多铁性材料外场调控介电性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们对信息存储和信息处理方面的要求逐步提高,存储器件的多功能化是必由之路。因此,对同时具有磁性和铁电性、有望实现磁电相互调控的多铁性材料的研究成为信息存储技术日趋提升的需要,具有重要的科学意义和应用前景。虽然人们已在相关领域开展了一些工作,但是在该体系中还存在一些亟待解决的问题,比如如何实现在室温附近的低场调控,并且很多材料的多铁性起源尚不十分明确。
     针对上述问题,本论文主要研究了若干多铁性材料的介电特性及其外场调控性质,探索了获得低场室温的介电可调性的途径,初步讨论了介电调控的起源及其与结构、磁、铁电和多铁性的关系。论文内容共分为六章,每章的主要内容分别概括如下:
     第一章主要综述了多铁性材料的研究进展,对每一类多铁材料的磁及铁电起源进行了概述,并详细介绍了“电子铁电体”LuFe_2O_4的结构和物理性能,讨论了电荷有序态对其磁电调控的重要意义。
     第二章我们研究了LuFe_2O_4体系的结构及光谱学特性,以及Mn掺杂的LuFe_2O_4体系的介电及多铁性质。发现在LuFe_2O_4的亚铁磁和铁电转变温度附近,均观察到了晶胞参数、Fe-Fe层间间距的异常变化。与此同时,拉曼和红外振动模的峰值频率随着温度的变化发生了相应的移动,并在磁和铁电转变处也出现了台阶状的突变。该结果证明了该体系中存在结构和磁性、铁电性之间的内在关联。另一方面,对LuFe_(2-x)Mn_xO_4 (0≤x≤1)体系的磁性、介电及其磁/电场调控的研究表明,Mn掺杂抑制了体系中Fe~(3+)和Fe~(2+)离子之间的电荷涨落和电子跃迁,使磁有序温度、介电常数和损耗降低。并且在这些样品中观测到了室温下的低磁/电场可调的介电特性。
     第三章研究了石榴石型铁氧体Lu_3Fe_5O_(12)的多晶和薄膜样品的基本性能。发现不同退火条件对该Lu_3Fe_5O_(12)多晶样品中氧含量有着重要的影响,进而引起磁性及介电性质的变化。结果表明,经过氧气退火处理的样品具有最低的介电损耗值。在此基础上,利用磁控射频溅射方法对Lu_3Fe_5O_(12)外延薄膜样品的制备工艺进行了初步的探索,发现不同的沉积温度、气氛、退火条件等对该系列薄膜的磁性有着及其重要的影响。
     第四章介绍了可能的电荷有序多铁材料La_(1-x)Ca_xMnO_3电场调控的介电特性。通过研究不同组分(0.6≤x≤0.8)的La_(1-x)Ca_xMnO_3介电及阻抗特性,发现该体系中存在很大的介电调制效应,10 V/cm的电场下就有80%以上的介电常数变化,并且发现其调制效应与Maxwell-Wagner非本征效应密切相关,同时电荷有序态的稳定性也决定着介电调制的大小和可调频率范围。
     第五章研究了(1-x) La_2NiMnO_6-(x) La_(2/3)Sr_(1/3)MnO_3复合体系的磁介电效应。发现该体系中存在着较大的室温磁介电效应,并且其磁介电数值随着x非单调变化,在x = 0.4时最大,该组分样品在1 kOe的磁场下可以获得20%的室温磁介电变化。该体系在较宽的温度和频率范围内都能观察到较强的磁介电效应。
     第六章介绍了光学浮熔区法生长Y/DyMnO_3多铁性单晶的制备工艺、结构表征及其基本物性测量。
Recently, with the development of the information storage industry, it is necessary to achieve multi-functionality in one device. Therefore, the mutual manipulation of the magnetic and electric properties in multiferroics, which shows both magnetic and ferroelectric properties, is of great interest. Although many efforts have been made in this system, there are lots of problems demanding prompt solution, such as how to achieve the room-temperature magnetic/electric tunability with low external fields. Moreover, the mechanism of magnetic and electric coupling in most of multiferroics is not so clear. So the further study on multiferroics becomes an important issue both for fundamental physics and technical applications.
     In this dissertation, the dielectric tunability with external fields is studied in some multiferroic materials. The possible routes to achieve the room-temperature tunability with low fields are proposed. In addition, the relationship among the structural, magnetic, ferroelectric properties and the origin of the tunability is discussed.
     In chapter one, the research history and relevant mechanisms of multiferroic materials are concisely reviewed. The multiferroic properties of“electronic ferroelectric”LuFe_2O_4 are particularly introduced, and the previous results show lots of interesting properties closely related to the charge ordering in this system.
     In chapter two, the phonon spectra and structural characteristics of the LuFe_2O_4 system are investigated using X-ray diffraction as well as Raman and infrared (IR) spectroscopic techniques. Two step-like anomalies of the wavenumbers of the peak in Raman and peak in IR spectra, as well as some weak anomalies of the lattice parameters, are found around the ferrimagnetic and ferroelectric transition temperatures. These results illustrate that the structural fluctuations could effectively influence the phonon modes, and a possible interplay among the structural, magnetic, and charge-ordering properties exists in this multiferroic system. On the other hand, the dielectric properties and tunability with external magnetic and electric fields for LuFe_(2-x)Mn_xO_4 (0≤x≤1) are systematically studied. It is found that the dielectric loss, the ferrimagnetic Curie temperature, as well as the conductivity reduces with increasing Mn doping. One of the most important results is that the room-temperature dielectric tunability with low magnetic and electric fields can be achieved in these samples. The analysis demonstrates that the electron transfer between Fe~(2+) and Fe~(3+)is efficiently suppressed with Mn doping and thus results in the decreases of the leaky conductivity as well as the dielectric loss.
     In chapter three, the properties of garnet Lu_3Fe_5O_(12) bulks and films are investigated. The dielectric loss in bulks changes with different annealing processes is reduced effectively with decreasing oxygen deficiencies through annealing in O_2. Furthermore, the epitaxial Lu_3Fe_5O_(12) films are grown on (111) Y_3Al_5O_(12) substrates by rf magnetron sputtering technique and subsequently annealed in O2 atmosphere. The magnetization loops and the ESR results provide that the magnetic properties can be tuned by atmospheres and temperatures during sputtering and annealing processes.
     In chapter four, the dielectric tunability with external electric fields in charge ordering La_(1-x)Ca_xMnO_3 is studied. The tunability is up to 80% under a bias field as low as the order of 10 V/cm. Through the dielectric and impedance analyses, the tunability is believed to be related to the Maxwell-Wagner effect associated with Schottky barriers and grain boundary. Moreover, the tunability strongly depends on the stability of the charge-ordered state of the compounds.
     In chapter five, the magnetodielectric effect in (1-x) La2NiMnO_6-(x) La_(2/3)Sr_(1/3)MnO_3 composites is studied. A large dielectric response with magnetic fields is found in wide temperature and frequency ranges. The results indicate that variation of dielectric constants with magnetic fields depends non-monotonously on the molar ratio of two compounds and reaches a maximum up to 20% for x = 0.4 at the frequency of 1 MHz and field of 1 kOe at room temperature.
     In chapter six, the crystal growth process for multiferroic Y/DyMnO3 by optical floating-zone single crystal furnace is introduced. The structural characteristics show the quality of these single crystals. The magnetic and diaelectric properties were also investigated briefly.
引文
1.焦正宽,曹光旱,磁电子学.浙江大学出版社, (2005).
    2. G. A. Prinz, Device physics - Magnetoelectronics. Science, 282(5394), 1660-1663 (1998).
    3. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Spintronics: A spin-based electronics vision for the future. Science, 294(5546), 1488-1495 (2001).
    4. I. Zutic, J. Fabian, and S. Das Sarma, Spintronics: Fundamentals and applications. Reviews of Modern Physics, 76(2), 323-410 (2004).
    5.王克锋,刘俊明,王雨,单相多铁性材料——极化和磁性序参量的耦合与调控.科学通报, 53(10), 1098-1135 (2008).
    6. D. Hadnagy, Making Ferroelectric Memories. American Institute of Physics, (1999 ).
    7. J. F. Scott, A comparison of magnetic random access memories (MRAMs) and ferroelectric random access memories (FRAMs), in Ferro- and Antiferroelectricity: Order/Disorder Versus Displacive. 2007, Springer-Verlag Berlin: Berlin. p. 199-207.
    8. H. Schmid, Multi-ferroic magnetoelectrics. Ferroelectrics, 162(1-4), 317-338 (1994).
    9. N. A. Spaldin and M. Fiebig, The renaissance of magnetoelectric multiferroics. Science, 309(5733), 391-392 (2005).
    10. Y. Tokura, Multiferroics - toward strong coupling between magnetization and polarization in a solid. Journal of Magnetism and Magnetic Materials, 310(2), 1145-1150 (2007).
    11. G. Trinquier and R. Hoffmann, Lead monoxide. Electronic structure and bonding. Journal of Physical Chemistry, 88(26), 6696-6711 (1984).
    12. G. W. Watson, S. C. Parker, and G. Kresse, Ab initio calculation of the origin of the distortion of alpha-PbO. Physical Review B, 59(13), 8481-8486 (1999).
    13. R. Seshadri and N. A. Hill, Visualizing the role of Bi 6s "Lone pairs" in the off-center distortion in ferromagnetic BiMnO3. Chemistry of Materials, 13(9), 2892-2899 (2001).
    14. N. A. Hill and K. M. Rabe, First-principles investigation of ferromagnetism and ferroelectricity in bismuth manganite. Physical Review B, 59(13), 8759-8769 (1999).
    15. T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano, and Y. Tokura, Magnetocapacitance effect in multiferroic BiMnO3. Physical Review B, 67(18), 4 (2003).
    16. Y. H. Chu, L. W. Martin, M. B. Holcomb, and R. Ramesh, Controlling magnetism with multiferroics. Materials Today, 10(10), 16-23 (2007).
    17. G. Catalan and J. F. Scott, Physics and Applications of Bismuth Ferrite. Advanced Materials, 21(24), 2463-2485 (2009).
    18. P. Ravindran, R. Vidya, A. Kjekshus, Fjellv, aring, H. g, and O. Eriksson, Theoretical investigation of magnetoelectric behavior in BiFeO3. Physical Review B, 74(22), 224412 (2006).
    19. C. Ederer and N. A. Spaldin, Effect of Epitaxial Strain on the Spontaneous Polarization of Thin Film Ferroelectrics. Physical Review Letters, 95(25), 257601 (2005).
    20. J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, Epitaxial BiFeO3 multiferroic thin film heterostructures. Science, 299(5613), 1719-1722 (2003).
    21. J. H. Dho, X. D. Qi, H. Kim, J. L. MacManus-Driscoll, and M. G. Blamire, Large electric polarization and exchange bias in multiferroic BiFeO3. Advanced Materials, 18(11), 1445-+ (2006).
    22. H. Bea, M. Bibes, S. Cherifi, F. Nolting, B. Warot-Fonrose, S. Fusil, G. Herranz, C. Deranlot, E. Jacquet, K. Bouzehouane, and A. Barthelemy, Tunnel magnetoresistance and robust room temperature exchange bias with multiferroic BiFeO3 epitaxial thin films. Applied Physics Letters, 89(24), 3 (2006).
    23. Y. H. Chu, L. W. Martin, M. B. Holcomb, M. Gajek, S. J. Han, Q. He, N. Balke, C. H. Yang, D. Lee, W. Hu, Q. Zhan, P. L. Yang, A. Fraile-Rodriguez, A. Scholl, S. X. Wang, and R. Ramesh, Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nature Materials, 7(6), 478-482 (2008).
    24. T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry, A. Doran, M. P. Cruz, Y. H. Chu, C. Ederer, N. A. Spaldin, R. R. Das, D. M. Kim, S. H. Baek, C. B. Eom, and R. Ramesh, Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. Nature Materials, 5(10), 823-829 (2006).
    25. S. M. Wu, S. A. Cybart, P. Yu, M. D. Rossell, J. X. Zhang, R. Ramesh, and R. C. Dynes, Reversible electric control of exchange bias in a multiferroic field-effect device. Nature Materials, 9(9), 756-761 (2010).
    26. B. Kundys, M. Viret, D. Colson, and D. O. Kundys, Light- induced size changes in BiFeO3 crystals. Nature Materials, 9(10), 803-805 (2010).
    27. B. B. Van Aken, T. T. M. Palstra, A. Filippetti, and N. A. Spaldin, The origin of ferroelectricity in magnetoelectric YMnO3. Nature Materials, 3(3), 164-170 (2004).
    28. S. Lee, A. Pirogov, M. S. Kang, K. H. Jang, M. Yonemura, T. Kamiyama, S. W. Cheong, F. Gozzo, N. Shin, H. Kimura, Y. Noda, and J. G. Park, Giant magneto-elastic coupling in multiferroic hexagonal manganites. Nature, 451(7180), 805-U4 (2008).
    29. M. Fiebig, T. Lottermoser, D. Frohlich, A. V. Goltsev, and R. V. Pisarev, Observation of coupled magnetic and electric domains. Nature, 419(6909), 818-820 (2002).
    30. Z. J. Huang, Y. Cao, Y. Y. Sun, Y. Y. Xue, and C. W. Chu, Coupling between the ferroelectric and antiferromagnetic orders in YMnO3. Physical Review B, 56(5), 2623-2626 (1997).
    31. S. Lee, A. Pirogov, J. H. Han, J. G. Park, A. Hoshikawa, and T. Kamiyama, Direct observation of a coupling between spin, lattice and electric dipole moment in multiferroic YMnO3. Physical Review B, 71(18), 4 (2005).
    32. T. Lottermoser, T. Lonkai, U. Amann, D. Hohlwein, J. Ihringer, and M. Fiebig, Magnetic phase control by an electric field. Nature, 430(6999), 541-544 (2004).
    33. T. Moriya, ocirc, and ru, Anisotropic Superexchange Interaction and Weak Ferromagnetism. Physical Review, 120(1), 91 (1960).
    34. K. Taniguchi, N. Abe, T. Takenobu, Y. Iwasa, and T. Arima, Ferroelectric Polarization Flop in a Frustrated Magnet MnWO4 Induced by a Magnetic Field. Physical Review Letters, 97(9), 097203 (2006).
    35. K. Taniguchi, N. Abe, S. Ohtani, and T. Arima, Magnetoelectric Memory Effect of the Nonpolar Phase with Collinear Spin Structure in Multiferroic MnWO4. Physical Review Letters, 102(14), 147201 (2009).
    36. uuml, D. vonen, U. Nagel, otilde, T. m, Y. J. Choi, C. L. Zhang, S. Park, and S. W. Cheong, Magnetic excitations and optical transitions in the multiferroic spin- 1/2 system LiCu2O2. Physical Review B, 80(10), 100402 (2009).
    37. T. Masuda, A. Zheludev, B. Roessli, A. Bush, M. Markina, and A. Vasiliev, Spin waves and magnetic interactions in LiCu2O2. Physical Review B, 72(1), 014405 (2005).
    38. S. Park, Y. J. Choi, C. L. Zhang, and S. W. Cheong, Ferroelectricity in an S=1/2 Chain Cuprate. Physical Review Letters, 98(5), 057601 (2007).
    39. T. Kimura, J. C. Lashley, and A. P. Ramirez, Inversion-symmetry breaking in the noncollinear magnetic phase of the triangular-lattice antiferromagnet CuFeO2. Physical Review B, 73(22), 220401 (2006).
    40. K. Kimura, H. Nakamura, S. Kimura, M. Hagiwara, and T. Kimura, Tuning Ferroelectric Polarization Reversal by Electric and Magnetic Fields in CuCrO2. Physical Review Letters, 103(10), 107201 (2009).
    41. K. Kimura, H. Nakamura, K. Ohgushi, and T. Kimura, Magnetoelectric control of spin-chiral ferroelectric domains in a triangular lattice antiferromagnet. Physical Review B, 78(14), 140401 (2008).
    42. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, Magnetic control of ferroelectric polarization. Nature, 426(6962), 55-58 (2003).
    43. T. Goto, T. Kimura, G. Lawes, A. P. Ramirez, and Y. Tokura, Ferroelectricity and Giant Magnetocapacitance in Perovskite Rare-Earth Manganites. Physical Review Letters, 92(25), 257201 (2004).
    44. M. Kenzelmann, A. B. Harris, S. Jonas, C. Broholm, J. Schefer, S. B. Kim, C. L. Zhang, S. W. Cheong, O. P. Vajk, and J. W. Lynn, Magnetic Inversion Symmetry Breaking and Ferroelectricity in TbMnO3. Physical Review Letters, 95(8), 087206 (2005).
    45. S. Ishiwata, Y. Taguchi, H. Murakawa, Y. Onose, and Y. Tokura, Low-magnetic-field control of electric polarization vector in a helimagnet. Science, 319(5870), 1643-1646 (2008).
    46. T. Kimura, G. Lawes, and A. P. Ramirez, Electric Polarization Rotation in a Hexaferrite with Long-Wavelength Magnetic Structures. Physical Review Letters, 94(13), 137201 (2005).
    47. J. van den Brink and D. I. Khomskii, Multiferroicity due to charge ordering. Journal of Physics-Condensed Matter, 20(43), 434217 (2008).
    48. D. V. Efremov, J. Van den Brink, and D. I. Khomskii, Bond-versus site-centred ordering and possible ferroelectricity in manganites. Nature Materials, 3(12), 853-856 (2004).
    49. C. Ederer and N. A. Spaldin, Magnetoelectrics - A new route to magnetic ferroelectrics. Nature Materials, 3(12), 849-851 (2004).
    50. G. Giovannetti, S. Kumar, J. van den Brink, and S. Picozzi, Magnetically Induced Electronic Ferroelectricity in Half-Doped Manganites. Physical Review Letters, 103(3), 037601 (2009).
    51. A. M. L. Lopes, Ara, uacute, J. P. jo, V. S. Amaral, J. G. Correia, Y. Tomioka, and Y. Tokura, New Phase Transition in the Pr1-xCaxMnO3 System: Evidence for Electrical Polarization in Charge Ordered Manganites. Physical Review Letters, 100(15), 155702 (2008).
    52. T. Zou, F. Wang, Y. Liu, L. Q. Yan, and Y. Sun, Multiferroicity and magnetoelectric coupling in half-doped manganite La0.5Ca0.5MnO3. Applied Physics Letters, 97(9), 092501 (2010).
    53. Y. Tokunaga, T. Lottermoser, Y. Lee, R. Kumai, M. Uchida, T. Arima, and Y. Tokura, Rotation of orbital stripes and the consequent charge-polarized state in bilayer manganites. Nature Materials, 5(12), 937-941 (2006).
    54. K. Kato, S. Iida, K. Yanai, and K. Mizushima, Ferrimagnetic ferroelectricity of Fe3O4.Journal of Magnetism and Magnetic Materials, 31-34, 783-784 (1983).
    55. M. Alexe, M. Ziese, D. Hesse, P. Esquinazi, K. Yamauchi, T. Fukushima, S. Picozzi, and U. Gosele, Ferroelectric Switching in Multiferroic Magnetite (Fe3O4) Thin Films. Advanced Materials, 21(44), 4452-+ (2009).
    56. N. Ikeda, H. Ohsumi, K. Ohwada, K. Ishii, T. Inami, K. Kakurai, Y. Murakami, K. Yoshii, S. Mori, Y. Horibe, and H. Kito, Ferroelectricity from iron valence ordering in the charge-frustrated system LuFe2O4. Nature, 436(7054), 1136-1138 (2005).
    57. Y. J. Choi, H. T. Yi, S. Lee, Q. Huang, V. Kiryukhin, and S. W. Cheong, Ferroelectricity in an Ising chain magnet. Physical Review Letters, 100(4), 047601 (2008).
    58. G. Giovannetti, S. Kumar, D. Khomskii, S. Picozzi, and J. van den Brink, Multiferroicity in Rare-Earth Nickelates RNiO3. Physical Review Letters, 103(15), 4 (2009).
    59. N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S. W. Cheong, Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature, 429(6990), 392-395 (2004).
    60. N. Biskup, A. de Andres, J. L. Martinez, and C. Perca, Origin of the colossal dielectric response of Pr0.6Ca0.4MnO3. Physical Review B, 72(2), 024115 (2005).
    61. R. S. Freitas, J. F. Mitchell, and P. Schiffer, Magnetodielectric consequences of phase separation in the colossal magnetoresistance manganite Pr0.7Ca0.3MnO3. Physical Review B, 72(14), 144429 (2005).
    62. H. Itoh, Y. Tokunaga, N. Kida, R. Shimano, and Y. Tokura, Charge-ordering-induced polar domains and domain walls in a bilayered manganite Pr(Sr0.15Ca0.85)2Mn2O7. Applied Physics Letters, 96(3), 032902 (2010).
    63. T. A. W. Beale, S. R. Bland, R. D. Johnson, P. D. Hatton, J. C. Cezar, S. S. Dhesi, M. v. Zimmermann, D. Prabhakaran, and A. T. Boothroyd, Thermally induced rotation of 3d orbital stripes in Pr(Sr0.1Ca0.9)2Mn2O7. Physical Review B, 79(5), 054433 (2009).
    64. T. A. W. Beale, S. R. Bland, R. D. Johnson, P. D. Hatton, J. C. Cezar, S. S. Dhesi, D. Prabhakaran, and A. T. Boothroyd, Soft x-ray diffraction from lattice constrained orbital order in Pr(Sr0.1Ca0.9)2Mn2O7. Journal of Physics: Conference Series, 211(1), 012007 (4 pp.)-012007 (4 pp.) (2010).
    65. M. Liu, O. Obi, J. Lou, Y. J. Chen, Z. H. Cai, S. Stoute, M. Espanol, M. Lew, X. Situ, K. S. Ziemer, V. G. Harris, and N. X. Sun, Giant Electric Field Tuning of Magnetic Properties in Multiferroic Ferrite/Ferroelectric Heterostructures. Advanced Functional Materials, 19(11), 1826-1831 (2009).
    66. Y. S. Koo, K. M. Song, N. Hur, J. H. Jung, T. H. Jang, H. J. Lee, T. Y. Koo, Y. H. Jeong,J. H. Cho, and Y. H. Jo, Strain-induced magnetoelectric coupling in BaTiO3/Fe3O4 core/shell nanoparticles. Applied Physics Letters, 94(3), 3 (2009).
    67. K. Yamauchi, T. Fukushima, and S. Picozzi, Ferroelectricity in multiferroic magnetite Fe3O4 driven by noncentrosymmetric Fe2+/Fe3+ charge-ordering: First-principles study. Physical Review B, 79(21), 4 (2009).
    68. N. Ikeda, Ferroelectric properties of triangular charge-frustrated LuFe2O4. Journal of Physics: Condensed Matter, 20(43), 434218 (2008).
    69. S. W. Cheong and M. Mostovoy, Multiferroics: a magnetic twist for ferroelectricity. Nature Materials, 6(1), 13-20 (2007).
    70. H. Wu, T. Burnus, Z. Hu, C. Martin, A. Maignan, J. C. Cezar, A. Tanaka, N. B. Brookes, D. I. Khomskii, and L. H. Tjeng, Ising Magnetism and Ferroelectricity in Ca3CoMnO6. Physical Review Letters, 102(2), 026404 (2009).
    71. Y. Zhang, H. J. Xiang, and M. H. Whangbo, Interplay between Jahn-Teller instability, uniaxial magnetism, and ferroelectricity in Ca3CoMnO6. Physical Review B, 79(5), 054432 (2009).
    72. L. Li, W. Z. Luo, Y. J. Guo, S. Z. Li, S. J. Luo, K. F. Wang, and J. M. Liu, Enhanced multiferroicity in Mg-doped Ca3Co2-xMnxO6. Applied Physics Letters, 96(2), 022516 (2010).
    73. J. A. Alonso, Mart, iacute, M. J. nez-Lope, M. T. Casais, Garc, M. a, ntilde, J. L. oz, Fern, aacute, D. ndez, and M. T. az, Room-temperature monoclinic distortion due to charge disproportionation in RNiO3 perovskites with small rare-earth cations (R=Ho, Y, Er, Tm, Yb, and Lu): A neutron diffraction study. Physical Review B, 61(3), 1756 (2000).
    74. M. Medarde, Fern, aacute, D. ndez, iacute, M. T. az, and P. Lacorre, Long-range charge order in the low-temperature insulating phase of PrNiO3. Physical Review B, 78(21), 212101 (2008).
    75. N. Hur, S. Park, P. A. Sharma, S. Guha, and S. W. Cheong, Colossal Magnetodielectric Effects in DyMn2O5. Physical Review Letters, 93(10), 107207 (2004).
    76. C. R. Dela Cruz, B. Lorenz, and C. W. Chu, Tuning ferroelectricity in DyMn2O5 by pressure and magnetic fields. Physica B-Condensed Matter, 403(5-9), 1331-1335 (2008).
    77. M. A. Subramanian, T. He, J. Z. Chen, N. S. Rogado, T. G. Calvarese, and A. W. Sleight, Giant room-temperature magnetodielectric response in the electronic ferroelectric LuFe2O4. Advanced Materials, 18(13), 1737-1739 (2006).
    78. J. Rouquette, J. Haines, A. Al-Zein, P. Papet, F. Damay, J. Bourgeois, T. Hammouda, F. Dore, A. Maignan, M. Hervieu, and C. Martin, Pressure-Induced Structural Transition inLuFe2O4: Towards a New Charge Ordered State. Physical Review Letters, 105(23), 237203 (2010).
    79. F. M. Vitucci, A. Nucara, D. Nicoletti, Y. Sun, C. H. Li, J. C. Soret, U. Schade, and P. Calvani, Infrared study of the charge-ordered multiferroic LuFe2O4. Physical Review B, 81(19), 195121 (2010).
    80. X. S. Xu, J. de Groot, Q. C. Sun, B. C. Sales, D. Mandrus, M. Angst, A. P. Litvinchuk, and J. L. Musfeldt, Lattice dynamical probe of charge order and antipolar bilayer stacking in LuFe2O4. Physical Review B, 82(1), 014304 (2010).
    81. Y. Yamada, S. Nohdo, and N. Ikeda, Incommensurate charge ordering in charge-frustrated LuFe2O4 system. Journal of the Physical Society of Japan, 66(12), 3733-3736 (1997).
    82. M. Tanaka, H. Iwasaki, K. Siratori, and I. Shindo, Mossbauer study on the magnetic structure of YbFe2O4 a two-dimensional antiferromagnet on a triangular lattice. Journal of the Physical Society of Japan, 58(4), 1433-1440 (1989).
    83. K. T. Ko, H. J. Noh, J. Y. Kim, B. G. Park, J. H. Park, A. Tanaka, S. B. Kim, C. L. Zhang, and S. W. Cheong, Electronic Origin of Giant Magnetic Anisotropy in Multiferroic LuFe2O4. Physical Review Letters, 103(20), 207202 (2009).
    84. J. Iida, M. Tanaka, Y. Nakagawa, S. Funahashi, N. Kimizuka, and S. Takekawa, MAGNETIZATION AND SPIN CORRELATION OF 2-DIMENSIONAL TRIANGULAR ANTIFERROMAGNET LUFE2O4. Journal of the Physical Society of Japan, 62(5), 1723-1735 (1993).
    85. S. Nakamura, H. Kito, and M. Tanaka, An approach to specify the spin configuration in the RFe2O4 (R = Y, Ho, Er, Tm, Yb, and Lu) family: Fe-57 Mossbauer study on a single crystal LuFe2O4. Journal of Alloys and Compounds, 275, 574-577 (1998).
    86. A. D. Christianson, M. D. Lumsden, M. Angst, Z. Yamani, W. Tian, R. Jin, E. A. Payzant, S. E. Nagler, B. C. Sales, and D. Mandrus, Three-dimensional magnetic correlations in multiferroic LuFe2O4. Physical Review Letters, 100(10), 107601 (2008).
    87. M. Angst, R. P. Hermann, A. D. Christianson, M. D. Lumsden, C. Lee, M. H. Whangbo, J. W. Kim, P. J. Ryan, S. E. Nagler, W. Tian, R. Jin, B. C. Sales, and D. Mandrus, Charge Order in LuFe2O4: Antiferroelectric Ground State and Coupling to Magnetism. Physical Review Letters, 101(22), 227601 (2008).
    88. K. Yoshii, N. Ikeda, Y. Matsuo, Y. Horibe, and S. Mori, Magnetic and dielectric properties of RFe2O4 , RFeMO4 , and RGaCuO4 ( R=Yb and Lu, M=Co and Cu). Physical Review B, 76(2), 024423 (2007).
    89. M. H. Phan, N. A. Frey, H. Srikanth, M. Angst, B. C. Sales, and D. Mandrus, Magnetism and cluster glass dynamics in geometrically frustrated LuFe2O4. Journal of Applied Physics, 105(7), 07E308 (2009).
    90. C. C. C. Subhrangsu Taran, J L Her, C P Sun, C C Lin, C L Chan, C L Huang and H D Yang, Study of magnetic dynamics of LuFe2O4 Journal of Physics: Conference Series, 150(4), 042205 (2009).
    91. Y. Yamada, K. Kitsuda, S. Nohdo, and N. Ikeda, Charge and spin ordering process in the mixed-valence system LuFe2O4: Charge ordering. Physical Review B, 62(18), 12167-12174 (2000).
    92. H. J. Xiang and M. H. Whangbo, Charge Order and the Origin of Giant Magnetocapacitance in LuFe2O4. Physical Review Letters, 98(24), 246403 (2007).
    93. Y. Zhang, H. X. Yang, C. Ma, H. F. Tian, and J. Q. Li, Charge-Stripe Order in the Electronic Ferroelectric LuFe2O4. Physical Review Letters, 98(24), 247602 (2007).
    94. Y. Zhang, H. X. Yang, Y. Q. Guo, C. Ma, H. F. Tian, J. L. Luo, and J. Q. Li, Structure, charge ordering and physical properties of LuFe2O4. Physical Review B, 76(18), 184105 (2007).
    95. Y. Murakami, N. Abe, T. Arima, and D. Shindo, Charge-ordered domain structure in YbFe2O4 observed by energy-filtered transmission electron microscopy. Physical Review B, 76(2), 024109 (2007).
    96. J. Y. Park, J. H. Park, Y. K. Jeong, and H. M. Jang, Dynamic magnetoelectric coupling in "electronic ferroelectric" LuFe2O4. Applied Physics Letters, 91(15), 3 (2007).
    97. N. Ikeda, K. Kohn, N. Myouga, E. Takahashi, H. Kitoh, and S. Takeawa, Charge frustration and dielectric dispersion in LuFe2O4. Journal of the Physical Society of Japan, 69(5), 1526-1532 (2000).
    98. C. H. Li, X. Q. Zhang, Z. H. Cheng, and Y. Sun, Room temperature giant dielectric tunability effect in bulk LuFe2O4. Applied Physics Letters, 92(18), 182903 (2008).
    99. C. H. Li, X. Q. Zhang, Z. H. Cheng, and Y. Sun, Electric field induced phase transition in charge-ordered LuFe2O4. Applied Physics Letters, 93(15), 152103 (2008).
    100. S. Cao, J. Li, H. F. Tian, Y. B. Qin, L. J. Zeng, H. X. Yang, and J. Q. Li, Nonlinear transport properties and Joule heating effect in charge ordered LuFe2O4. Applied Physics Letters, 98(10), 102102 (2011).
    101. L. J. Zeng, H. X. Yang, Y. Zhang, H. F. Tian, C. Ma, Y. B. Qin, Y. G. Zhao, and J. Q. Li, Nonlinear current-voltage behavior and electrically driven phase transition in charge-frustrated LuFe2O4. Epl, 84(5), 5 (2008).
    102. C. H. Li, F. Wang, Y. Liu, X. Q. Zhang, Z. H. Cheng, and Y. Sun, Electrical control of magnetization in charge-ordered multiferroic LuFe2O4. Physical Review B, 79(17), 172412 (2009).
    103. F. Wang, C. H. Li, T. Zou, Y. Liu, and Y. Sun, Electrically driven magnetic relaxation in multiferroic LuFe2O4. Journal of Physics-Condensed Matter, 22(49), 496001 (2010).
    104. Y. Qin, Z. Wang, X. M. Chen, and X. Q. Liu, Dielectric and magnetic characteristics of LuFeMgO4 ceramics. Journal of Applied Physics, 108(8), 084111 (2010).
    105. H. J. Noh, H. Sung, J. Jeong, S. B. Kim, J. Y. Kim, and B. K. Cho, Effect of structural distortion on ferrimagnetic order in Lu1-xLxFe2O4 (L=Y and Er; x=0.0, 0.1, and 0.5). Physical Review B, 82(2), 024423 (2010).
    106. K. Yoshii, N. Ikeda, and S. Mori, Magnetic and dielectric behavior of TmFe2O4 and TmFeCuO4. Journal of Magnetism and Magnetic Materials, 310(2), 1154-1156 (2007).
    107. Y. B. Qin, H. X. Yang, Y. Zhang, H. F. Tian, C. Ma, Y. G. Zhao, R. I. Walton, and J. Q. Li, The effect of Mg doping on the structural and physical properties of LuFe2O4 and Lu2Fe3O7. Journal of Physics-Condensed Matter, 21(1), 7 (2009).
    108. Y. Matsuo, Y. Horibe, S. Mori, K. Yoshii, and N. Ikeda, Doping effect on the charge ordering in LuFe2O4. Journal of Magnetism and Magnetic Materials, 310(2), E349-E351 (2007).
    109. Y. Liu, C. H. Li, X. Q. Zhang, Z. H. Cheng, and Y. Sun, Influence of Mg doping on the giant dielectric tunability in LuFe2O4. Journal of Applied Physics, 104(10), 104112 (2008).
    110. C. R. Serrao, J. R. Sahu, K. Ramesha, and C. N. R. Rao, Magnetoelectric effect in rare earth ferrites, LnFe2O4. Journal of Applied Physics, 104(1), 3 (2008).
    1. N. Ikeda, Ferroelectric properties of triangular charge-frustrated LuFe2O4. Journal of Physics: Condensed Matter, 20(43), 434218 (2008).
    2. N. Ikeda, H. Ohsumi, K. Ohwada, K. Ishii, T. Inami, K. Kakurai, Y. Murakami, K. Yoshii, S. Mori, Y. Horibe, and H. Kito, Ferroelectricity from iron valence ordering in the charge-frustrated system LuFe2O4. Nature, 436(7054), 1136-1138 (2005).
    3. Y. Zhang, H. X. Yang, Y. Q. Guo, C. Ma, H. F. Tian, J. L. Luo, and J. Q. Li, Structure, charge ordering and physical properties of LuFe2O4. Physical Review B, 76(18), 184105 (2007).
    4. Y. Zhang, H. X. Yang, C. Ma, H. F. Tian, and J. Q. Li, Charge-Stripe Order in the Electronic Ferroelectric LuFe2O4. Physical Review Letters, 98(24), 247602 (2007).
    5. J. Iida, M. Tanaka, Y. Nakagawa, S. Funahashi, N. Kimizuka, and S. Takekawa, MAGNETIZATION AND SPIN CORRELATION OF 2-DIMENSIONAL TRIANGULAR ANTIFERROMAGNET LUFE2O4. Journal of the Physical Society of Japan, 62(5), 1723-1735 (1993).
    6. S. Nakamura, H. Kito, and M. Tanaka, An approach to specify the spin configuration in the RFe2O4 (R = Y, Ho, Er, Tm, Yb, and Lu) family: Fe-57 Mossbauer study on a single crystal LuFe2O4. Journal of Alloys and Compounds, 275, 574-577 (1998).
    7. M. Angst, R. P. Hermann, A. D. Christianson, M. D. Lumsden, C. Lee, M. H. Whangbo, J. W. Kim, P. J. Ryan, S. E. Nagler, W. Tian, R. Jin, B. C. Sales, and D. Mandrus, Charge Order in LuFe2O4: Antiferroelectric Ground State and Coupling to Magnetism. Physical Review Letters, 101(22), 227601 (2008).
    8. A. D. Christianson, M. D. Lumsden, M. Angst, Z. Yamani, W. Tian, R. Jin, E. A. Payzant, S. E. Nagler, B. C. Sales, and D. Mandrus, Three-dimensional magnetic correlations in multiferroic LuFe2O4. Physical Review Letters, 100(10), 107601 (2008).
    9. M. A. Subramanian, T. He, J. Z. Chen, N. S. Rogado, T. G. Calvarese, and A. W. Sleight, Giant room-temperature magnetodielectric response in the electronic ferroelectric LuFe2O4. Advanced Materials, 18(13), 1737-1739 (2006).
    10. C. H. Li, X. Q. Zhang, Z. H. Cheng, and Y. Sun, Room temperature giant dielectric tunability effect in bulk LuFe2O4. Applied Physics Letters, 92(18), 182903 (2008).
    11. J. Y. Park, J. H. Park, Y. K. Jeong, and H. M. Jang, Dynamic magnetoelectric coupling in "electronic ferroelectric" LuFe2O4. Applied Physics Letters, 91(15), 3 (2007).
    12. K. Yoshii, N. Ikeda, Y. Matsuo, Y. Horibe, and S. Mori, Magnetic and dielectric properties of RFe2O4 , RFeMO4 , and RGaCuO4 ( R=Yb and Lu, M=Co and Cu). PhysicalReview B, 76(2), 024423 (2007).
    13. N. Ikeda, K. Kohn, E. Himoto, and M. Tanaka, MAGNETIC-RELAXATION IN DILUTED TRIANGULAR ANTIFERROMAGNET LUFEMGO4. Journal of the Physical Society of Japan, 64(11), 4371-4377 (1995).
    14. Y. Liu, C. H. Li, X. Q. Zhang, Z. H. Cheng, and Y. Sun, Influence of Mg doping on the giant dielectric tunability in LuFe2O4. Journal of Applied Physics, 104(10), 104112 (2008).
    15. K. Yoshii, N. Ikeda, T. Michiuchi, Y. Yokota, Y. Okajima, Y. Yoneda, Y. Matsuo, Y. Horibe, and S. Mori, Magnetic and dielectric properties of YbFe2-xMnxO4 (0 <= x <= 1). Journal of Solid State Chemistry, 182(7), 1611-1618 (2009).
    16. H. J. Noh, H. Sung, J. Jeong, S. B. Kim, J. Y. Kim, and B. K. Cho, Effect of structural distortion on ferrimagnetic order in Lu1-xLxFe2O4 (L=Y and Er; x=0.0, 0.1, and 0.5). Physical Review B, 82(2), 024423 (2010).
    17. S. W. Cheong and M. Mostovoy, Multiferroics: a magnetic twist for ferroelectricity. Nature Materials, 6(1), 13-20 (2007).
    18. R. Haumont, J. Kreisel, P. Bouvier, and F. Hippert, Phonon anomalies and the ferroelectric phase transition in multiferroic BiFeO3. Physical Review B, 73(13), 132101 (2006).
    19. Y. Hou, Y. P. Yao, S. N. Dong, M. L. Teng, X. F. Sun, and X. G. Li, Temperature dependence of phonon spectra and structural characteristics in multiferroic LuFe2O4 system. Journal of Raman Spectroscopy, DOI 10.1002/jrs.2916 (2011).
    20. A. B. Harris and T. Yildirim, Charge and spin ordering in the mixed-valence compound LuFe2O4. Physical Review B, 81(13), 134417 (2010).
    21. J. Andreasson, J. Holmlund, R. Rauer, M. Kall, L. Borjesson, C. S. Knee, A. K. Eriksson, S. G. Eriksson, M. Rubhausen, and R. P. Chaudhury, Electron-phonon interactions in perovskites containing Fe and Cr studied by Raman scattering using oxygen-isotope and cation substitution. Physical Review B, 78(23), 235103 (2008).
    22. A. G. Souza, J. L. B. Faria, I. Guedes, J. M. Sasaki, P. T. C. Freire, V. N. Freire, J. Mendes, M. M. Xavier, F. A. O. Cabral, J. H. de Araujo, and J. A. P. da Costa, Evidence of magnetic polaronic states in La0.70Sr0.30Mn1-xFexO3 manganites. Physical Review B, 67(5), 052405 (2003).
    23. M. Inaba, Y. Iriyama, Z. Ogumi, Y. Todzuka, and A. Tasaka, Raman study of layered rock-salt LiCoO2 and its electrochemical lithium deintercalation. Journal of Raman Spectroscopy, 28(8), 613-617 (1997).
    24. M. Inaba, Y. Todzuka, H. Yoshida, Y. Grincourt, A. Tasaka, Y. Tomida, and Z. Ogumi, RAMAN-SPECTRA OF LICO1-YNIYO2. Chemistry Letters, (10), 889-890 (1995).
    25. X. S. Xu, M. Angst, T. V. Brinzari, R. P. Hermann, J. L. Musfeldt, A. D. Christianson, D. Mandrus, B. C. Sales, S. McGill, J. W. Kim, and Z. Islam, Charge Order, Dynamics, and Magnetostructural Transition in Multiferroic LuFe2O4. Physical Review Letters, 101(22), 227602 (2008).
    26. P. Colomban and A. Slodczyk, Raman intensity: An important tool to study the structure and phase transitions of amorphous/crystalline materials. Optical Materials, 31(12), 1759-1763 (2009).
    27. H. P. Soon, H. Taniguchi, Y. Fujii, M. Itoh, and M. Tachibana, Direct observation of the soft mode in the paraelectric phase of PbTiO3 by confocal micro-Raman scattering. Physical Review B, 78(17), 172103 (2008).
    28. M. D. Fontana, H. Idrissi, G. E. Kugel, and K. Wojcik, RAMAN-SPECTRUM IN PBTIO3 REEXAMINED - DYNAMICS OF THE SOFT PHONON AND THE CENTRAL PEAK. Journal of Physics: Condensed Matter, 3(44), 8695-8705 (1991).
    29. D. M. Sagar, D. Fausti, S. van Smaalen, and P. H. M. van Loosdrecht, Raman signatures of charge ordering in K0.3WO3. Physical Review B, 81(4), 045124 (2010).
    30. R. Gupta, A. K. Sood, P. Metcalf, and J. M. Honig, Raman study of stoichiometric and Zn-doped Fe3O4. Physical Review B, 65(10), 104430 (2002).
    31. D. J. Lockwood and M. G. Cottam, The spin-phonon interaction in FeF2 and MnF2 studied by Raman spectroscopy. Journal of Applied Physics, 64(10), 5876-5878 (1988).
    32. M. H. Phan, N. A. Frey, H. Srikanth, M. Angst, B. C. Sales, and D. Mandrus, Magnetism and cluster glass dynamics in geometrically frustrated LuFe2O4. Journal of Applied Physics, 105(7), 07E308 (2009).
    33. Y. Hou, Y. P. Yao, G. Q. Zhang, Q. X. Yu, and X. G. Li, Giant Dielectric Response with an Electric Field in Charge-Ordered La1-xCaxMnO3 Compounds. Journal of the American Ceramic Society, 92(6), 1366-1369 (2009).
    34. C. H. Li, F. Wang, Y. Liu, X. Q. Zhang, Z. H. Cheng, and Y. Sun, Electrical control of magnetization in charge-ordered multiferroic LuFe2O4. Physical Review B, 79(17), 172412 (2009).
    35. F. Wang, C. H. Li, T. Zou, Y. Liu, and Y. Sun, Electrically driven magnetic relaxation in multiferroic LuFe2O4. Journal of Physics-Condensed Matter, 22(49), 496001 (2010).
    1. S. Kahl, A. M. Grishin, S. I. Khartsev, K. Kawano, and J. S. Abell, Bi3Fe5O12 thin film visualizer. Ieee Transactions on Magnetics, 37(4), 2457-2459 (2001).
    2. V. V. Pavlov, R. V. Pisarev, A. Kirilyuk, and T. Rasing, Observation of a transversal nonlinear magneto-optical effect in thin magnetic garnet films. Physical Review Letters, 78(10), 2004-2007 (1997).
    3. X. B. Wu, X. F. Wang, Y. F. Liu, W. Cai, S. Peng, F. Z. Huang, X. M. Lu, F. Yan, and J. S. Zhu, Study on dielectric and magnetodielectric properties of Lu3Fe5O12 ceramics. Applied Physics Letters, 95(18), 182903 (2009).
    4. M. Uemura, T. Yamagishi, S. Ebisu, S. Chikazawa, and S. Nagata, A double peak of the coercive force near the compensation temperature in the rare earth iron garnets. Philosophical Magazine, 88(2), 209-228 (2008).
    5. S. C. Parida, S. K. Rakshit, and Z. Singh, Heat capacities, order-disorder transitions, and thermodynamic properties of rare-earth orthoferrites and rare-earth iron garnets. Journal of Solid State Chemistry, 181(1), 101-121 (2008).
    6. Y. Kohara, Y. Yamasaki, Y. Onose, and Y. Tokura, Excess-electron induced polarization and magnetoelectric effect in yttrium iron garnet. Physical Review B, 82(10), 104419 (2010).
    7. C. Milanese, V. Buscaglia, F. Maglia, and U. Anselmi-Tamburini, Disorder and nonstoichiometry in synthetic garnets A3B5O12 (A = Y, Lu-La, B=Al, Fe, Ga). A simulation study. Chemistry of Materials, 16(7), 1232-1239 (2004).
    8. Y. Krockenberger, H. Matsui, T. Hasegawa, M. Kawasaki, and Y. Tokura, Solid phase epitaxy of ferrimagnetic Y3Fe5O12 garnet thin films. Applied Physics Letters, 93(9), 3 (2008).
    9. Q. H. Yang, H. W. Zhang, Q. Y. Wen, Y. L. Liu, and J. Q. Xiao, Tuning magnetic properties of yttrium iron garnet film with oxygen partial pressure in sputtering and annealing process. Journal of Applied Physics, 105(7), 3 (2009).
    10. Y. M. Kang, S. H. Wee, S. Baik, S. G. Min, S. C. Yu, S. H. Moon, Y. W. Kim, and S. I. Yoo, Magnetic properties of YIG (Y3Fe5O12) thin films prepared by the post annealing of amorphous films deposited by rf-magnetron sputtering. Journal of Applied Physics, 97(10), 3 (2005).
    11. T. Shintaku and T. Uno, Preparation of Ce-substituted yttrium iron garnet films for magneto-optic waveguide devices. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 35(9A), 4689-4691 (1996).
    12. M. Mikami and Y. Ohta, Y3Fe5O12 epitaxial growth by CVD and its characterization. Journal of Crystal Growth, 63(2), 299-303 (1983).
    13. N. Adachi, T. Okuda, V. P. Denysenkov, A. Jalali-Roudsar, and A. M. Grishin, Magnetic properties of single crystal film Bi3Fe5O12 prepared onto Sm3(Sc,Ga)5O12(111). Journal of Magnetism and Magnetic Materials, 242, 775-777 (2002).
    14. H. Fukumura, N. Tonari, N. Hasuike, H. Harima, K. Kisoda, T. Koide, M. Seki, and H. Tabata, Raman scattering study of multiferroic Ho3Fe5O12 thin films. Journal of Physics-Condensed Matter, 21(6), 5 (2009).
    15. Y. Hou, Y. P. Yao, S. N. Dong, X. F. Sun, and a. X. G. Li, Epitaxial growth and magnetic properties of ferrimagnetic Lu3Fe5O12 film. Electronic Materials and Applications 2011 (Meeting proceedings), (2011).
    16. N. J. Kidner, Z. J. Homrighaus, T. O. Mason, and E. J. Garboczi, Modeling interdigital electrode structures for the dielectric characterization of electroceramic thin films. Thin Solid Films, 496(2), 539-545 (2006).
    17. X. Y. Zhang, P. Wang, S. Sheng, F. Xu, and C. K. Ong, Ferroelectric BaxSr1-xTiO3 thin-film varactors with parallel plate and interdigital electrodes for microwave applications. Journal of Applied Physics, 104(12), 124110 (2008).
    18. P. Wang and C. K. Ong, A novel microwave ferroelectric varactor with hybrid coplanar and parallel plate structure. Journal of Physics D-Applied Physics, 42(19), 195107 (2009).
    19. X. Y. Zhang, Q. Song, F. Xu, S. Sheng, P. Wang, and C. K. Ong, Dielectric dispersion of BaxSr1-xTiO3 thin film with parallel-plate and coplanar interdigital electrodes. Journal of Physics D-Applied Physics, 42(6), 065411 (2009).
    20. A. Paoletti, Physics of Magnetic Garnets. North-Holland, Amsterdam, (1978).
    21. N. Ikeda, H. Ohsumi, K. Ohwada, K. Ishii, T. Inami, K. Kakurai, Y. Murakami, K. Yoshii, S. Mori, Y. Horibe, and H. Kito, Ferroelectricity from iron valence ordering in the charge-frustrated system LuFe2O4. Nature, 436(7054), 1136-1138 (2005).
    22.裘祖文编著,电子自旋共振波谱.科学出版社, (1980年10月第一版).
    1. A. K. Tagantsev, V. O. Sherman, K. F. Astafiev, J. Venkatesh, and N. Setter, Ferroelectric materials for microwave tunable applications. Journal of Electroceramics, 11(1-2), 5-66 (2003).
    2. T. Maiti, R. Guo, and A. S. Bhalla, Enhanced electric field tunable dielectric properties of BaZrxTi1-xO3 relaxor ferroelectrics. Applied Physics Letters, 90(18), 182901 (2007).
    3. J. Yang, J. H. Chu, and M. R. Shen, Analysis of diffuse phase transition and relaxorlike behaviors in Pb0.5Sr0.5TiO3 films through dc electric-field dependence of dielectric response. Applied Physics Letters, 90(24), 242908 (2007).
    4. Z. Yu, C. Ang, R. Guo, and A. S. Bhalla, Dielectric properties and high tunability of Ba(Ti0.7Zr0.3)O3 ceramics under dc electric field. Applied Physics Letters, 81(7), 1285-1287 (2002).
    5. C. Ang and Z. Yu, Phase-transition temperature and character of Cd2Nb2O7. Physical Review B, 70(13), 134103 (2004).
    6. C. H. Li, X. Q. Zhang, Z. H. Cheng, and Y. Sun, Room temperature giant dielectric tunability effect in bulk LuFe2O4. Applied Physics Letters, 92(18), 3 (2008).
    7. N. Biskup, A. de Andres, J. L. Martinez, and C. Perca, Origin of the colossal dielectric response of Pr0.6Ca0.4MnO3. Physical Review B, 72(2), 024115 (2005).
    8. Y. Hou, Y. P. Yao, G. Q. Zhang, Q. X. Yu, and X. G. Li, Giant Dielectric Response with an Electric Field in Charge-Ordered La1-xCaxMnO3 Compounds. Journal of the American Ceramic Society, 92(6), 1366-1369 (2009).
    9. P. Schiffer, A. P. Ramirez, W. Bao, and S. W. Cheong, LOW-TEMPERATURE MAGNETORESISTANCE AND THE MAGNETIC PHASE-DIAGRAM OF LA1-XCAXMNO3. Physical Review Letters, 75(18), 3336-3339 (1995).
    10. P. Lunkenheimer, V. Bobnar, A. V. Pronin, A. I. Ritus, A. A. Volkov, and A. Loidl, Origin of apparent colossal dielectric constants. Physical Review B, 66(5), 4 (2002).
    11. C. C. Wang and L. W. Zhang, Polaron relaxation related to localized charge carriers in Pr1-xCaxMnO3. New Journal of Physics, 9, 10 (2007).
    12. C. S. Ganpule, A. L. Roytburd, V. Nagarajan, B. K. Hill, S. B. Ogale, E. D. Williams, R. Ramesh, and J. F. Scott, Polarization relaxation kinetics and 180° domain wall dynamics in ferroelectric thin films. Physical Review B, 65(1), 014101 (2001).
    13. R. K. Zheng, G. Li, A. N. Tang, Y. Yang, W. Wang, X. G. Li, Z. D. Wang, and H. C. Ku, The role of the cooperative Jahn-Teller effect in the charge-ordered La1-xCaxMnO3 (0.5 <= x <= 0.87) manganites. Applied Physics Letters, 83(25), 5250-5252 (2003).
    14. T. Qian, R. K. Zheng, T. Zhang, T. F. Zhou, W. B. Wu, and X. G. Li, Effect of Jahn-Teller interactions on the specific heat and magnetic properties of charge-ordered La1-xCaxMnO3 (0.55 <= x <= 0.87) compounds. Physical Review B, 72(2), 7 (2005).
    15. N. J. Kidner, Z. J. Homrighaus, B. J. Ingram, T. O. Mason, and E. J. Garboczi, Impedance/dielectric spectroscopy of electroceramics - Part 1: Evaluation of composite models for polycrystalline ceramics. Journal of Electroceramics, 14(3), 283-291 (2005).
    16. J. C. C. Abrantes, J. A. Labrincha, and J. R. Frade, An alternative representation of impedance spectra of ceramics. Materials Research Bulletin, 35(5), 727-740 (2000).
    17. G. Catalan, Magnetocapacitance without magnetoelectric coupling. Applied Physics Letters, 88(10), 102902 (2006).
    18. W. Li and R. W. Schwartz, ac conductivity relaxation processes in CaCu3Ti4O12 ceramics: Grain boundary and domain boundary effects. Applied Physics Letters, 89(24), 242906 (2006).
    1. C. C. Homes, T. Vogt, S. M. Shapiro, S. Wakimoto, and A. P. Ramirez, Optical response of high-dielectric-constant perovskite-related oxide. Science, 293(5530), 673-676 (2001).
    2. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, Magnetic control of ferroelectric polarization. Nature, 426(6962), 55-58 (2003).
    3. T. Goto, T. Kimura, G. Lawes, A. P. Ramirez, and Y. Tokura, Ferroelectricity and giant magnetocapacitance in perovskite rare-earth manganites. Physical Review Letters, 92(25), 257201 (2004).
    4. P. Dey, T. K. Nath, M. L. N. Goswami, and T. K. Kundu, Room temperature ferroelectric and ferromagnetic properties of multiferroics xLa0.7Sr0.3MnO3-(1-x)ErMnO3 (weight percent x=0.1, 0.2) composites. Applied Physics Letters, 90(16), 162510 (2007).
    5. S. Y. Tan, S. R. Shannigrahi, S. H. Tan, and F. E. H. Tay, Synthesis and characterization of composite MgFe2O4-BaTiO3 multiferroic system. Journal of Applied Physics, 103(9), 094105 (2008).
    6. J. Q. Huang, P. Y. Du, L. X. Hong, Y. L. Dong, and M. C. Hong, A percolative ferromagnetic-ferroelectric composite with significant dielectric and magnetic properties. Advanced Materials, 19(3), 437-+ (2007).
    7. Y. S. Koo, T. Bonaedy, K. D. Sung, J. H. Jung, J. B. Yoon, Y. H. Jo, M. H. Jung, H. J. Lee, T. Y. Koo, and Y. H. Jeong, Magnetodielectric coupling in core/shell BaTiO3/gamma-Fe2O3 nanoparticles. Applied Physics Letters, 91(21), 212903 (2007).
    8. N. G. Kim, Y. S. Koo, C. J. Won, N. Hur, J. H. Jung, J. Yoon, Y. Jo, and M. H. Jung, Magnetodielectric effect in BaTiO3-LaMnO3 composites. Journal of Applied Physics, 102(1), 014107 (2007).
    9. N. S. Rogado, J. Li, A. W. Sleight, and M. A. Subramanian, Magnetocapacitance and magnetoresistance near room temperature in a ferromagnetic semiconductor: La2NiMnO6. Advanced Materials, 17(18), 2225-2227 (2005).
    10. H. Das, U. V. Waghmare, T. Saha-Dasgupta, and D. D. Sarma, Electronic structure, phonons, and dielectric anomaly in ferromagnetic insulating double pervoskite La2NiMnO6. Physical Review Letters, 100(18), 186402 (2008).
    11. J. Rivas, J. Mira, B. Rivas-Murias, A. Fondado, J. Dec, W. Kleemann, and M. A. Senaris-Rodriguez, Magnetic-field-dependent dielectric constant in La2/3Ca1/3MnO3. Applied Physics Letters, 88(24), 242906 (2006).
    12. Y. Hou, Q. X. Yu, Y. P. Yao, X. H. Huang, S. N. Dong, Y. Chen, and X. G. Li, Large Magnetodielectric Effect in (1-X) La2NiMnO6-(X) La2/3Sr1/3MnO3 Composites.Ferroelectrics, 409, 196-203.
    13. R. I. Dass, J. Q. Yan, and J. B. Goodenough, Oxygen stoichiometry, ferromagnetism, and transport properties of La2-xNiMnO6+delta. Physical Review B, 68(6), 064415 (2003).
    14. Y. Hou, Y. P. Yao, G. Q. Zhang, Q. X. Yu, and X. G. Li, Giant Dielectric Response with an Electric Field in Charge-Ordered La1-xCaxMnO3 Compounds. Journal of the American Ceramic Society, 92(6), 1366-1369 (2009).
    15. J. L. Cohn, M. Peterca, and J. J. Neumeier, Low-temperature permittivity of insulating perovskite manganites. Physical Review B, 70(21), 214433 (2004).
    16. P. M. Botta, J. Mira, A. Fondado, and J. Rivas, Increase of the dielectric constant near a magnetic phase transition in La0.5Ca0.5MnO3. Materials Letters, 61(14-15), 2990-2992 (2007).
    17. G. Catalan, Magnetocapacitance without magnetoelectric coupling. Applied Physics Letters, 88(10), 102902 (2006).
    18. G. Catalan and J. F. Scott, Magnetoelectrics - Is CdCr2S4 a multiferroic relaxor? Nature, 448(7156), E4-E5 (2007).
    1. M. Kenzelmann, A. B. Harris, S. Jonas, C. Broholm, J. Schefer, S. B. Kim, C. L. Zhang, S. W. Cheong, O. P. Vajk, and J. W. Lynn, Magnetic Inversion Symmetry Breaking and Ferroelectricity in TbMnO3. Physical Review Letters, 95(8), 087206 (2005).
    2. B. B. Van Aken, T. T. M. Palstra, A. Filippetti, and N. A. Spaldin, The origin of ferroelectricity in magnetoelectric YMnO3. Nature Materials, 3(3), 164-170 (2004).
    3. Z. J. Huang, Y. Cao, Y. Y. Sun, Y. Y. Xue, and C. W. Chu, Coupling between the ferroelectric and antiferromagnetic orders in YMnO3. Physical Review B, 56(5), 2623-2626 (1997).
    4. S. Lee, A. Pirogov, J. H. Han, J. G. Park, A. Hoshikawa, and T. Kamiyama, Direct observation of a coupling between spin, lattice and electric dipole moment in multiferroic YMnO3. Physical Review B, 71(18), 4 (2005).
    5. T. Goto, T. Kimura, G. Lawes, A. P. Ramirez, and Y. Tokura, Ferroelectricity and Giant Magnetocapacitance in Perovskite Rare-Earth Manganites. Physical Review Letters, 92(25), 257201 (2004).
    6. T. Lottermoser, T. Lonkai, U. Amann, D. Hohlwein, J. Ihringer, and M. Fiebig, Magnetic phase control by an electric field. Nature, 430(6999), 541-544 (2004).
    7. S. Lee, A. Pirogov, M. S. Kang, K. H. Jang, M. Yonemura, T. Kamiyama, S. W. Cheong, F. Gozzo, N. Shin, H. Kimura, Y. Noda, and J. G. Park, Giant magneto-elastic coupling in multiferroic hexagonal manganites. Nature, 451(7180), 805-U4 (2008).
    8. T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano, and Y. Tokura, Magnetocapacitance effect in multiferroic BiMnO3. Physical Review B, 67(18), 4 (2003).
    9. R. Seshadri and N. A. Hill, Visualizing the role of Bi 6s "Lone pairs" in the off-center distortion in ferromagnetic BiMnO3. Chemistry of Materials, 13(9), 2892-2899 (2001).
    10. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, Magnetic control of ferroelectric polarization. Nature, 426(6962), 55-58 (2003).
    11. S. H. Kim, S. H. Lee, T. H. Kim, T. Zyung, T. H. Jeong, and M. S. Jang, Growth, ferroelectric properties, and phonon modes of YMnO3 single crystal. Crystal Research and Technology, 35(1), 19-27 (2000).
    12. A. A. Nugroho, N. Bellido, U. Adem, G. Nenert, C. Simon, M. O. Tjia, M. Mostovoy, and T. T. M. Palstra, Enhancing the magnetoelectric coupling in YMnO3 by Ga doping. Physical Review B, 75(17), 174435 (2007).
    13. T. Mori, K. Aoki, N. Kamegashira, T. Shishido, and T. Fukuda, Crystal structure of DyMnO3. Materials Letters, 42(6), 387-389 (2000).
    14. T. Katsufuji, S. Mori, M. Masaki, Y. Moritomo, N. Yamamoto, and H. Takagi, Dielectric and magnetic anomalies and spin frustration in hexagonal RMnO3 (R = Y, Yb, and Lu). Physical Review B, 64(10), 6 (2001).
    15. S. Harikrishnan, S. Rossler, C. M. N. Kumar, H. L. Bhat, U. K. Rossler, S. Wirth, F. Steglich, and S. Elizabeth, Phase transitions and rare-earth magnetism in hexagonal and orthorhombic DyMnO3 single crystals. Journal of Physics-Condensed Matter, 21(9), 10 (2009).
    16. F. Kagawa, M. Mochizuki, Y. Onose, H. Murakawa, Y. Kaneko, N. Furukawa, and Y. Tokura, Dynamics of Multiferroic Domain Wall in Spin-Cycloidal Ferroelectric DyMnO3. Physical Review Letters, 102(5), 057604 (2009).
    17. O. Prokhnenko, R. Feyerherm, E. Dudzik, S. Landsgesell, N. Aliouane, L. C. Chapon, and D. N. Argyriou, Enhanced Ferroelectric Polarization by Induced Dy Spin Order in Multiferroic DyMnO3. Physical Review Letters, 98(5), 057206 (2007).
    18. C. C. Wang, Y. M. Cui, and L. W. Zhang, Dielectric properties of TbMnO3 ceramics. Applied Physics Letters, 90(1), 012904 (2007).
    19. C. C. Wang and L. W. Zhang, Polaron relaxation related to localized charge carriers in CaCu3Ti4O12. Applied Physics Letters, 90(14), 142905 (2007).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700