生物活性水技术机理及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究的是一种畜禽粪便废水资源化利用技术,该技术处理畜禽粪便废水的出水具有“生物活性”,应用在种植业可以促进农作物生长,并可抑制病虫害,从而减少甚至避免了农药的施用,不仅减少了环境污染,还能在区域内形成循环型农业,促进农业可持续发展。
     首先,研究了生物活性水对水稻、小麦在种子萌发阶段的影响,结果表明,生物活性水能显著提高水稻、小麦种子发芽率、发芽势以及幼苗叶片叶绿素a、叶绿素b和叶绿素总量。通过大田试验探索生物活性水应用于有机水稻的种植方法。多次重复试验验证生物活性水浸种处理能有效的促进了种子萌发,稀释100倍生物活性水(浸种12小时条件下)效果最好,可以作为实际水稻种植的参考依据。在育秧期生物活性水有壮秧作用。移栽后,不同种植密度条件下生物活性水都能增加叶龄,而且对纹枯病有一定抑制作用,但对叶面积指数、平均每株绿叶数呈现负面影响。虽然生物活性水处理对产量增加不是很明显,但增加了大米食味值。
     为了解释生物活性水的机理,研究了工艺过程中主要有机物的降解,并用凝胶色谱分析了工艺过程中有机物数均分子量Mn、重均分子量Mw和分子量分布。工艺过程中Mn和Mw呈增加趋势,而分子量分布系数Mw/Mn比值却从223.2降到6.1。进一步研究表明,工艺过程中胡敏酸HA、富里酸FA含量呈逐步增加趋势,HA/TOC与FA/TOC分别从最初的34.80%和15.22%增加到52.12%和26.89%。对腐殖化指标和主要易降解有机物含量进行了相关性分析,发现多糖含量与各腐殖化指标(HS/TOC、HA/TOC、FA/TOC)没有相关性(P<0.05),但蛋白质、油脂、单糖、氨基酸含量与HS/TOC、HA/TOC、FA/TOC存在强负相关性(P<0.01),氨基酸与HA/HS存在相关性(P<0.05),与FA/HS存在负相关性(P<0.05)。利用紫外一可见光谱和荧光光谱分析了工艺各段分离的HA、FA样品,测定了E_4/E_6、E_ET/E_BZ、Zsolnay指数、Kalbitz指数、Milori指数等指标。通过高效反向液相色谱分析,发现生物活性水中含有生物胺(腐胺、精胺、亚精胺),可能是其“活性”的原因之一。
     轻石作为工艺中填料起了重要作用,通过场发射环境扫描电子显微镜SEM观察发现,轻石在使用过程中“坑蚀”现象显著,而且X射线粉末多晶衍射XRD分析表明轻石相结构发生了变化、表观结晶度降低,这与SEM观察结果一致,都表明轻石在损耗,有矿物质营养溶出。SEM—EDS表明,轻石含Fe、Na、Mg、Al、Si、K等元素,这些元素当中Mg、K是植物必需矿物质营养。轻石比表面积大、多孔,是微生物吸附栖息的场所;同时轻石释放出矿物质可以刺激微生物生长,并提供了矿物质营养,特别是植物需要的必需元素和有益元素,这可能是生物活性水“活性”的另外一个原因。
A manure waste water resources utilization technology was studied in the paper, which can produce bioactive water (BW) at the same time of manure wastewater treatment. BW can promote the growth of crops and curb disease and pest, if bioactive water is applied on plant agriculture, thereby pesticide input may be in reduction or even avoid, which not only reduce the environmental pollution, but also promote the development of sustainable agriculture.
     The effects of bioactive water on seed germination parameters of rice (Oryza sativa L. )and wheat(Triticum aestivum)was investigated in the experiment. All bioactive water treatments not only enhanced germination energy and final germination percentage of wheat and rice seeds, but also greatly improved chlorophyll synthesis in wheat and rice seedling leaves. The methods of bioactive water application on organic rice cultivation were explored through field experiments. Bioactive water treatments exerted hormone-like activity for enhance seed germination of rice and 1% bioactive water treatment by diluting BW with clean water (soaking for 12 hours) most highly stimulated the seed germination of rice, which can be a suitable reference for rice cultivation. Bioactive water treatment improved the rice seedling in seedling period. After transplanting, bioactive water treatment increased seedling age in various plant densities and was effective for prevention from rice sheath blight to some extent, but had some negative impacts on leaf area index and average number of green leaves per plant. Also, Bioactive water treatment improved taste value although had little effect on yield.
     The degradation of available easily-degradable substances such as carbohydrate, protein, and lipid in the reactor were studied. Weight-average molecular weight (Mw), number-average molecular weight (Mn) and the ratio Mw/Mn of dissolved organic matters in different stages of the process were measured by gel permeation chromatography, and the result demonstrated the increase of Mn and Mw and the decease of the ratio Mw/Mn from 223.3 to 6.1. The organic matters were in continuous decrease as a result of degradation and aquatic humic substances (HS) also arised from microbial production from decomposing autochthonous biomass. The HA/DOC and FA/DOC increase from an initial 34.80%, 15.22% to final values of 52.12%, 26.89% in the process, reflected the formation of complex molecules from more simple molecules. The relationships between the degradation and humification process which the organic matter underwent during the process were analyzed. No type of correlation was observed between the water-soluble carbohydrate content and the humification indices (HS/TOC、HA/TOC、FA/TOC). An inverse strong correlation between the protein、lipid、monosaccharide、amino acids and some of the humification indices considered such as HS/TOC、HA/TOC、FA/TOC was found (P<0.01). There were an inverse correlation between the amino acids and FA/HS (P<0.05) but amino acids were strongly correlated with HA/HS (P<0.05). UV-visible and fluorescence spectroscopies were used to evaluate the humification degree of HA and FA from the various stages of the process, and the difference in humification degree of HA and FA was reflected by E_4/E_6、E_(ET)/E_(BZ)、Zsolnay index、Kalbitz index、Milori index, which was in accordance with the results of other research. The major polyamines (plant regulators)- putrescine, spermidine, and spermine were found in bioactive water (the effluent of the process) by a high performance liquid chromatography (HPLC) method, may explain the hormone-like activity mechanism of bioactive water.
     The pumice stone played an important role in the process. The phenomenon of pitting corrosion of the pumice stone from the process was found obviously through SEM observation, and XRD analysis showed that there was a change in the structure and crystallinity of the stone. The observation results showed that minerals nutrition have been dissolved from the stone containing Fe, Na, Mg, Al, Si, K, and other elements, in which Mg, K is necessary to plant. The large surface area of the pumice stone was the adsorption sites for microbial habitats. The minerals released from the stone can stimulate microbial growth, while providing the minerals for the plants need, which may be another reason for the mechanism of bioactive water.
引文
[1]Sheen,S.Y.,Hong,C.M.Disposal of animal waste—The magnitude of the problem in Asia and Australasia·Review.Asian-Australasian Journal of Animal Sciences,1999,12(4):597-603.
    [2]赵晨曦,肖波,禹逸君.畜禽粪便污染和处理技术现状与发展趋势.湖南农业科学,2003,6:52-55.
    [3]李庆康,吴雷,刘海琴,蒋永忠,潘玉梅.我国集约化畜禽养殖场粪便处理利用现状及展望.农业环境保护,2000,19(4):252-254.
    [4]倪玉平,华桂樑.上海畜禽粪便污染综合治理的实践与思考.中国环境管理,2002,6:34-36
    [5]江立方,周松卿,郁海根,姚春云,杨自立.关于上海畜禽场粪便治理的再思考.上海畜牧兽医通讯,2000,6:20-21.
    [6]陈梅雪,杨敏,贺泓.日本畜禽产业排泄物处理与循环利用的现状与技术.环境污染治理技术与设备,2005,6(3):5-11.
    [7]Cronk,J.K.Constructed wetlands to treat wastewater from dairy and swine operations:a review.Agriculture,Ecosystems & Environment,1996,58(2-3):97-14.
    [8]Karim,K,Klasson,K.T.,Hoffmann,R.,Drescher,S.R.,DePaoli,D.W.,Al-Dahhan,M.H.Anaerobic digestion of animal waste:Effect of mixing.Bioresource Technology,2005,96(14):1607-1612.
    [9]Sharpe,R.R.,Harper,L.A.,Simmons,J.D.Methane emissions from swine houses in North Carolina.Chemosphere—Global Change Science,2001,3(1):1-6.
    [10]Hill,D.T.,Bolte,J.P.Methane production from low solid concentration liquid swine waste.using conventional anaerobic fermentation.Bioresource Technology,2000,74(3):241-247.
    [11]Sharpe,R.R.,Harper,L.A.Methane emissions from an anaerobic swine lagoon.Atmospheric Environment,1999,33(22):3627-3633.
    [12]Sung,S.W.,Santha,H.Performance of temperature-phased anaerobic digestion(TPAD) system treating dairy cattle wastes.Water Research,2003,37(7):1628-1636.
    [13]Hill,D.T.,Taylor,S.E.,Grift,T.E.Simulation of low temperature anaerobic digestion of datry and swine manure.Bioresource Technology,2001,78(2):127—131.
    [14]Simeonov,I.S.Mathematical modeling and parameters estimation of anaerobic fermentation processes.Bioprocess Engineering,1999,21(4):377-381.
    [15]Linke,B.A model for anaerobic digestion of animal waste slurries.Environmental Technology,1997,18(8):849-854.
    [16]Simeonov,I.,Momchev,V.,Grancharov,D.Dynamic modeling of mesophilic anaerobic digestion of animal waste.Water Research,1996,30(5):1087-1094.
    [17]Dugba,P.N.,Zhang,R.H.,Rumsey,T.R.,Ellis,T.G.Computer simulation of a two-stage anaerobic sequencing batch reactor system for animal wastewater treatment. Transactions of the Asae, 1999,42(2): 471-477.
    [18] Yang, P. Y., Khan, E., Gan, G., Paquin, D., Liang, T. A prototype small swine waste treatment system for land limited and tropical application. Water Science and Technology, 1997,35(6):145-152.
    [19] Curtis, M. J., Kleiner, W. A., Claassen, V. P., Dahlgren, R. A. Differences in a composted animal waste and straw mixture as a function of three compost methods. Compost Science &Utilization, 2005,13(2): 98-107.
    [20] Haga, K. Development of composting technology in animal waste treatment - Review.Asian-Australasian Journal of Animal Sciences, 1999,12(4): 604-606.
    [21] Sweeten, J. M., Annamalai, K., Thien, B., McDonald, L. A. Co-firing of coal and cattle feedlot biomass (FB) fuels. Part I. Feedlot biomass (cattle manure) fuel quality and characteristics. Fuel,2003,82(10): 1167-1182.
    [22] Annamalai, K., Thien, B., Sweeten, J. Co-firing of coal and cattle feedlot biomass (FB) fuels.Part II. Performance results from 30 kW(t) (100,000) BTU/h laboratory scale boiler burner.Fuel, 2003, 82(10): 1183-1193.
    [23] Annamalai, K., Sweeten, J., Freeman, M., Mathur, M, O'Dowd, W., Walbert, G., Jones, S.Co-firing of coal and cattle feedlot biomass (FB) fuels, part III: fouling results from a 500,000 BTU/h pilot plant scale boiler burner. Fuel, 2003,82(10): 1195-1200.
    [24] Sami, M., Annamalai, K., Wooldridge, M. Co-firing of coal and biomass fuel blends. Progress in Energy and Combustion Science, 2001, 27(2): 171-214.
    [25] Claus, H., Gleixner, G., Filip, Z. Formation of humic-like substances in mixed and pure cultures of aquatic microorganisms. Acta Hydrochimica Et Hydrobiologica, 1999, 27(4): 200-207.
    [26] Nardi, S., Pizzeghello, D., Reniero, F., Rascio, N. Chemical and biochemical properties of humic substances isolated from forest soils and plant growth. Soil Science Society of America Journal, 2000, 64(2): 639-645.
    [27] Nardi, S., Pizzeghello, D., Muscolo, A., Vianello, A. Physiological effects of humic substances on higher plants. Soil Biology & Biochemistry, 2002,34(11): 1527-1536.
    [28] Chen, Y., Katan, J., Gamliel, A., Aviad, T., Schnitzer, M. Involvement of soluble organic matter in increased plant growth in solarized soils. Biology and Fertility of Soils, 2000,32(1):28-34.
    [29] Chen, Y., Clapp, C. E., Magen, H. Mechanisms of plant growth stimulation by humic substances: The role of organo-iron complexes. Soil Science and Plant Nutrition, 2004,50(7):1089-1095.
    [30] Kucukersan, S., Kucukersan, K., Colpan, I., Goncuoglu, E., Reisli, Z., Yesilbag, D. The effects of humic acid on egg production and egg traits of laying hen. Veterinarni Medicina, 2005,50(9):406-410.
    [31] Malik, K. A., Azam, F. Effect of Humic-Acid on Wheat (Triticum-Aestivum L) Seedling
    [47] G. E. Carlberg, K. M., A. Kringstad, E. Gjessing, M. Grande, T. KAllqvist and J. U. Skare.Influence of aquatic humus on the biavailability of chlorinated micropollutants in Atlantic salmon Archives of Environmental Contamination and Toxicology, 1986,15(5): 543-548.
    [48] GJ Leversee, P. L, JP Giesy, T Fannin. Humic acids reduce bioaccumulation of some polycyclic aromatic hydrocarbons. Canadian Journal of Fisheries and Aquatic Sciences, 1983,40: 63-69.
    [49] Gau, R. J., Yang, H. L, Chow, S. N., Suen, J. L., Lu, F. J. Humic acid suppresses the LPS-induced expression of cell-surface adhesion proteins through the inhibition of NF-kappa B activation. Toxicology and Applied Pharmacology, 2000,166(1): 59-67.
    [50] Kirschner, R. A., Parker, B. C, Falkinham, J. O. Humic and fulvic acids stimulate the growth of Mycobacterium avium. Fems Microbiology Ecology, 1999,30(4): 327-332.
    [51] Valdrighi, M. M., Pera, A., Agnolucci, M., Frassinetti, S., Lunardi, D., Vallini, G. Effects of compost-derived humic acids on vegetable biomass production and microbial growth within a plant (Cichorium intybus)-soil system: A comparative study. Agriculture Ecosystems & Environment, 1996,58(2-3): 133-144.
    [52] Vallini, G., Pera, A., Agnolucci, M., Valdrighi, M. M. Humic acids stimulate growth and activity of in vitro tested axenic cultures of soil autotrophic nitrifying bacteria. Biology and Fertility of Soils, 1997, 24(3): 243-248.
    [53] Morimoto, K., Tatsumi, K., Kuroda, K. I. Peroxidase catalyzed co-polymerization of pentachlorophenol and a potential humic precursor. Soil Biology & Biochemistry, 2000,32(8-9): 1071-1077.
    [54] Hwang, H. M., Balarezo, A. L., Jones, V. N., Yu, H. Effect of river humic acid on 1-aminopyrene ecotoxicity in a dynamic solar photolysis process. Bulletin of Environmental Contamination and Toxicology, 2004,72(5): 1059-1066.
    [55] Lovley, D. R., Coates, J. D., BluntHarris, E. L, Phillips, E. J. P., Woodward, J. C. Humic substances as electron acceptors for microbial respiration. Nature, 1996,382(6590): 445-448.
    [56] Anesio, A. M., Graneli, W., Aiken, G. R., Kieber, D. J., Mopper, K. Effect of humic substance photodegradation on bacterial growth and respiration in lake water. Applied and Environmental Microbiology, 2005, 71(10): 6267-6275.
    [57] Polak, Z., Pospisil, F. Alleviation of Plant-Virus Infection by Humic Acids. Biologia Plantarum,1995,37(2): 315-317.
    [58] Mackowiak, C. L., Grossl, P. R., Bugbee, B. G. Beneficial effects of humic acid on micronutrient availability to wheat. Soil Sci Soc Am J, 2001,65(6): 1744-1750.
    [59] Schaepf, H. Relationships between the humus content of soil and crop yields in a long-term fertilizer trial. Albrecht Thaer Archiv, 1967,11:133-141.
    [60] Ojeniyi, S., Agbede, O. Soil organic matter and yield of forest and tree crops. Plant and Soil, 1980,57(1): 61-67.
    [61] Quiroga, A., Funaro, D., Noellemeyer, E., Peinemann, N. Barley yield response to soil organic matter and texture in the Pampas of Argentina. Soil and Tillage Research, In Press, Corrected Proof.
    [62] Soane, B. D. The role of organic matter in soil compactibility: A review of some practical aspects. Soil and Tillage Research, 1990,16(1-2): 179-201.
    [63] Zhang, X. Z., Ervin, E. H. Cytokinin-containing seaweed and humic acid extracts associated with creeping bentgrass leaf cytokinins and drought resistance. Crop Science, 2004,44(5):1737-1745.
    [64] Sanchez-Sanchez, A., Sanchez-Andreu, J., Juarez, M, Jorda, J., Bermudez, D. Humic substances and amino acids improve effectiveness of chelate FeEDDHA in lemon trees. Journal of Plant Nutrition, 2002,25(11): 2433-2442.
    [65] Muscolo, A., Cutrupi, S., Nardi, S. IAA detection in humic substances. Soil Biology &Biochemistry, 1998,30(8-9): 1199-1201.
    [66] Nardi, S., Pizzeghello, D., Muscolo, A., Dalla Vecchia, F., Concheri, G. Effects of forest humus on biological activity in roots of Pinus sylvestris related to chemical humus fraction characteristics. Fresenius Environmental Bulletin, 1998,7(3-4): 203-208.
    [67] Nardi, S., Pizzeghello, D., Reniero, F., Muscolo, A. Biological activity of humic substances extracted from soils under different vegetation cover. Communications in Soil Science and Plant Analysis, 1999, 30(5-6): 621-634.
    [68] Nardi, S., Tosoni, M., Pizzeghello, D., Provenzano, M. R., Cilenti, A., Sturaro, A., Rella, R.,Vianello, A. Chemical characteristics and biological activity of organic substances extracted from soils by root exudates. Soil Science Society of America Journal, 2005,69(6): 2012-2019.
    [69] Muscolo, A., Panuccio, M. R., Abenavoli, M. R., Concheri, G., Nardi, S. Effect of molecular complexity and acidity of earthworm faeces humic fractions on glutamate dehydrogenase,glutamine synthetase, and phosphoenolpyruvate carboxylase in Daucus carota alpha II cells.Biology and Fertility of Soils, 1996,22(1-2): 83-88.
    [70] Muscolo, A., Bovalo, F., Gionfriddo, F., Nardi, S. Earthworm humic matter produces auxin-like effects on Daucus carota cell growth and nitrate metabolism. Soil Biology & Biochemistry,1999, 31(9): 1303-1311.
    [71] Muscolo, A., Felici, M., Concheri, G., Nardi, S. Effect of earthworm humic substances on esterase and peroxidase-activity during growth of leaf explants of nicotiana-plumbaginifolia.Biology and Fertility of Soils, 1993,15(2): 127-131.
    [72] Frankemberger, W. T., Arshad,M. Phytohormones in Soils: Microbial Production and Function.New York: Marcel Dekker Inc, 1995.
    [73] Lebuhn, M., Hartmann, A. Method for the determination of indole-3-acetic acid and related compounds of -tryptophan catabolism in soils. Journal of Chromatography A, 1993,629(2):255-266.
    [74] Rademacher, W. Occurrence of gibberellins in different species of the fungal genera Sphaceloma and Elsinoe. Phytochemistry, 1992,31(12): 4155-4157.
    [75] Pizzeghello, D., Nicolini, G., Nardi, S. Honnone-like activity of humic substances in Fagus sylvaticae forests. New Phytologist, 2001,151(3): 647-657.
    [76] Chen Y., De Nobili M., Aviad T.. Stimulatiory effects of humic substances on plant growth [A].Fred M. and Ray. R. W.. Soil Organic Matter in Sustainable Agriculture[C]. CRC Press 2004.103-124.
    [77] Janos, P. Separation methods in the chemistry of humic substances. Journal of Chromatography A, 2003,983(1-2): 1-18.
    [78] Li, L., Zhao, Z. Y., Huang, W. L, Peng, P., Sheng, G. Y., Fu, J. M. Characterization of humic acids fractionated by ultrafiltration. Organic Geochemistry, 2004,35(9): 1025-1037.
    [79] Buddrus, J., Burba, P., Herzog, H., Lambert, J. Quantitation of partial structures of aquatic humic substances by one-dimensional and two-dimensional solution C-13 nuclear magnetic-resonance spectroscopy. Analytical Chemistry, 1989,61(6): 628-631.
    [80] Mato, M. C, Olmedo, M. G., Mendez, J. Inhibition of indoleacetic acid-oxidase by soil humic acids fractionated on sephadex. Soil Biology and Biochemistry, 1972,4(4): 469-473.
    [81] Malcolm, R. E., Vaughan, D. Effects of humic acid fractions on invertase activities in plant tissues. Soil Biology and Biochemistry, 1979,11(1): 65-72.
    [82] Ziechmann, W. and Pflug W. Inhibition of malate dehydrogenase by humic acids. Soil Biology and Biochemistry, 1981,13(4): 293-299
    [83] Vaughan, D. The stimulation of invertase in aseptic storage tissue slices by humic acid. Soil Biol Biochem, 1967b, 1:15-28.
    [84] Vaughan, D. Effect of humic acids on the development of invertase activity in slices of beetroot tissues washed under aseptic conditions. Humus Planta, 1967a, IV: 268-271.
    [85] Vaughan D.M.V., C, Mundie C.M. Uptake by beetroot tissue and biological activity of 14C-labelled fractions of soil organic matter. Trans Biochem Soc, 1974,2:126-129.
    [86] Nardi S., C. G., Dell'Agnola G., Scrimin P. Nitrate uptake and ATPase activity in oat seedlings in the presence of two humic fractions. Soil Biol Biochem, 1991,23: 833-836.
    [87] Ladd J.M. and Butler J. H. A. Inhibition and stimulation of proteolytic enzyme by soil humic acids. Australian J Soil Res, 1971, 7: 253-261.
    [88] Malcolm R.E., Vaughan D. Humic substances and phosphatase activities in plant tissues. Soil Biol Biochem, 1979,11: 253-259.
    [89] Piccolo, A., Nardi, S., Concheri, G. Structural characteristics of humic substances as related to nitrate uptake and growth regulation in plant systems. Soil Biology and Biochemistry, 1992,24(4): 373-380.
    [90] Parks, C, P.R. Ferket, L.N. Thomas and J.L. Grimes. Growth performance and immunity of turkey fed high and low crude protein diets supplemented with Menefee humate. Poultry Science, 1986,75(1): 138-143.
    [91] Hammock, D., Huang, C. C, Mort, G., Swinehart, J. H. The effect of humic acid on the uptake of mercury(II), cadmium(II), and zinc(II) by Chinook salmon (Oncorhynchus tshawytscha) eggs. Archives of Environmental Contamination and Toxicology, 2003,44(1): 83-88.
    [92] Yalcin, S., Ergun, A., Ozsoy, B., Yalcin, S., Erol, H., Onbasilar, I. The effects of dietary supplementation of L-carnitine and humic substances on performance, egg traits and blood parameters in laying hens. Asian-Australasian Journal of Animal Sciences, 2006,19(10):1478-1483.
    [93] Kim, S. W., Hulbert, L. E., Rachuonyo, H. A., McGlone, J. J. Relative availability of iron in mined humic substances for weanling pigs. Asian-Australasian Journal of Animal Sciences,2004,17(9): 1266-1270.
    [94] Islam, K.M.S., Schuhmacher, Gropp, J.M.Humic acid substances in animal agriculture. Pakistan Journal of Nutrition, 2005,4(3): 126-134.
    
    [95] TeraVita. Humates in Poultry and Stock Farming [http://www.teravita.com]
    [96] Ji, F., McGlone, J. J., Kim, S. W. Effects of dietary humic substances on pig growth performance, carcass characteristics, and ammonia emission. Journal of Animal Science, 2006,84(9): 2482-2490.
    [97] Schlikekewey, K. Effects of Implanted bovine calcium hydroxyapatite with humate. Arch Orthop Trauma Surg, 1992,111(5): 259-264.
    [98] Fuchs, V., Golbs, S., Kuhnert, M., Schopeck, W., Stier, B.Studies into action of humic acids on selected trace elements in laboratory rats. Arch Exper Vet Med, Leipzig, 1982, March (2):187-191.
    [99] Enviromate. Effects of humic acid on animals and humans(literature review and current research )[http://www.enviromateinc.com/effectsha.asp]
    [100] Kim, C. H., Park, J. K., Lee, G. Y., Seo, I. J. In vitro fermentation of rumen microorganisms cultured in medium supplemented with bacterio-mineral water (BMW) produced from bio-reacted swine. Asian-Australasian Journal of Animal Sciences, 2005,18(10): 1435-1439.
    [101] Lotosh, T. D. Experimental bases and prospects for the use of humic acid preparations from peat in medicine and agricultural production.lotosh, T D nauchnye Doki Vyss Shkoly Biol Nauki, 1991,10: 99-103.
    [102] Ashraf, M., Foolad, M. R., Donald, L. S. Pre[hyphen (true graphic)]sowing seed treatment--a shotgun approach to improve germination, plant growth, and crop yield under saline and non[hyphen (true graphic)]saline conditions[A]. Advances in Agronomy[C]. Academic Press,2005.223-271.
    [103] Lada, R. R., Stiles, A., Blake, T. J. The effects of natural and synthetic seed preconditioning agents (SPAs) in hastening seedling emergence and enhancing yield and quality of processing carrots. Scientia Horticulturae, 2005,106(1): 25-37.
    [104] Sudisha, J., Niranjana, S. R., Umesha, S., Prakash, H. S., Shekar Shetty, H. Transmission of seed-borne infection of muskmelon by Didymella bryoniae and effect of seed treatments on disease incidence and fruit yield. Biological Control, 2006, 37(2): 196-205.
    [105] Umesha, S. Occurrence of bacterial canker in tomato fields of Karnataka and effect of
    ??biological seed treatment on disease incidence.Crop Protection,2006,25(4):375-381.
    [106]Spadaro,D.,Gullino,M.L Impmving the efficacy of biocontrol agents against soilborne pathogens.Crop Protection,2005,24(7):601-613.
    [107]Roberts,D.P.,Lohrke,S.M.,Meyer,S.L.F.,Buyer,J.S.,Bowers,J.H.,Jacyn Baker,C.,Li,W.,de Souza,J.T.,Lewis,J.A.,Chung,S.Biocontrol agents applied individually and in combination for suppression of soilborne diseases of cucumber.Crop Protection,2005,24(2):141-155.
    [108]Pascual,J.A.,Hart,A.D.M.,Saunders,P.J.,McKay,H.V.,Kilpatrick,J.,Prosser,P.Agricultural methods to reduce the risk to birds from cereal seed treatments on fenlands in eastern England.I.Sowing depth manipulation.Agriculture,Ecosystems&Environment,1999,72(1):59-73.
    [109]Pascual,J.A.,Saunders,P.J.,Hart,A.D.M.,Mottram,J.Agricultural methods to reduce the risk to birds from cereal seed treatments on fenlands in eastern England.II.Rolling and harrowing as post-sowing cultivations.Agriculture,Ecosystems&Environment,1999,72(1): 75-86.
    [110]Shon,Y.H.,Nam,K.S.,Kim,M.IC Cancer chemopreventive potential of Scenedesmus spp.cultured in medium containing bioreacted swine urine.Journal of Microbiology and Biotechnology,2004,14(1):158—161.
    [111]颜启传.种子检验原理和技术.杭州:浙江大学出版社,2001.
    [112]张春庆,王建华.种子检验学.北京:高等教育出版社,2006.
    [113]方能虎,洪法水,赵贵文.稀土元素对水稻种子萌发活力、吸水量和膜透性的影响.稀土,2000,21(4):52-54.
    [114]刘华山,李玉玲,王德勤,台国琴,孟凡庭,杨国红.不同$22基因型玉米种子萌发过程中的生理生化特性变化.植物生理学通讯,1999,35(1):15-17.
    [115]Baker,H.a.Photosynthesis Energy Transduction,Spectroscopy.Washington:IRL Press,Oxford,1986:51-101.
    [116]Horii,A.,McCue,P.,Shetty,K.Seed vigour studies in corn,soybean and tomato in response to fish protein hydrolysates and consequences on phenolic-linked responses.Bioresource Technology,2007,98(11):2170-2177.
    [117]Snedecor G.W.,C.W.G.Statistical Methods.7th ed.Allies,IA,USA.The Iowa State University Press,1980.
    [118]Dawson B.,T.R.g.Basic & Clinical Biostatistics(3rd Edition).New York:Lange Medical Books/McGraw-Hill,2001.
    [119]张巧凤,吉健安,张亚东,赵凌,朱镇,王才林.粳稻食味仪测定值与食味品尝综合值的相关性分析.江苏农业学报,2007,23(3):161-165.
    [120]苏泽胜.稻米味度计测定值与食味品质性状间的相关性分析.安徽农业科学,2000,28(002):134-136.
    [121]朴钟泽,罗志祥.上海和韩国粳稻品种米质特性比较.上海交通大学学报:农业科学版,
    ??2002,20(004):296-301.
    [122]徐正进,陈温福,马殿荣,吴晓冬,郑煜焱,王嘉宇.辽宁水稻食味值及其与品质性状的关系.作物学报,2005,31(8):1092-1094.
    [123]王岩,程玉来,徐正进.稻米抗剪切力与食味值及其他品质性状的关系.粮油加工与食品机械,2005,(8):58-59,64.
    [124]赵国臣,侯立刚,郭希明,隋鹏举,周舰.北方绿色稻米品质特性的相关分析.北方水稻,2007,(2):23-25,34.
    [125]宋治军,纪重光.现代分析仪器与测试方法.西安:西北大学出版社,1995.
    [126]Raunkjaer,K.,Hvitved-Jacobsen,T.,Nielsen,P.H.Measurement of pools of protein,carbohydrate and lipid in domestic wastewater.Water Research,1994,28(2):251-262.
    [127]David Jenkins,M.G.R.,Glen T.Daigger.Manual on the Causes and control of activated sludge bulking and foaming.Chelsea:Lewis Publishers,1993:26.
    [128]黄伟坤,赵国君,韦光果.食品化学分析.上海:上海科学技术出版社,1997.
    [129]闫家伟,黄运瑞,武江旭,张小强.铁.邻菲罗啉法测定微量葡萄糖.南阳师范学院学报(自然科学版),2004,9(3):42-44.
    [130]Kudryavtsev,A.V.,Perminova,I.V.,Petrosyan,V.S.Size-exclusion chromatographic descriptors of humic substances.Analytica Chimica Acta,2000,407(1-2):193-202.
    [131]国家环境保护总局《水和废水监测分析方法》编委会编.水和废水监测分析方法(第四版).北京:中国环境科学出版社,2002:80-491.
    [132]Korshin,G.V.,Li,C.W.,Benjamin,M.M.Monitoring the properties of natural organic matter through UV spectroscopy:A consistent theory.Water Research,1997,31(7):1787-1795.
    [133]Sierra,M.M.D.,Giovanela,M.,Parlanti,E.,Soriano-Sierra,E.J.Fluorescence fingerprint of fulvic and humic acids from varied origins as viewed by single-scan and excitation/emission matrix techniques.Chemosphere,2005,58(6):715—733.
    [134]Velasco,M.I.,Campitelli,P.A.,Ceppi,S.B.,Havel,J.Analysis of humic acid from compost of urban wastes and soil by fluorescence spectroscopy.AgriScientia,2004,21(1/2):31-38.
    [135]Peuravuori,J.,Pihlaja,K.Molecular size distribution and spectroscopic properties of aquatic humic substances.Analytica Chimica Acta,1997,337(2):133-149.
    [136]Zsolnay,A.,Baigar,E.,Jimenez,M.,Steinweg,B.,Saccomandi,F.Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying.Chemosphere,1999,38(1):45-50.
    [137]Kalbitz,K.,Geyer,W.,Geyer,S.Spectroscopic properties of dissolved humic substances——a reflection of land use history in a fen area.Biogeoehemistry,1999,47(2):219-238.
    [138]Milori,D.,Martin—Neto,L,Bayer,C.,Mielniczuk,J.,Bagnato,V.S.Humification degree of soil humic acids determined by fluorescence spectroscopy.Soil Science,2002,167(11):739-749.
    [139]Earl M.Thurman,R.L M.Preparative isolation of aquatic hurnic substances.Environ Sci TecMol,1981,64(17):463-466.
    [140]Chen,Y.,Senesi,N.,Schnitzer,M.Information Provided on Humic Substances by E4-E6 Ratios.Soil Science Society of America Journal,1977,41(2):352-358.
    [141]Fuentes,M.,Gonzalez-Gaitano,G.,Garch-Mina,J.M.The usefulness of UV-visible and fluorescence spectroscopies to study the chemical nature of humic substances from soils and composts.Organic Geochemistry,2006,37(12):1949-1959.
    [142]Garcia,E.I.J.a.V.P.Determination of maturity indices for city refuse composts.Agric Ecosyst Environ,1989,38:331-343.
    [143]Kononova,M.M.Soil Organic Matter.Pergamon Press,1966:544-548.
    [144]Senesi,N.,Miano,T.M.,Provenzano,M.R.,Bmnetti,G.Characterization,differentiation,and classification of humic substances by fluorescence spectroscopy.Soil Sci,1991,152(4):259-271.
    [145]董莲华,覃召海,李宝珍,袁红莉.腐植物质结构鉴定研究方法进展.腐植酸,2007,116(3):1-3.
    [146]Lloret,S.M.,Legua,C.M.,Falco,P.C.Preconcentration and dansylation of aliphatic amines using C-18 solid-phase packings-Application to the screening analysis in environmental water samples.Journal of Chromatography A,2002,978(1-2):59-69.
    [147]Valero,D.,Martinez-Romero,D.,Serrano,M.The role of polyamines in the improvement of the shelf life of fruit.Trends in Food Science&Technology,2002,13(6-7):228-234.
    [148]Galston,A.W.,Sawhney,R.K Polyamines in plant physiology.Plant Physiol,1990,94(2):406-410.
    [149]Arias,M.,CarboneH,J.,Agusti,M.Endogenous free polyamines and their role in fruit set of low and high parthenocarpic ability citrus cultivars.Journal of Plant Physiology,2005,162(8):845-853.
    [150]Nishibori,N.,Fujihara,S.,Akatuki,T.Amounts of polyamines in foods in Japan and intake by Japanese.Food Chemistry,2007,100(2):491-497.
    [151]董伟峰,李宪臻,林维宣.丹磺酰氯作为生物胺柱前衍生化试剂衍生化条件的研究.大连轻工业学院学报,2005,24(2):115-118.
    [152]郑玉婴,王灿耀,傅明连.膨润十有机改性的兀1R和xRD研究.光谱学与光谱分析,2005,25(12).
    [153]孙尧俊,黄月芳,吴泰琉,王力平,费伦,杨海,龙英才.疏水硅沸石(Silicalite-I)结构性质的表征.化学学报,1994,52:573-577.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700