低合金钢棒材热轧变形过程数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着轧制技术的发展,对轧制产品的要求也越来越高。不仅要求轧制产品的外观尺寸达到要求,同时要求得到良好的组织性能。而产品的组织性能和轧制工艺、产品的成分相关,但生产过程中合金成分往往在一定范围内波动,这可能导致相对稳定的生产工艺生产得到的产品却有差异。通过微观组织演变模型来预测轧制过程中再结晶类型和奥氏体晶粒尺寸,通过流变应力模型可以预测轧制道次流变应力值的变化规律。目前对于板带材轧制模拟研究较多,棒材属于孔型轧制,其变形过程比较复杂,所以预测其轧制过程中微观组织演变比较困难。
     本文针对低合金钢棒材轧制过程,建立了热轧变形过程中微观组织演变预测模型和每道次流变应力值预测模型。由于Nb(C, N)析出会阻止热轧过程中奥氏体晶粒长大,所以本文对含Nb低合金钢和不含Nb低合金钢分别进行讨论。棒材每一道次变形都是在孔型中完成,所以其变形过程较板材复杂,为了准确计算变形时的应变,本文采用最大宽度法计算各个道次变形后的等效应变值。再结晶模型中需要道次平均温度,本文通过温度场模型模拟计算轧制过程道次平均温度。对于微观组织演变模型,通过临界应变参数判断再结晶类型,然后根据静态再结晶模型或动态再结晶模型模拟计算奥氏体晶粒尺寸演化过程。当发生不完全再结晶时,残余应变将累积到下一道次,下一道次的应变值会相应的增加。考虑到再结晶软化过程,结合微观组织演化,通过流变应力模型,模拟计算轧制变形时流变应力值。
     运用微观组织演变模型和流变应力模型对低合金棒材热轧过程进行了模拟,并用实际值对预测值进行验证,结果发现预测值比较好的吻合实际值。对于不含Nb低金钢,动态再结晶是奥氏体晶粒细化的主要方式,轧制过程单道次发生动态再结晶就可以细化奥氏体晶粒。而对于含Nb低合金钢,由于轧制过程会发生Nb(C, N)析出,阻碍再结晶软化的发生,所以当Nb(C, N)析出时,可以得到细小的奥氏体晶粒尺寸。在轧制起始阶段发生动态再结晶主要是因为高应变、低应变速率和轧制温度高,而终轧阶段发生动态再结晶主要是由于残余应变累积的结果。
With the development of the rolling technology, the product quality is required higher than ever. The products need not only the qualified dimension, but also the good microstructure and properties. The microstructure and properties of the products are related with the chemical composition and the rolling technologies, which are different in a reasonable range. The changes of the rolling technologies can make the different of the properties of the products. Through predicting the evolution of the austenite size and the flow stress, the models can be useful tools to predict the products properties. Now there are many researches on model of hot strip rolling technologies. Because the rod rolling is a groove rolling, the deformation process of the hot rod rolling is more complicate than that of hot strip rolling. And the prediction of the rod rolling process is more difficult than the prediction of the hot strip rolling process.
     This paper proposes a model for predicting the microstructure evolution and the flow stress during the rod rolling. Due to the precipitation of Nb(C, N) can stop the growth of austenite, the prediction should discussed in different way. The deformation of the hot rod rolling is more complicate than hot strip rolling, the Max Width method is used to calculate the strain. The temperature model is used to compute the average temperature in each pass. The dynamic recrystallization will occur when the strain exceed the critical strain. When incomplete recrystallization happens, the residual strain will accumulate to the next pass. Combined with the microstructure evolution model, the flow stress can be calculated in different pass.
     The simulation of the hot rod rolling is proposed by a microstructure model. The prediction is compared of the mill data, and the results are good fit to the actual value. The main method refining the austenite size is the dynamic recrystallization. But when the steel is content of a little Nb, the precipitation of Nb(C, N) will prevent the recrystallization occurring and the austenite size changing. The small austenite size can be got when the dynamic recrystallization and precipitation happen together. The dynamic recrystallization occurs during the initial passes due to the high strains, low strain rates and high temperatures, or in the final passes as a consequence of strain accumulation.
引文
[1] Wang F, Zhu Q, Lin J, et al. Prediction of microstructural evolution in hot rolling [J], Journal of Materials Processing Technology, 2006, 177: 530-533.
    [2] Wang M T, Zang X L, Li X T, et al. Finite Element Simulation of Hot Strip Continuous Rolling Process Coupling Microstructural Evolution [J], Journal of Iron and Steel Research, 2007, 14(3): 30-36.
    [3] Xu Y B, Yu Y M, Liu X H, et al. Modeling of microstructure evolution and mechanical properties during hot-strip rolling of Nb steels [J], Journal of University of Science and Technology Beijing, 2008, 15(4): 396-401.
    [4] Jung K H, Lee H W, Im Y T. Numerical prediction of austenite grain size in a bar rolling process using an evolution model based on a hot compression test [J], Materials Science and Engineering A, 2009, 519: 94-104.
    [5]徐春,王全胜,张弛.型钢孔型设计[M],北京:化学工业出版社,2008,71-75.
    [6] Shinokura T, Takai K. A new method for calculating spread in rod rolling [J], Journal of Applied Metalworking, 1982, 2(2): 94-99.
    [7] Shinokura T, Takai K. Spread Characteristics and Spread Formula in Steel Bar Rolling [J], ISIJ, 1986, 72(14): 1877-1880
    [8] Lee Y. Calculating Model of Mean Strain in Rod Rolling Process [J], ISIJ, 1999, 39(9): 961-964
    [9] Lee Y, Kim H J, Hwang S M. Analytic model for the prediction of mean effective strain in rod rolling process [J], Journal of Materials Processing Technology, 2001, 114: 129-138.
    [10] Mandal M, Pal S K. Pseudo-bond graph modelling of temperature distribution in a through-process steel rolling [J], Mathematics and Computers in Simulation, 2008, 77: 81-95.
    [11] Kim J, Lee J, Hwang S M. An analytical model for the prediction of strip temperatures in hot strip rolling [J], International Journal of Heat and Mass Transfer, 2009, 52: 1864-1874.
    [12] Wu W F, Feng Y H, Zhang X X. Heat transfer analysis during rolling of thin slab in csp[J], Acta Metallurgica Sinica, 2006, 19(4): 244-250.
    [13] Yuan S Y, Zhang L W, Liao S L, et al. Simulation of deformation and temperature in multi-pass continuous rolling by three-dimensional FEM [J], Journal of Materials Processing Technology, 2009, 209: 2760-2766.
    [14]侯立刚,张国民,肖宏.热连轧过程中温度场的模拟[J],钢铁研究学报,2006,18(8):32-34.
    [15]刘华强,唐荻,杨荃.数值模拟温度场在中厚板轧后控冷过程的应用[J],钢铁,2008,43(6):56-60.
    [16] Phadke S, Pauskar P, Shivpuri R. Computational modelling of phase transformations and mechanical properties during the cooling of hot rolled rod [J], Journal of Materials Processing Technology, 2004, 150: 107-115.
    [17] Serajzadeh S. Prediction of temperature distribution and phase transformation on the run-out table in the process of hot strip rolling [J], Applied mathematical Modeling, 2003, 27: 861-875.
    [18] Zhou S X. An integrated model for hot rolling of steel strips[J], Journal of Materials Processing Technology, 2003, 139: 338-351.
    [19] Kyung J L, Jae K L, Kang K B, et al. Mathematical modelling of transformation in Nb microalloyed steels[J], ISIJ, 1992, 32(3): 326-334.
    [20] Hodgson P D, Zahiri S H, Whale J J. The static and metadynamic recrystallization behaviour of an X60 Nb microalloyed steel[J], ISIJ, 2004, 44(7): 1224-1229.
    [21] Uranga P, Fernandez A I, Lopez B, et al. Transition between static and metadynamic recrystallization kinetics in coarse Nb microalloyed austenite[J], Materials Science and Engineering, 2003, A345: 319-327.
    [22] Medina S F, Mancilla J E. Static recrystallization modelling of hot deformed microalloyed steels at temperatures below the critical temperature[J], ISIJ, 1996, 36(8): 1077-1083.
    [23] Vega M I, Medina S F, Chapa M, et al. Determination of critical temperatures in hot rolling of structural with different Ti and N contents[J], ISIJ, 1999, 39(12): 1304-1310.
    [24] Lenard J G, Pietrzyk M and Cser L. Mathematical and Physical Simulation of the Properties of Hot Rolled Products [M], Imprint: ELSEVIER, 1999, 155-156
    [25] Siciliano F. Mathematical modeling of the hot strip rolling of Nb microalloyed steels[D]. Canada: McGill University, 1999.
    [26] Beynon J H, Sellars C M. Modelling microstructure and its effects during multipass hot rolling[J], ISIJ, 1992, 32(3): 359-367.
    [27] Siciliano F, Minami K, Maccagno T M, et al. Mathematical modeling of the mean flow stress,fractional softening and grain size during the hot strip rolling of C-Mn steels[J], ISIJ, 1996, 36(12): 1500-1506.
    [28] Barnett M R, Kelly G L, Hodgson P D. Predicting the critical strain for dynamic recrystallization using the kinetics of static recrystallization[J], Scripta Material, 2000, 43: 365-369.
    [29] Maccagno T M, Jonas J J. Correcting for the effects of static and metadynamic recrystallization during the laboratory simulation of rod rolling[J], ISIJ, 1994, 34(7): 607-614.
    [30] Karjalainen L P, Maccagno T M, Jonas J J. Softening and flow stress behaviour of Nb microalloyed steels during hot rolling simulation[J], ISIJ, 1995, 35(12): 1523-1531.
    [31] Bontcheva N, Petzov G. Total simulation model of the thermo-mechanical process in shape rolling of steel rods[J], Computational Materials Science, 2005, 34: 377-388.
    [32] Sun W P, Hawbolt E B. Comparison between static and metadynamic recrystallization an application to the hot rolling of steels[J], ISIJ, 1997,37(10):1000-1009.
    [33] Hao Yu, Yonglin Kang, Kelu Wang, et al. Study of mechanism on microstructure refinement during compact strip production process[J], Materials Science and Engineering, 2003, A363: 86-92.
    [34] Hodgson P D, Gibbs R K. A mathematical model to predict the mechanical properties of hot rolled C-Mn and Microalloyed steels[J], ISIJ, 1992, 32(12): 1329-1338.
    [35] Park J J. Prediction of the flow stress and grain size of steel during thick-plate rolling [J], Journal of Materials Processing Technology, 2001, 113: 581-586.
    [36] Han H. Determination of mean flow stress and friction coefficient by the modified two-specimen method in cold rolling [J], Journal of Materials Processing Technology, 2005, 159: 401-408.
    [37] Byon S M, Kim S I, Lee Y. A numerical approach to determine flow stress–strain curve of strip and friction coefficient in actual cold rolling mill [J], Journal of Materials Processing Technology, 2008, 201: 106-111.
    [38]许云波,邓天勇,于永梅,王国栋.X70管线钢热连轧过程奥氏体再结晶、晶粒尺寸和平均流变应力的预测[J],钢铁,2007,42(11):69-73.
    [39] Abbod M F, Sellars C M, Tanaka A, et al. Effect of changing strain rate on flow stress during hot deformation of Type 316L stainless steel [J], Materials Science & Engineering A, 2008, 491: 290-296.
    [40] Wang L M, Liu N, Chen L Q, et al. Investigation of Flow Stress and Microstructure Evolution of 403Nb Under Hot Compression [J], Proceedings of Sino-Swedish Structural Materials Symposium, 2007, 491: 290-296.
    [41] Akbari G H, Sellars C M, Whiteman J A. Microstructural development during warm rolling of an IF steel [J], Acta Materialia, 1997, 45(12): 5047-5058.
    [42] Dutta B, Palmiere E J, Sellars C M. Modelling the kinetics of strain induced precipitation in Nb microalloyed steels [J], Acta Materialia, 2001, 49: 785-794.
    [43] Cho S H, Yoo Y C, Jonas J J. Static and dynamic strain aging in 304 austenitic stainless steel at elevated temperatures [J], Journal of Materials Science Letters, 2000, 19: 2019-2022.
    [44] Najafi-zadeh A, Yue S, Jonas J J. Influence of Hot Strip Rolling Parameters on Austenite Recrystallization in Interstitial Free Steels [J], ISIJ, 1992, 32(2): 213-221.
    [45] Dehghan-manshadi A, Barnett M R, Hodgson P D. Hot Deformation and Recrystallization of Austenitic Stainless Steel Part I Dynamic Recrystallization [J], Metallurgical and Materials Transactions A, 2008, 39(6): 1359-1370.
    [46] Dehghan-manshadi A, Barnett M R, Hodgson P D. Hot Deformation and Recrystallization of Austenitic Stainless Steel Part II. Post-deformation Recrystallization [J], Metallurgical and Materials Transactions A, 2008, 39(6): 1359-1370.
    [47] Toloui M, Serajzadeh S. Microstructural evolution on streamlines during hot strip rolling using internal state variables [J], Journal of Materials Processing Technology, 2009, 209: 1717-1728.
    [48] Serajzadeh S. Prediction of microstructural changes during hot rod rolling [J], Machine Tolls & Manufacture, 2003, 43: 1487-1495.
    [49] Xu Y B, Yu Y M, Liu X H, Wang G D. Prediction of Rolling Load, Recrystallization Kinetics, and Microstructure During Hot Strip Rolling [J], Jounal of Iron and Steel Research, 2007, 14(6): 42-46.
    [50]邓天勇,许云波,吴迪,刘相华,王国栋.TSCR生产X65管线钢过程的再结晶研究和MFS预测[J],钢铁,2008,43(5):44-50.
    [51] Lee Y, Choi S. New approach for the prediction of stress free surface profile of a workpiece in rod rolling [J], ISIJ, 2000, 40(6): 624-626.
    [52] Lee Y. Prediction of the surface profile and area of the exit cross section of workpiece in round-oval-round pass sequence [J], ISIJ, 2002, 42(7): 726-735.
    [53] Lee Y, Choi S, Kim Y H. Mathematical model and experimental validation of surface profile of a workpiece in round–oval–round pass sequence [J], Journal of Materials Processing Technology, 2000, 108: 87-96.
    [54]李子文,肖国栋,姜振峰,刘京华.全连续棒材无孔型轧制技术的开发与应用[J],轧钢,2006,23(3):21-24.
    [55] Serajzadeh S, Mirbagheri H, Karimi-taheri A. Modelling the temperature distribution and microstructural changes during hot rod rolling of a low carbon steel [J], Journal of Materials Processing Technology, 2002, 126-126: 89-96.
    [56] Lee Y, Choi S, Hodgson P D. Integrated model for thermo-mechanical controlled process in rod (or bar) rolling [J], Journal of Materials Processing Technology, 2002, 126-126: 678-688.
    [57] Pal S K, Linkens D A. Temperature distribution in steel during hot rolling, pseudo bond graph view [J], Simulation Modelling Practice and Theory, 2002, 10: 69-85.
    [58] Serajzadeh S. Prediction of microstructural changes during hot rod rolling [J], International Journal of Machine Tools & Manufacture, 2003, 43: 1487-1495.
    [59] Lee Y. An Analytical Study of Mean Roll Radius in Rod Rolling [J], ISIJ, 2001, 41(11): 1414-1416.
    [60] Dong Y G, Zhang W Z, Song J F. A New Analytical Model for the Calculation of Mean Roll Radius in Round-oval-round Alloy Bar Rolling [J], ISIJ, 2006, 46(10): 1458-1466.
    [61] Militzer M. Computer simulation of microstructure evolution in low carbon sheet steels[J], ISIJ, 2007, 47(1): 1-15.
    [62] Medina S F, Hernandez C A. General expression of the Zener-Hollomon parameter as a function of the chemical composition of low alloy and microalloyed steels[J], Acta Mater., 1996, 44(1): 137-148.
    [63] Medina S F, Hernandez C A. The influence of chemical composition on peak strain of deformed austenite in low alloy and microalloyed steels[J], Acta mater., 1996, 44(1): 149-154.
    [64] Roucoules C. Dynamic and Metadynamic Recrystallization in HSLA Steels[D]. Canada: McGill University, 1992.
    [65] Medina S F, Mancilla J E. Static recrystallization modelling of hot deformed steels containing several alloyed elements[J], ISIJ, 1996, 36(8): 1070-1076.
    [66] Medina S F, Hernandez C A. Modelling of the dynamic recrystallization of austenite in low alloy and microalloyed steels [J], Acta Materialia, 1996, 44(1): 165-171.
    [67] Maccagno T M, Jonas J J, Hodgson P D. Spreadsheet modelling of grain size evolution during rod rolling[J], ISIJ, 1996, 36(6): 720-728.
    [68] Lee W B, Hong S G, Park C G, et al. Influence of Mo on precipitation hardening in hot rolled HSLA steels containing Nb[J], Scripta Mater., 2000, 43: 319-324.
    [69] Bai D Q, Hamad F, Asante J. Precipitation strengthening in a low carbon Nb-microalloyed steel[J], Materials Science Forum, 2005, 500-501: 481-488.
    [70] Shinokura T, Takai K. Mathematical Models of Roll Forece and Torque in Steel Bar Rolling [J], ISIJ, 1986, 14: 1870-1876.
    [71] Kirihata A, Siciliano F, Maccagno T M, Jonas J J. Mathematical Modelling of Mean Flow Stress during the Hot Strip Rolling of Multiply-alloyed Medium Carbon Steels [J], ISIJ, 1998, 38(2): 187-195.
    [72] Minami K, Siciliano F, Maccagno T M, Jonas J J. Mathematical Modeling of Mean Flow Stress during the Hot Strip Rolling of Nb Steels [J], ISIJ, 1998, 38(2): 187-195.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700