光镜和台阶仪对甲苯胺蓝染色后的肝素图形样品进行形貌分析,最后研究图形对血小板和对内皮细胞行为的影响。
     红外、XPS、接触角、SEM和QCM测定结果显示:膦酸化后的Ti-O表面,出现微弱的APPA的亚甲基伸缩振动峰、N和P元素含量升高、亲水性显著增加、平整度增加、吸附质量增加,可以判定瞵酸APPA组装在Ti-O薄膜表面。
     经紫外可见分光光度计测定出改性后肝素溶液中出现苯环最大吸收峰,且红外检测结果表明改性后肝素分子中出现-N3和Ar-H伸缩振动峰,表明叠氮基苯胺已成功接枝到肝素分子中。
     甲苯胺蓝定量结果表明,在40mg/ml肝素浓度条件下,光固定于表面的肝素密度为3.8±0.7μg/cm2;该表面的APTT相对于血浆有所延长。通过甲苯胺蓝对肝素图形染色后发现利用光化学方法能够精确制备出肝素图形,经台阶仪检测图形轮廓可得出图形高度大约为30 nm。
     血小板和内皮细胞粘附实验表明,组装膦酸的Ti-O表面能够促进内皮细胞的生长但也促进血小板的粘附。肝素固定表面能够降低血小板的粘附和激活,但同时也不利于内皮细胞的增殖。肝素图形由上述两种表面按比例构成,其对血小板和内皮细胞的作用也发生了变化。肝素图形样品能够减少血小板的粘附,其效果与肝素平板样品相当。肝素图形样品还能促进内皮细胞粘附、铺展和增殖。由于图形上两种界面的综合作用,图形尺寸对细胞的生长也产生不同的影响。与细胞尺寸相近的的图形能够使细胞拉长并产生引导作用。而小尺寸的图形更有利于内皮细胞的增殖。细胞粘附力实验表明图形样品可促进细胞actin沿流体方向排布,提高细胞与基底的粘附作用。本研究为同时抑制血小板粘附和促进内皮细胞生长提供了可能,是血液接触材料表面改性的一种新的方法。
The anatase titanium oxide films (Ti-O) were synthesized on silicon substrates by Unbalance Magnetron Sputtering. The Ti-O was modified by 3-aminopropylphosphonic acid (APPA), and tested by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), water contact angle, scanning electron microscopy (SEM) and Quartz crystal microbalance (QCM). In addition, heparin was modified by 4-azidoaniline to obtain photoreactive heparin, which confirmed by ultraviolet absorbance spectra and FTIR. The heparin was immobilized on APPA modified Ti-O (APPA/Ti-O) using a UV lamp with a wavelength of 365 nm. The amount of heparin immobilized on the surface was determined using the toluidine blue assay. And activated partial thromboplastin time (APTT) was tested in order to optimize the concentration of photoactive heparin solution. The patterns of heparin with four different sizes of stripes were fabricated by photo-immobilization of photoreactive heparin on APPA/Ti-O in presence of photomask. The surface morphology of the patterned samples dyed by toluidine blue was examined using optical microscopy and surface profiler. The influences of patterns on the platelets and endothelial cells behaviour were investigated by in vitro tests.
     After treatment with APPA, two weak peaks of methylene of APPA could be found in FTIR spectrum of Ti-O. It was observed from XPS spectra that surface content of N and P increased. The surface became more hydrophilic, and the particle size of surface diminished. The quality increased after APPA assembly which was tested by QCM. The above results revealed that APPA had assembled on Ti-O surface.
     After heparin was modified, a maximum absorption assigned to azidophenyl group was observed in the ultraviolet spectrum, and stretching vibrations of C-N3 and Ar-H were found in the FTIR spectrum. The results above confirmed that the azide group had been introduced into heparin molecule.
     The photoactive heparin with a concentration of 40 mg/ml was used to make heparin patterns, and the non-patterned heparin sample (HEP40) was used as control. Upon UV irradiation, the heparin was immobilized on APPA/Ti-O surface which confirmed by FTIR results. The results of toluidine blue assay showed that the amount of heparin immobilized on HEP40 was 3.8±0.7μg/cm2. The APTT of HEP40 was prolonged compared to plasma. Optical images of patterned heparin showed the patterns were clear and could reproduce the mask pattern precisely. The height of pattern was about 30 nm confirmed by surface profiler.
     The results of platelets and endothelial cells adhesion showed that APPA modified Ti-O surface could enhance both endothelial cell growth and platelets adhesion. Nonpatterned heparin surface could reduce adhesion and activation of platelets but inhibit the proliferation of endothelial cell as well. Heparin pattern was fabricated in proportion with above two surfaces (APPA and heparin). The patterned heparin samples could reduce the platelet adhesion which represented the similar effect as HEP40. At the same time, the patterned heparin promoted cell adhesion, spreading and proliferation. Due to the compositive effects of two surfaces, the size of pattern could make different effects on the growth of endothelial cells. The micro stripes with a similar size as cell could induce the cells to elongate and arrange along the stripe direction. But the patterns with smaller size were benefit for proliferation of endothelial cell. The experiment of cell adhesive force indicated that the pattern could induce endothelial cells arranged as the direction of flow and improve the adhesive force between the cells and substrate. It may suggest a new modification method for blood-contacting device, providing the functions of both inhibiting thrombus formation and accelerating endothelialization simultaneously.
引文
[1]曾伟杰,凌友,支晓兴.心血管支架材料生物力学及生物相容性特征.中国组织工程研究与临床康复.2008,12(13):2531-2534.
    [2]卢永要,崔振铎等.各种材料在人工心脏瓣膜中的应用.金属热处理.2004,29(9):23-26.
    [3]黄楠,杨萍,冷永祥等.热解碳人工心脏瓣膜材料表面改性研究进展.生物医学工程学杂志.1999,16(2):127-131.
    [4]Bolz A, Schaldach M. Artificial heart valve:Improved blood compatibility by PECVD a-SiC:H coating. Artificial Organs,1990,144:260-269.
    [5]Mitamura Y, Hosooka K, Matsumoto T. Development of ceramic valve. J Biomater Appl.1989,4:33-55.
    [6]Dion I, Roques X, Baquey C, et al. Hemocompatibility of diamond-like carbon coating. Biomed Mater Eng,1993,5:51-55.
    [7]刘录山,王贵学.心血管移植物体外内皮化研究进展.中国医疗器械信息.2006,12(7):28-31.
    [8]王振义,李家增,阮长耿.血栓与止血基础理论与临床.第二版.上海科学技术出版社.1995:11-12.
    [9]胡波,何延政.人工血管内皮化的研究进展.中国组织工程研究与临床康复.2007,11(10):1923-1926.
    [10]俞耀庭.生物医用材料.天津大学出版社,2000:224.
    [11]陈俊英,万国江,冷永祥等.中国科学E辑工程科学材料科学.2005,35(11):1137-1144.
    [12]徐禄祥,刘艳文,周红芳等.不同晶体结构氧化钛薄膜性能研究.功能材料.2004增刊,35:2461-2465.
    [13]Falconnet D, Csucs G, Grandin HM, Textor M. Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials.2006,27:3044-3063.
    [14]田仁来.钛氧薄膜表面特征对内皮细胞生长影响的研究.西南交通大学硕士学位论文.2005:66.
    [15]陈俊英,冷永祥,杨萍等Ti(Ta)O2薄膜的表面形貌对血管内皮细胞生长量影响的研究.功能材料.2004增刊,35:2487-2489.
    [16]杨苹,周红芳等.非晶碳膜的表面润湿性对生物相容性的影响.功能材料.2004年增刊,35:2477-2478.
    [17]贝建中,屈雪,王身国.生物材料与细胞的相互作用.北京生物医学工程.2005,24(1):64-70.
    [18]Yabin Zhu, Yu Sun. The influence of polyelectrolyte charges of polyurethane membrane surface on the growth of human endothelial cells. Colloids and Surfaces B:Biointerfaces 2004,36:49-55.
    [19]张玉梅,赵铱民,黄平等.钛表面处理后表面能分析及对细胞附着的影响.稀有金属材料与工程.2004,33(5):518-521.
    [20]张玉梅,魏建华,赵铱民等.钛表面碱液处理后表面能的变化及对成骨细胞附着的影响.牙体牙髓牙周病学杂志.2003,13(10):561-564.
    [21]郑楠.几种无机材料表面微沟槽的制备及其生物相容性研究.西南交通大学硕士学位论文.2009:40-41.
    [22]张红,洪晓涛.内皮细胞生长及贴附率的影响.中国现代医学杂志.2004,14(12):75-79.
    [23]侯瑞霞,翁亚军等Ti-O-N表面肝素分子的共价固定及抗凝血性研究.无机材料学报,2007,22(5):996-1000.
    [24]陈诚,陈俊英,李全利等.钛表面自组装牛血清白蛋白以控制血小板粘附行为的研究.功能材料.2009,4(40):660-662.
    [25]王露,陈俊英,黄楠.多聚赖氨酸修饰钛氧膜并固定纤连蛋白对内皮细胞生长的影响.生物医学工程学杂志.2008,25(4):864-869.
    [26]葛胜男,陈俊英,黄楠. 钛氧薄膜表面层粘连蛋白固定及对人脐静脉内皮细胞生长行为的影响.生物医学工程学杂志.2009,26(1):97-100.
    [27]曾晟宇.金属生物材料表面改性研究的进展.材料保护.2000,33(1):5-7.
    [28]俞耀庭.生物医用材料.天津大学出版社.2000:229
    [29]邓迟,李秀芬,邓敏等.生物材料表面改性的研究进展.乐山师范学院学报.2004,19(5):78-81.
    [30]陈勇军,史庆南,左孝青等.金属表面改性-离子注入技术的发展与应用.表面技术.2003,32(6):4-7.
    [31]郇春艳,胡平.组织工程用生物材料的表面修饰技术.化工进展.2003,22(1):13-17.
    [32]邓嘉胤,片冈有,柴田阳等.纯钛经电化学表面改性后的抗菌活性与生物相容性研究.材料导报.2010,24(7):60-61.
    [33]Jeffrey Schwartz, Michael J. Avaltroni, Michael P, et al. Cell attachment and spreading on metal implant materials. Materials Science and Engineering C.2003,23:395-400.
    [34]李建波,许群.层层自组装技术的发展和应用.世界科技研究与发展.2007,29(3):31-38.
    [35]陈佳龙,李全利,陈俊英等.钛表面层层组装胶原与肝素改善血液相容性的研究.功能材料.2007增刊,38卷:1865-1867.
    [36]陈诚.利用自组装技术在钛表面定向固定CD34抗体及其内皮化诱导研究.西南交通大学硕士研究生学位论文.2010:86.
    [37]Sung HW, Chen CN, Huang RN, Hsu JC, Chang WH. In vitro surface characterization of a biological patch fixed with a naturally occurring crosslinking agent. Biomaterials.2000, 21(13):1353-1362.
    [38]Chen CS, Mrksich M, Huang S, et al. Geometric Control of Cell Life and Death. Science.1997,276:1425-1428.
    [39]Drik L, Bernhard WH, Christian D, et al. Cell behaviour on micropatterned substrata: limits of extracellular matrix geometry for spreading and adhesion. J Cell Sci.2004,117(1): 41-52.
    [40]邵建波,金庆辉,赵建龙.基于微系统技术的细胞微操控、细胞图形化方法及应用.中国生物工程杂志.2007,27(7):106-111.
    [41]Helga Sorribas, Celestino Padeste, Louis Tiefenauer. Photolithographic generation of protein micropatterns for neuron culture applications. Biomaterials.2002,23:893-900.
    [42]刘文辉.光刻技术及其应用的状况和未来发展.电子工业专用设备.2006,134:36-42.
    [43]Favia P, Sardella E, Gristina R, d'Agostino R. Novel plasma processes for biomaterials: micro-scale patterning of biomedical polymers. Surf Coat Technol.2003,169:707-11.
    [44]Folch A, Jo BH, Hurtado O, Beebe DJ, Toner M. Micro fabricated elastomeric stencils for micropatterning cell cultures. J Biomed Mater Res.2000,52:346-53.
    [45]Turcu F, Tratsk-Nitz K, Thanos S, Schuhmann W, Hieduschka P. Ink-jet printing for micropattern generation of laminin for neuronal adhesion. J Neurosci Methods.2003,131: 141-148.
    [46]潘长江,董云肖,聂煜东等.生物材料表面蛋白质微图形对人体软骨细胞形态及蛋白表达的影响.生物化学与生物物理进展.2010,37(12):1296-1302.
    [47]Wilkinson CD W, Riehle M, Wood M, Gallagher J, Curtis ASG. The use of materials patterned on a nano-and micro-metric scale in cellular engineering. Materials Science and Engineering C.2002,19:263-269.
    [48]Yong Soon Park, Yoshihiro Ito. Micropattern-immobilization of heparin to regulate cell growth with fibroblast growth factor. Cytotechnology.2000,33:117-122.
    [49]Yoshihiro Ito. Micropattern immobilization of polysaccharide. Journal of Inorganic Biochemistry.2000,79:77-81.
    [50]Aiping Zhu, Ming Zhang, Jun Wu, Jian Shen. Covalent immobilization of chitosan/heparin complex with a photosensitive hetero-bifunctional crosslinking reagent on PLA surface. Biomaterials.2002,23:4657-4665.
    [51]Clemence JF, Ranieri JP, Aebischer P, Sigrist H. Photoimmobilization of a bioactive laminin fragment and pattern-guided selective neuronal cell attachment. Bioconj Chem.1995,6:411-417.
    [52]Kazutaka Ogiwara, Masato Nagaoka, Chong-Su Cho, Toshihiro Akaike. Effect of photo-immobilization of epidermal growth factor on the cellular behaviors. Biochemical and Biophysical Research Communications.2006,345:255-259.
    [53]罗祥林,黄嘉,何斌.光化学固定法-医用高分子材料表面改性的一种新方法.生物医学工程学杂志.2000,17(3):320-323.
    [54]Anfeng Wang, Ting Cao, Haiying Tang, et al. In vitro haemocompatibility and stability of two types of heparin-immobilized silicon surfaces. Colloids and Surfaces B: Biointerfaces.2005,43:245-255.
    [55]Mao C, Zhao WB, Zhu AP, et al. Lin. A photochemical method for the surface modification of poly (vinyl chloride) with O-butyrylchitosan to improve blood compatibility. Process Biochemistry.2004,39:1151-1157.
    [56]王亚宁.PEG表面接枝RGD的方法比较及其生物活性研究.四川大学硕士学位论文.2003:59.
    [57]Hypolite CL, McLernon TL, Adams DN, Chapman KE, Herbert CB, Huang CC, et al. Formation of microscale gradients of protein using heterobifunctional photolinkers. Bioconjugate Chem.1997,8:658-663.
    [58]Karp JM, Yeo Y, et al. A photolithographic method to create cellular micropatterns. Biomaterials.2006,27:4755-4764.
    [59]Yoshihiro I. Surface micropatterning to regulate cell functions. Biomaterials.1999, 20(23-24):2333-2342.
    [60]Martinez E, Engel E, Planell JA, Samitier J. Effects of artificial micro-and nano-structured surfaces on cell behaviour. Annals of Anatomy.2009,191:126-135.
    [61]任慧兰,杨苹,鲁雄,黄楠.生物材料表面微图形化及其研究进展.功能材料.2007年增刊,38:1822-1825.
    [62]刘鹏.材料表面微米-纳米杂合图案的制备技术研究.复旦大学博士学位论文.2009:17.
    [63]周峰,袁琳,黄鹤,陈红.纳微米沟槽型图案化表面“接触引导”现象及其细胞生理效应.科学通报.2009,54(16):2265-2270.
    [64]LIU Wen-Wen, CHEN Zhen-Ling, JIANG Xing-Yu. Methods for Cell Micropatterning on Two-Dimensional Surfaces and Their Applications in Biology. Chin J Anal Chem.2009, 37(7):943-949.
    [65]Agnese M, Alfredo P, Daniela P, et al. Cell behavior on chemically microstructured surfaces. Mater Sci Eng C.2003,23(3):315-328.
    [66]Brock A, Chang E, Ho CC, et al. Geometric determinants of directional cell motility revealed using microcontact printing. Langmuir.2003,19(5):161-1617.
    [67]Biela SA, Su Y, Spatz JP, Kemkemer R. Different sensitivity of human endothelial cells, smooth muscle cells and fibroblasts to topography in the nano-micro range. Acta Biomater.2009,5(7):2460-2466.
    [68]Tien J, Chen CS. Patterning the Cellular Microenvironment. IEEE ENGINEERING IN MEDICINE AND BIOLOGY.2002,21(1):95-98.
    [69]胡石琼,王向晖,刘恩庆等.图形化表面Ti02薄膜的制备及其对内皮细胞附着形态的影响.功能材料与器件学报.2008,14(3):597-602.
    [70]Andersson AS, Backhed F, Von Euler A, et al. Nanoscale features influence epithelial cell morphology and cytokine production. Biomaterials.2003,24(20):3427-3436.
    [71]Zorlutuna P, Rong Z, Vadgama P, Hasirci V. Influence of nanopatterns on endothelial cell adhesion:Enhanced cell retention under shear stress. Acta Biomaterialia.2009,5: 2451-2459.
    [72]Palmaz JC, Benson A, Sprague EA. Influence of Surface Topography on Endothelialization of Intravascular Metallic Material. Journal of Vascular and Interventional Radiology.1999,10(4):439-444.
    [73]Parker KK, Brock AL, Brangwynne C, et al. Directional control of lamellipodia extension by constraining cell shape and orienting cell tractional forces. FASEB Journal.2002,16(10):1195-1204.
    [74]郑楠,杨苹等.Si-N-0薄膜表面微图形的制备及对内皮细胞黏附行为的影响.中国科学:技术科学.2010,40(1):21-28.
    [75]Lu J, Rao MP, MacDonald NC, et al. Improved endothelial cell adhesion and proliferation on patterned titanium surfaces with rationally designed, micrometer to nanometer features. Acta Biomaterialia.2008,4:192-201.
    [76]Milner KR, Snyder AJ, Siedlecki CA. Sub-micron texturing for reducing platelet adhesion to polyurethane biomaterials. J Biomed Mater Res A.2006,76(3):561-570.
    [77]Li Buay Koh, Isabel Rodriguez, Subbu S. Venkatraman. The effect of topography of polymer surfaces on platelet adhesion. Biomaterials.2010,31:1533-1545.
    [78]Folch A, Toner M. Microengineering of celluar interactions. Annu Rev Biomed Eng.2000,2:227-256.
    [79]景凤娟,黄楠.与血液接触材料表面活化的研究进展.材料导报.2003,17:187-190.
    [80]Yang ZL, Wang J, Luo RF, et al. The covalent immobilization of heparin to pulsed-plasma polymeric allylamine films on 316L stainless steel and the resulting effects on hemocompatibility. Biomaterials.2010,31:2072-2083.
    [81]Giraux JL, Matou S, Bros A, Tapon-Bretaudiere J, Letourneur D, Fischer AM. Modulation of human endothelial cell proliferation and migration by fucoidan and heparin. Eur J Cell Biol.1998,77:352-359.
    [82]葛泉波,何淑兰,毛津淑,姚康德.生物材料与细胞相互作用及表面修饰.化学通报.2005,1:43-48.
    [83]Schwartz J, Avaltroni MJ, Danahy MP, et al. Cell attachment and spreading on metal implant materials. Materials Science and Engineering C.2003,23:395-400.
    [84]QuinAones R, Gawalt ES. Study of the Formation of Self-Assembled Monolayers on Nitinol. Langmuir.2007,23:10123-10130.
    [85]杨忠海.氢等离子体改性Ti-O薄膜的血液相容性研究.西南交通大学硕士学位论文.2009:16.
    [86]李霞,滕晓云.X射线衍射原理及在材料分析中的应用.物理通报.2008,9:58-59.
    [87]杨忠海.氢等离子体改性Ti-O薄膜的血液相容性研究.西南交通大学硕士学位论文.2009:22.
    [88]郭沁林.X射线光电子能谱.实验技术.2007,36(5):405-410.
    [89]杨烈宇,关文绎,顾卓明.材料表面薄膜技术.人民交通出版社.1991:5.
    [90]李恒德.现代材料科学与工程辞典.山东科学技术出版社.2001:296.
    [91]聂利华,姚守拙.压电液相化学分析.分析化学.1996,24(2):234-241.
    [92]杜滨阳,范潇,曹峥,郭小磊.石英晶体微天平在聚合物薄膜研究中的应用与展望.分析化学评述与进展.2010,38(5):752-759.
    [93]李贵才.基于QCM技术的血浆蛋白和血小板吸附行为的研究.西南交通大学硕士学位论文.2004:15.
    [94]陈诚.利用自组装技术在钛表面定向固定CD34抗体及其内皮化诱导研究.西南交通大学硕士学位论文.2009:27.
    [95]Gawalt ES, Avaltroni MJ, Danahy MP, et al. Bonding Organics to Ti Alloys:Facilitating Human Osteoblast Attachment and Spreadingon Surgical Implant Materials. Langmuir.2003,19:200-204.
    [96]梅馨.钛氧薄膜表面氨等离子体浸没离子注入以及生物化修饰.西南交通大学研究生学位论文.2009:28.
    [97]Raman A, Dubey M, Gouzman I, Gawalt E S. Formation of Self-Assembled Monolayers of Alkylphosphonic Acid on the Native Oxide Surface of SS316L. Langmuir.2006,22: 6469-6472.
    [98]Gopinath Mani, Dave M. Johnson, Denes Marton, et. al. Stability of Self-Assembled Monolayers on Titanium and Gold. Langmuir.2008,24:6774-6784.
    [99]Hinrichs WLJ, ten Hoopen HWM, Wissink MJB, et al. Design of a new type of coating for the controlled release of Heparin. Journal of Controlled Release.1997,45:163-176.
    [100]Yuquan Zou, Eugene Khor. Preparation of sulfated-chitins under homogeneous conditions. Carbohydrate Polymers.2009,77:516-525.
    [101]翁亚军.Ti-O薄膜表面抗凝生物分子固定及其抗凝血性能评价.西南交通大学研究生学位论文.2008:87.
    [102]梅馨.钛氧薄膜表面氨等离子体浸没离子注入以及生物化修饰.西南交通大学研究生学位论文.2009:61.
    [103]陈诚.利用自组装技术在钛表面定向固定CD34抗体及其内皮化诱导研究.西南交通大学硕士学位论文.2009:54.
    [104]den Braber ET, de Ruijter JE, Smits HTJ, et al. Quantitative analysis of cell proliferation and orientation on Substrata with uniform parallel surface micro-grooves. Biomoterids.1996,17:1093-1099.
    [105]秦廷武,杨志明,蔡绍皙等.组织工程中细胞与材料的粘附作用.中国修复重建外科杂志.1999,13(1):13-73.
    [106]张洪鑫,杨柳,段小军,李忠.模拟正压和负压流的简易平行板流动腔模型的初步应用.重庆医学.2006,35(12):1088-1090.
    [107]王常德,夏亚一,张成俊.流体剪切力和细胞骨架阻断对肌动蛋白丝的影响.第四军医大学学报.2009,30(19):1930-1933.
    [108]李伯刚,那娟娟,尹光福,殷杰,郑昌琼.生物碳素材料表面血小板黏附的实验研究生物医学工程学杂志.2004,21(1):12-15.
    [109]Ko TM, Lin JC, Cooper SL. Surface characterization and platelect adhesion studies of plasma-sulphonated polyethylene. Biomaterials.1993,14(9):657-664.
    [110]Chandra P Sharma. Biomaterials:Role of surface modifications. Bull Mater Sci.1994, 7:1317-1329.
    [111]Erdtmann M, Keller R, Baumann H. Photochemical immobilization of heparin, dermatan sulphate, dextran sulphate and endothelial cell surface heparan sulphate onto cellulose membranes for the preparation of athrombogenic and antithrombogenic polymers. Biomaterials.1994,15(13):1043-1048.
    [112]Belle EV, Tio FO, Couffinhal T, Maillard L, Passeri J, Isner JM. Stent endothelialization:time course, impact of local catheter delivery, feasibility of recombinant protein administration, and response to cytokine expedition. Circulation.1997,95:438-448.
    [113]Weber N, Wendel HP, Ziemer G. Hemocompatibility of heparin-coated surfaces and the role of selective plasma protein adsorption. Biomaterials.2002,23:429-439.
    [114]Xiang-hua Qu, Qiong Wu, Guo-Qiang Chen. In vitro study on hemocompatibility and cytocompatibility of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate). J Biomater Sci Polymer Edn.2006,17(10):1107-1121.
    [115]Garcia AJ, Boettiger D. Integrin-fibronectin interactions at the cell-material interface: initial integrin binding and signaling. Biomaterials.1999,20(23-24):2427-2433.
    [116]Lee JH, Lee JW, Khang G, Lee HB. Interaction of cells on chargeable functional group gradient surfaces. Biomaterials.1997,18:351-358.
    [117]Khorana AA, Sahni A, Altland OD, Francis CW. Heparin Inhibition of Endothelial Cell Proliferation and Organization Is Dependent on Molecular Weight. Arterioscler Thromb Vasc Biol.2003,23(11):2110-2115.
    [118]Kirchhof K, Hristova K, Krasteva N, et al. Multilayer coatings on biomaterialsfor control of MG-63 osteoblast adhesionand growth. J Mater Sci Mater Med.2009,20: 897-907.
    [119]Magnani A, Priamo A, Pasqui D, Barbucci R. Cell behaviour on chemically microstructured surfaces. Mater Sci Eng C.2003,23:315-328.
    [120]Anselme K, Davidson P, Popa AM, et al. The interaction of cells and bacteria with surfaces structured at the nanometre scale. Acta Biomater.2010,6(10):3824-3846.
    [121]Loesberg WA, te RJ, van Delft FC, et al. The threshold at which substrate nanogroove dimensions may influence fibroblast alignment and adhesion. Biomaterials.2007,28(27): 3944-3951.
    [122]Andersson AS, Olsson P, Lidberg U, Sutherland D. The effects ofcontinuous and discontinuous groove edges on cell shape andalignment. Exp Cell Res.2003,288(1): 177-188.
    [123]Kjell Fuxe, Barbro Tinner, Michele Zoli, et al. Computer-assisted mapping of basic fibroblast growth factor immunoreactive nerve cell populations in the rat brain. Journal of Chemical Neuroanatomy.1996,11:13-35.
    [124]Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE. Micropatterned surfaces for control of cell shape, position, and function. Biotech Prog.1998,14(3):356-363.
    [125]丛兴忠,李玉泉.流体切应力对血管内皮细胞的生物学作用.医用生物力学.2003,18(2):107-113.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700