用户名: 密码: 验证码:
针铁矿法沉铁过程铁离子浓度预测模型研究及系统开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沉铁是湿法炼锌的关键工序,通过向含杂质铁的硫酸锌溶液中加入中和剂(锌焙砂)和氧气,使溶液中的铁离子以针铁矿的形式沉淀到渣中,从而达到除铁的目的。实际生产中,沉铁过程出口铁离子浓度采用人工化验方式获得,存在很大的滞后,给沉铁过程的实时控制带来了极大的困难。为此,研究针铁矿法沉铁过程出口铁离子浓度与各工艺参数之间的关系,实时预测出口铁离子浓度,对实现针铁矿法沉铁过程的优化控制,保证出口铁离子浓度满足后续生产工序要求具有十分重要的意义。
     本文在分析湿法炼锌沉铁过程工艺机理的基础上,确定了影响出口铁离子浓度的主要因素;深入分析了沉铁过程亚铁氧化和铁水解反应原理,建立了基于反应动力学、气液相平衡和物料平衡的沉铁过程出口铁离子浓度预测模型。为确定预测模型中的未知参数,提出了一种引入粒子群平均位置信息和位置更新约束因子的非线性动态惯性权重粒子群优化算法(NIWPSO),实现了对机理模型未知参数的优化估计。最后,利用实际生产数据验证了铁离子浓度预测模型的精度和可靠性,仿真结果表明模型可用于工业实际生产,为沉铁过程的优化控制提供了可用信息。
     在此基础上,采用基于Visual C++的模块化程序设计方法,开发了针铁矿法沉铁过程铁离子浓度预测系统,详细介绍了系统软件的设计。本系统实现了沉铁过程工艺参数的实时监测、出口铁离子浓度的在线预报及报表打印等功能,为下一步优化控制针铁矿法沉铁过程中锌焙砂和氧气的添加量奠定了基础。
The iron removal is a key process of hydrometallurgy, in which zinc calcine and oxygen are added to zinc sulfate solution to remove the impurities of iron, and to turn the iron ion in solution into goethite precipitation,so the purpose of iron removal can be achieved. In actual production, the iron ion concentration of iron removal process is obtained by manual testing, bringing large time delay and making the real-time control of iron removal process extremely difficult. Therefore, it is necessary and significant to study the relations between iron ion concentration output in the goethite iron removal process and the various process parameters, to achieve the real-time forecast of iron ion concentration output and the optimal control of the goethite iron removal process, so that the iron ion concentration meets the requirements of the follow-up production.
     Based on the analysis of hydrometallurgy iron removal mechanism, the factors affecting the iron ion concentration are determined.The reaction principle of ferrous iron oxidation and iron hydrolysis are deeply analyzed. Therefore, the iron ion concentration prediction model based on the kinetic equation, gas-liquid phase equilibrium and material balance is established. Aiming at the unknown parameters existing in the prediction model. A nonlinear dynamic inertia weight strategy particle swarm optimization algorithm (NIWPSO) with particle swarm average location and location update constraint factor is proposed to estimate the unknown parameters of the mechanism model. Finally, the accuracy and reliability of the prediction model of iron ion concentration are evaluated by using the actual production data. The simulation results show that the model can be used for industrial production, which provides valuable information for the optimal control of the iron removal process.
     With the use of modular programming method based on Visual C++,the prediction system of iron ion concentration in goethite iron removal process is developed, and a detailed description of the system software design is presented. The system can achieve the following functions:the real-time monitor of process parameters in iron removal process, the prediction of iron ion concentration, and report printing and so on. What's more, the system also lays the foundation for optimal contron of the addictional amount of zinc calcine and oxygen in iron removal process in the next step.
引文
[1]梅光贵,王德润,周敬元,等.湿法炼锌学.长沙:中南大学出版社,2001.341-403
    [2]彭秋容.铅锌冶金学.北京:科学出版社,2003.410-445
    [3]徐采栋,林蓉,汪大成.锌冶金物理化学.上海:上海科学技术出版社,1979.216-317
    [4]陈家墉,于淑秋,伍志春.湿法冶金中铁的分离与利用.北京:冶金工业出版社,1991.132-157
    [5]何蔼平,魏昶,刘中华,等.针铁矿法从镍电解混合阳极液中除铁研究.昆明理工大学学报,1996,21(6):140-147
    [6]赵永,蒋开喜,王德全,等.用针铁矿法从锌焙烧烟尘的热酸浸出液中除铁.有色金属(冶金部分),2005(5):13-15
    [7]Claassen J O, Sandenbergh R F. Influence of temperature and pH on the quality of metastable iron phases produced in zinc-rich solutions. Hydrometallurgy, 2007(86):178-190
    [8]Loan M, Newman O M G, Cooper R M G, et al. Defining the Paragoethite process for iron removal in zinc hydrometallurgy. Hydrometallurgy,2006(81): 104-129
    [9]李仕雄.硫酸锌溶液中针铁矿法沉铁的氧化过程.中国有色冶金,1982(2):40-43
    [10]陈耐生,赵经贵,张滨秋.对针铁矿法除铁过程中亚铁离子氧化速度的研究.黑龙江大学自然科学学报,1984(3):76-80
    [11]钟竹前,梅光贵.高温锌焙砂热酸浸出—亚硫酸锌还原—针铁矿法试验研究.有色金属,1980,32(1):82-87
    [12]Niekerk C J V,岑立振.用热沉淀法从硫酸盐溶液中除铁.有色冶金,1987(6):29-35
    [13]Ronnholm M R, Warna J, Salmi T, et al. Kinetics of oxidation of ferrous sulfate with molecular oxygen. Chemical Engineering Science,1999(54):4223-4232
    [14]Ronnholm M R, Warna J, Valtakari D, et al. Kinetics and mass transfer effects in the oxidation of ferrous sulfate over doped active carbon catalysts. Catalysis Today,2001(66):447-452
    [15]马莹,何静,马荣骏.三价铁离子在酸性水溶液中的行为.湖南有色金属,2005,21(1):36-39
    [16]于秀芳.Fe(Ⅲ)的水解聚合作用的热动力学研究.青岛化工学院学报,1999,20(2):151-154
    [17]王景杨,苑明哲,曹景兴,等.基于最小二乘参数辨识的非线性机理模型研究.沈阳理工大学学报,2008,27(3):48-51
    [18]吕志军,杨建国,项前,等.基于支持向量机的纺纱质量预测模型研究.控制与决策,2007,22(6):693-696
    [19]王凌云,桂卫华,刘梅花,等.基于改进在线支持向量回归的离子浓度预测模型.控制与决策,2009,24(4):537-541
    [20]朱红求,阳春华,桂卫华.一种净化过程钴离子浓度的混合智能预测方法.计算机科学,2009,36(7):234-236
    [21]孔玲爽,阳春华,王雅琳.一种基于灰色模型和机理模型集成的质量预测模型及其应用.湖南文理学院学报(自然科学版),2007,19(2):68-70
    [22]Elhaq S L, Giri F, Unbehauen H. Modeling identification and control of sugar evaporation theoretical design and experimental evaluation. Control Engineering Practice,1999,7:931-942
    [23]Patan K, Parisini T. Identification of neural dynamic models for fault detection and isolation:the case of a real sugar evaporation proeess. Journal of Proeess Control,2005,15(1):67-79
    [24]祝和云,王仁发,龙虹波.乳剂制备中银离子浓度过程建模及控制.化工自动化及仪表,1993(6):21-26
    [25]陈进东,潘丰.青霉素发酵过程中的混合建模.化工学报,2010,61(8):2092-2096
    [26]桑海峰,王福利,苑玮琦,等.诺西肤发酵过程中的混合建模.仪器仪表学报,2007,28(1):34-37
    [27]朱赞,王永富,何衍庆.PTA氧化反应器进料溴离子浓度的软测量.石油化工自动化,2001(5):27-30
    [28]朱赞,何衍庆,王行愚.软测量技术在PTA生产过程中的应用.仪器仪表学报,2001,22(4):271-272
    [29]雷琪,刘君贤,何勇,等.基于PCA与RBF的焦炭质量预测模型.控制工程,2010,17(4):513-516
    [30]朱红求,阳春华,桂卫华.基于模糊LS-SVM的净化过程钴离子浓度软测量.仪器仪表学报,2009,30(6):1224-1227
    [31]朱红求,阳春华,桂卫华,等.基于SVM和混沌PSO的除钴过程工艺指标预测.中南大学学报(自然科学版),2010,41(4):1424-1427
    [32]李洪桂.浸出过程的理论基础及实践.稀有金属与硬质合金,1995,(1):14-19
    [33]邓志明,周正华.湿法炼锌浸出沉铁探讨.湖南有色金属,2002,18(1):23-25
    [34]Claassena J O, Meyer E H O, Rennie J. Iron precipitation from zinc-rich solutions:defining the Zincor Process. Hydrometallurgy,2002(67):87-108
    [35]Markus H, Fugleberg S, Valtakari D, et al. Kinetic modelling of a solid-liquid reaction reduction of ferric iron to ferrous iron with zinc sulphide. Chemical Engineering Science,2004,(59):919-93
    [36]邓永贵,陈启元,尹周澜,等.锌浸出液针铁矿法除铁.有色金属,2010,62(3):80-84
    [37]李勇刚,桂卫华.基于PCA的多神经网络软测量模型及其在工业中的应用.小型微型计算机系统,2004,25(10):1781-1784
    [38]李瑾,张子平,陈宏芳,等.神经元网络中的PCA方法.中国科学技术大学学报,2001,31(1):40-44
    [39]Kennedy J, Eberhart R C. Particle swarm optimization. Proceedings of 1995 IEEE International Conference on Neural Networks. Perth, Australia, 1995:1942-1948.
    [40]Parsopoulos K E, Vrahatis M N. Recent approach to global optimization problems through particle swarm optimization. Natural Compuring, 2002,1(2/3):235-306
    [41]薛尧予,王建林,于涛,等.基于改进PSO算法的发酵过程模型参数估计.仪器仪表学报,2010,31(1):178-182
    [42]托马晓夫H A,华保定,佘柏年,等.金属腐蚀及其保护的理论,1959,16-17
    [43]托马晓夫H A.金属腐蚀理论.科学出版社,1957,36-111
    [44]Scott F H,李术元,朱建华.化学反应工程.北京:化学工业出版社,2005.187-200
    [45]Fogg P G T, Gerrard W. Solubility of gases in liquids:a critical evaluation of gas/liquid systems in theory and practice. Chichester; New York:Wiley,1991
    [46]Ueyama K, Hatanaka J. Mass transfer limitations in Fischer-Tropsch slurry reactions. Chemical Engineering Science,1982,57:790-791
    [47]梅乐和,姚善泾,林东强.生化生产工艺学.科学出版社,1999,111-135
    [48]Eberhart R, Kennedy J. A new optimizer using particle swarm theory. Proc of the Sixth International Symposium on Micro Machineand Human Science, Nagoya, Japan,1995:39-43
    [49]王峰,邢科义,徐小平.系统辨识的粒子群优化方法.西安交通大学学报,2009,43(2):116-119
    [50]Shi Y H, Eberhart R. A modified particle swarm optimizer. Proceedings of the IEEE World Congress on Computational Intelligence,1986:69-73
    [51]Eberhart R C, Shi Y H. Particle Swarm Optimization:Developments, Applications and Resources. Proceedings Congress on Evolutionary Computation 2001. Piscataway, NJ:IEEE Press,2001:81-86
    [52]Shi Y H, Eberhart R C. Fuzzy Adaptive Particle Swarm Optimization. Proceedings of the Congress on Evolutionary Computation. Seoul, Korea, 2001:101-106
    [53]谢晓锋,张文俊,杨之廉.微粒群算法综述.控制与决策,2003,18(2):129-134
    [54]苏辉,唐常杰,乔少杰,等.基于搜索空间划分和Sharing函数的粒子群优化算法.四川大学学报(自然科学版),2007,44(5):985-989
    [55]杨维,李歧强.粒子群优化算法综述.中国工程科学,2004,6(5):87-94
    [56]朱丽莉,杨志鹏,袁华.粒子群优化算法分析及研究进展.计算机工程与应用,2007,43(5):24-27
    [57]Boyd R, Richerson P J. Culture and Evolutionary Process. University of Chicago Press,1988
    [58]李丽,牛奔.粒子群优化算法.北京:冶金工业出版社,2009,25-68
    [59]Wilson E O. Socialbiology:the New Synthesis. Belknap Press of Harvard University Press,2000
    [60]He S, Wu Q H, Wen J Y, et al.A particle swarm optimizer with passive congregation. BioSystems. Elsevier Publishing,2004,78:135-147
    [61]苏晋荣,李兵义,王晓凯.一种利用种群平均信息的粒子群优化算法.计算机工程与应用,2007,43(10):58-59
    [62]夏克文,董瑶,杜红斌.基于改进PSO算法的LS-SVM油层识别模型.控制与决策,2007,22(12):1385-1389
    [63]陈贵敏,贾建援,韩琪.粒子群优化算法的惯性权值递减策略研究.西安交通大学学报,2006,40(1):53-56
    [64]车荣杰.聚丙烯熔融指数软测量方法研究[硕士学位论文].上海:中国石油大学,2009
    [65]赵恒平,俞金寿.化工数据预处理及其在建模中的应用.华东理工大学学报,2005,31(2):223-226
    [66]肖洪伟,陈旭.Visual C++6.0数据库开发技术与工程实践.北京:人民邮电出版社,2004,169-205
    [67]Gudgin M. Essential IDL:Interface Design for COM. Reading, Mass.:Addison-Wesley Pub.Co.,2000
    [68]贾宏宇,施仁.基于OPC的工控软件设计.工业控制计算机,1999(2):1-3
    [69]林跃,张彦武.OPC技术及其在工控组态软件中的应用.基础自动化,2001,8(2):41-43
    [70]柴凯,侯立刚,姜军银.OPC技术在工业过程控制中的应用研究.工业仪表与动化装置,2005(3):70-72

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700