钙钛矿锰基氧化物的水热合成及其谱学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Hydrothermal Synthesis and Spectra Analysis of the Perovskite Manganites
  • 作者:侯莹
  • 论文级别:博士
  • 学科专业名称:无机化学
  • 学位年度:2008
  • 导师:冯守华
  • 学科代码:070301
  • 学位授予单位:吉林大学
  • 论文提交日期:2008-04-10
摘要
本论文重点进行了钙钛矿锰基氧化物的水热合成及其分子光谱和电子顺磁共振谱分析研究。
     采用水热合成技术制备了一系列新颖的三重价态的锰酸盐化合物,通过分子光谱和电子顺磁共振谱研究,探索三重价态锰酸盐与传统锰酸盐化合物在结构和性质方面的差别和联系,为该类化合物的进一步性能研究和应用提供依据。
     本论文的内容主要分为四部分,第一部分为绪论,介绍了钙钛矿锰酸盐的研究背景、结构、磁学性质以及谱学的基本内容;第二部分为钙钛矿锰基氧化物的水热合成;第三部分为钙钛矿锰酸盐的分子光谱分析;第四部分为钙钛矿锰酸盐的电子顺磁共振谱分析。
     本论文详细阐述了钙钛矿锰氧化合物的合成条件和方法,谱学分析依据和结论,为该体系化合物的进一步研究奠定了基础。
In the past few decades, the research development of ABO_3 perovskites manganites has always been an interesting subject due to this family has diverse structures and rich optic, electric and magnetic properties. So as a functional material, manganite has much application value. The manganese perovskite oxide with complicated mixed valence states is a strong electron correlation system, the interaction among spin, charge, orbit and lattice of this system is very strong, such as spin-spin interaction, spin-lattice interaction, charge-lattice interaction and so on. These interactions coexist and compete, which resulted in complicated physical effect on electrics, magnetism, thermodynamics, thus this subject is widely investigated.
     It is known that understanding the electronic/lattice structure often plays a crucial role in studying the properties and characteristics. In idea state, perovskite oxides with a general formula ABO_3 (A = 12-coordinated ions and B = 6-coordinated ions) provide cubic structural model, but in fact, due to Jahn-Teller effect and the mismatch effect of the average A-cation size, strong lattice distortions are often found in perovskite manganites. The super exchange and double exchange theory has been used to describe the spin interaction in perovskite manganites. The interesting magnetic properties are related to the mixed-valence of the manganese ions in the perovskite structure. LaMnO_3 and CaMnO_3, the prototype of these perovskite oxides, is an antiferromagnetic insulator while the partial substitution La_(1-x)Ca_xMnO_3 compounds induce ferromagnetism.
     Spectroscopy is the study of the interaction of electromagnetic radiation with matter. There are three aspects to spectroscopic measurements: irradiation of a sample with electromagnetic radiation; measurement of the absorption, emission, reflection and scattering from the sample; analysis and interpretation of these measurements. The main subject of spectroscopy is to study the interactions by different types of spectra technique and theoretical analysis, and then supply their electronic structure, composition, physical and chemical natures. It is known that spectroscopy supplies us credible theoretical and experimental basis, which enables us to investigate valence state, coordination, character of crystal field and so on. So being an important part of chemical basic research, spectroscopy is also a useful approach to promote the development of material science.
     In this dissertation, we synthesized the triplet valence states (three oxidation states) of manganese (Mn~(3+), Mn~(4+), Mn~(5+)) in the perovskite oxides. Their conformations and properties are complicated and confused. In order to enrich the knowledge of this family of perovskite manganites, we try to determine their crystalline structure, electronic characteristics and magnetism mechanisms by various spectra.
     1 We synthesized a serious of perovskite manganites using mild hydrothermal conditions. The use of hydrothermal conditions, where an aqueous reaction mixture is heated in a sealed reaction container, permits a wider range of reaction conditions to be accessed for the synthesis of oxides. Under conditions of elevated temperature and autogenous pressure, the solubilities of starting materials and reagents can be very different than in ambient condition. A family of triplet valence states (three oxidation states) of manganeses (Mn~(3+), Mn~(4+), Mn~(5+)) in the perovskite oxides was synthesized in the condition of strong alkali media. These perovskite oxides, which were substituted the A site with La~(3+),Ca~(2+) and K~+, create complicated three oxidation states of Mn in B site. The hydrothermal method would permit rapid mixing of several chemical elements, leading to homogeneous product and also offer the potential for control of crystal growth leading to perfect crystal. It provides us advantages for the further character study.
     2 The study on the molecular spectra of this family of perovskite manganites is divided into two parts, firstly, electronic spectra, including UV-visible absorption spectra and emission spectra; secondly, vibrational spectra, including Raman and infrared spectra. In electronic spectra, according to the idea cubic structural of perovskite oxides, we simulated the absorption spectra of manganites, in which, manganese ions hold +3, +4, +5 valence state, respectively. We detected the characteristic absorptions of charge- transfer from O to Mn and d-d transition of Mn, which correspond to UV ray energy and visible ray energy, respectively. The typical emissions in NIR band for Mn~(5+)ion were also found in our La_(0.60)Ca_(0.32)K_(0.08)MnO_3 sample. It is an additional evidence showing the existence of Mn5+ in this family of perovskite manganites. The vibrational characteristics of the specimens have been analyzed by Raman and infrared spectra. A part of characteristic frequencies of the infrared and Raman spectra of octahedral and tetrahedral structure in La_(0.60)Ca_(0.32)K_(0.08)MnO_3,SrMnO_3 and Li3MnO4 have been determined and assigned.
     3 Electron paramagnetic resonance (EPR) has been used to study resonance signals in La_(1-x-y)Ca_yK_xMnO_3 system and interaction mechanisms, Jahn–Teller distortions in perovskite manganites. At room temperature, we investigated Mn~(5+) resonance signal in Li_3MnO_4 compound and analyzed its zero-field-splitting and hyperfine structure theoretically. Based on understanding the interaction and lattice distortion, we observed linewidth decreased while La concentration increased and considered it is caused by Jahn-Teller effect and double exchange interaction. To further understand the considering system, EPR signals for La_(0.614)Ca_(0.197)K_(0.166)MnO_3 and La_(0.661)Ca_(0.108)K_(0.213)MnO_3 samples at some representative temperatures are discussed. Linewidth reaches a minimum value at about Curie temperature, above this temperature, linewidth and Lande factor g are nearly constant, which is caused by spin–spin and/or spin–lattice interactions;below this temperature, ferromagnetic interaction is dominate, which interprets why linewidth and Lande factor g change greatly.
引文
[1] G. Jonker and J. van Santen, Physica (Amsterdam), 1950, 16, 337.
    [2] G. Jonker and J .van Santen, Physica (Amsterdam), 1953, 19, 120.
    [3] G. Jonker, Physica (Amsterdam), 1954, 20, 1118.
    [4] J. Volger, Physica (Amsterdam), 1954, 20, 49.
    [5] C. Zener, Phys. Rev., 1951, 82, 403.
    [6] P. W. Anderson and H. Hasegawa, Phys. Rev., 1955, 100, 675.
    [7] P. G. de Gennes, Phys. Rev., 1960, 118, 141.
    [8] J. B. Goodenough, Phys. Rev., 1955, 100, 564.
    [9] E. O. Wollan and W. C. Koehler, Phys. Rev., 1955, 100, 545.
    [10] T. Kasuya, Prog. Theor. Phys., 1959, 22, 227.
    [11] T. Kasuya and A. Yanase, Rev. Mod. Phys., 1968, 40, 684.
    [12] N. Mott and E. Davis, Electronic Processes in Non-Crystalline Materials (Clarendon Press, Oxford), 1971.
    [13] T. Holstein, Ann. Phys., (N. Y.) 1959, 8, 343.
    [14] J. Kanamori, Suppl. J. Appl. Phys., 1960, 31, 14S.
    [15] A. Morrish, B. Evans, J. Eaton and L. Leung, Can. J. Phys., 1969, 47, 2691.
    [16] C. Searle and S. Wang, Can. J. Phys., 1969, 47, 2703.
    [17] D. Reinen, J. Solid State Chem., 1979, 27, 71.
    [18] J. Tanaka, M. Umehara, S. Tamura, M. Tsukioka and S. Ehara, J. Phys. Soc. Jpn., 82, 51, 1236.
    [19] R. M. Kusters, J. Singleton, D. A. Keen, R. McGreevy and W. Hayes, Physica (Amsterdam), 1989, 155B, 362.
    [20] R. V. Helmolt, J. Wocker, B. Hozapfel, M. Schultz and K. Samwer, Phys. Rev. Lett., 1993, 71, 2331.
    [21] S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh and L. H. Chen, Science, 1994, 264, 413.
    [22] H. Y. Hwang, S. W. Cheong, P. G. Radaelli, M. Marezio and B. Batlogg, Phys. Rev. Lett., 1995, 75, 914.
    [23] J. Fontcuberta, B. Martinez, A. Seffar, S. Pinol, J. L. Garcia-Munoz and X. Obradors, Phys. Rev. Lett., 1996, 76, 1122.
    [24] G. Q. Gong, C. Canedy, G. Xiao, J. Z. Sun, A. Gupta and W. J. Gallagher, Appl. Phys. Lett., 1995, 67, 1783.
    [25] M. R. Lees, J. Barratt, G. Balarkrishnan, D. M. Paul and M. Yethiraj, Phys. Rev. B, 1995, 52, 14303.
    [26] A. A. Samitsu, Y. Moritomo, Y. Tomloka, T. Arima and Y. Tokura, Nature, 1995, 373, 407.
    [27] P. G. Radaelli, D. E. Cox, Y. Marezio, S. W. Cheong, P. E. Schiffer and A. P. Ramirez, Phys. Rev. Lett., 1995, 75, 4488.
    [28] H. Kuwahara, Y. Tomioka, Y. Moritomo, A. Asamitsu, M. Kasai, R. Kumai and Y. Tokura, Science, 1996, 272, 80.
    [29] J. J. Neumeier, M. F. Hundley, H. D. Thomoson and R. H. Heffner, Phys. Rev., 1995, B52, 7006.
    [30] Y. Marimoto, A. Asamitsu and Y.Tokura, Phys. Rev., 1995, B51, 16491.
    [31] H. Y. Hwang, T. T. M. Palstra, S. W. Cheong and B. Batogg, Phys. Rev., 1995, B52, 15046.
    [32] Y. Marimoto, H. Kuwahara, Y. Tomioka and Y. Tokura, Phys. Rev., 1997, B55, 7549.
    [33] K. Liu, X. W. Wu, K. H. Ahn, T. Sulchek, C. L. Chien and J. Q. Xiao, Phys. Rev., 1996, B54, 3007.
    [34] J. M. de Teresa, M. R. Ibarra, J. Garcia, J. Blasco, C. Ritter, P. A. Algarabel, C. Marquina and A. Del. Moral, Phys. Rev. Lett., 1996, 76, 3392.
    [35] A. Sundaresan, A. Maignan and B. Raveau, Phys. Rev., 1997, B55, 5596.
    [36] Y. Tomioka, A. Asamitsu, Y. Moritomo, H. Kuwahara and Y. Tokura, Phys. Rev. Lett., 1995, 74, 5108.
    [37] P. Dai, J. Zhang, H. A. Mook, S. H. Liou, P. A. Dowben and E. W. Plummer, Phys. Rev., 1996, B54, R3694.
    [38] 王永为,钙钛矿锰复合氧化物的水热合成及其性质表征,博士论文,吉林大学.
    [39] A. P. Ramirez, J. Phys. Condens. Matter., 1997, 9, 8171.
    [40] C. N. R. Rao and B. Raveau, Colossal Magnetoresistance and Other Related Propertied in 3d Oxides, World Scientific: Singapore, 1998.
    [41] J. A. Alonso, M. T. Casais, M. J. Martinez-Lope, J. L. Martinez and M. T. Fernandez-Diaz, J. Phys. Condens. Matter, 1997, 9, 8515.
    [42] S. N. Ruddlesden and P. Popper, Acta Cryst., 1958, 11, 541.
    [43] C. N. R. Rao, P. Ganguly, K. K. Singh and R. A. Mohan Ram, J. Solid State Chem., 1988, 72, 14.
    [44] T. Yamashita, K. Kubo, K. Nakao, T. Sakurai, S. Ikegawa, J. Sugiyama and H. Yamauchi, Phys. Rev. B, 1996, 53, 14470.
    [45] H. A. Jahn and E. Teller, Proc. Roy. Soc., 1937, A166, 220.
    [46] J. B. A. A. Elemans, B. Van Laar, K. R. Van Der Veen and B. O. Looptra, J. Solid State Chem., 1971, 3, 238.
    [47] J. H. Van Santen and G. H. Jonker, Physica( Amsterdam), 1950, 16, 559.
    [48] S. Geller, J. Chem. Phys., 1956, 24, 1236.
    [49] Y. Tokura, Fundamental Features of Colossal Magnetoresistive Manganese Oxides In: Y. Tokura(Ed), Contribution to Colossal Magnetoresistance Oxides, Monographs in Condensed Matter Science, Gordon & Breach, London,1999.
    [50] S. Satpathy, Z. S. Popovic and F. R. Vukajlovic, Phys. Rev. Lett., 1996, 76, 960.
    [51] G. M. Zhao, K. Conder, H. Keller and K. A. Muller, Nature, 1996, 381, 676.
    [52] S. B. Oseroff, M. Torikachvili, J. Singley, S. Ali, S. W. Cheong and S. Schultz, Phys. Rev., 1996, B53, 6521.
    [53] Y. Tamada, O. Hino, S. Nohdo, R. Kanao, T. Inami and S. Katano, Phys. Rev. Lett., 1996, 77, 904.
    [54] S. J. L. Billinge, R. G. DiFrancesco, G. H. Kwei, J. J. Neumeier and J. D. Thomphson, Phys. Rev. Lett., 1996, 77, 715.
    [55] S. G. Kaplan, M. Quijada, H. D. Drew, D. B. Tanner, G. C. Xiaong, R. Ramesh, C. Kwon and T. Venkatesan, Phy. Rev. Lett., 1996, 77, 2051.
    [56] R. P. Sharma, G. C. Xiong, C. Kwon, R. Ramesh, R. L. Greene and T. Venkatesan, Phys. Rev., 1996, B54, 10014.
    [57] S. Mori, C. H. Chen and S. W. Cheong, Nature, 1998, 392, 473.
    [58] J. B. Goodenough and J. M. Lango, Landolt – Boomstein Tabellen, New Series, Vol III/4a, Springer, Berlin,1970.
    [59] R. D. Shannon, Acta. Crys., 1976, A32, 751.
    [64] L. M. Rodriguez-Martinez and J. P. Attfield, Phys. Rev., 1996, B54, R15622.
    [65] T. Katsufuji, M. Masaki, A. Machida, M. Moritomo, K. Kato, E. Nishibori, M. Takata, M. Sakata, K. Ohoyama, K. Kitazawa and H. Takagi, Phys. Rev. B, 2002, 66, 134434.
    [66] S. Q. Ambrunaz, E. F. Bertaut, G. Buisson and C. R. Acad., Sci. Paris., 1964, 258, 3025.
    [67] E. F. Bertaut, G. Buisson, A. Durif, A. Mareschal, M. C. Montmory and S. Q. Ambrunaz, Bull. Soc. Chim. Fr., 1965, 1132.
    [68] P. Euzen, P. Leone, C. Gueho and P. Palvadeau, Acta Crys. C, 1993, 49, 1875.
    [69] J. A. Alonso, M. T. Casais, M. J. Martinez-Lope and I. Rasines, J. Solid State Chem., 1997, 129, 105.
    [70] M. Imada, A. Fujimori and Y. Tokura, Rev. Mod. Phys., 1997, 70, 1039.
    [71] A. Chainani, M. Mathew and D. D. Sarama, Phys. Rev., 1997, B47, 15397.
    [72] T. Saitoh, A. E. Bocqunet, T. Mizokawa, H. Namatame, A. Fujimori, M. Abbate, Y. Takeda and M. Takano, Phys. Rev., 1995, B51, 13942.
    [73] W. E. Pickett and D. J. Singh, Phys. Rev., 1996, B53, 1146.
    [74] J. H. Park, C. T. Chen, S. W. Cheong, W. Bao, G. Meigs, V. Chakarian and Y. U. Idzerda, J. Appl. Phys., 1996, 79, 4558.
    [75] J. H. Park, C. T. Chen, S. W. Cheong, W. Bao, G. Meigs, V. Chakarian and Y. U. Idzerda, Phys. Rev. Lett., 1996, 76, 4215.
    [76] J. B. Goodenough,Phys. Chem. Solids, 1958, 6, 287.
    [77] J. Kanamori,Phys. Chem. Solids, 1959, 10, 87.
    [78] P. W. Anderson, Phys. Rev., 1950, 79, 350.
    [79] 李荫远、李国栋, 铁氧体物理学,科学出版社, 1978, 7.
    [80] T. Arima, Y. Tokura and J. B. Torrance, Phys. Rev., 1993, B48, 17006.
    [81] F. Moussa, M. Hennion, G. Biotteau, J. R. Carvajal, L. Pinsard and A. Revcolevschi, Phys. Rev. B, 1999, 60, 12299.
    [82] D. M. Edwards , Phys. Rev. Lett.,1991, 67, 49.
    [83] S. Yunoki, J. Hu, A. Malvezzi, A. Moreo, N. Furukawa and E. Dagotto, Phys. Rev. Lett., 1998, 80, 845.
    [84] S. W. Cheong and H. Y. Hwang,In: Y. Tokura (Ed),Contributioon to Colossal Magnetoresistive Oxides,Monographs in Condensed Matter Science.. Gordon & Breach, London 1999.
    [85] C. Autret, A. Maignan, C. Martin, M. Hervieu, V. Hardy, S. Hebert and B. Raveau, Appl. Phys. Lett., 2003, 82, 4746.
    [86] S. Roy, Y. Q. Guo, S. Venkatesh and N. Ali, J. Phys.:Condens Matter. 2001, 13, 9547.
    [87] T. Shimura, T. Hayashi, Y. Inaguma and M. Itoh, J. Solid State Chem., 1996, 124, 250.
    [88] S. Nakamura, K. Nanba and S. Iida, J. Magn. Magnetic. Mater., 1998, 177-181, 884.
    [89] X. H. Zhang, Z. Q. Li, W. Song, X. W. Du, P. Wu, H. L. Bai and E. Y. Jiang, Solid State Comm., 2005, 135, 356.
    [90] M. Dlouha, S. Vratislav and Z. Jirak, Physica B, 1998, 241, 424.
    [91] T. Satoh, Y. Kikuchi, K. Miyano, E. Pollert, J. Hejtmanek and Z. Jirak, Phys. Rev. B, 2002, 65, 125103.
    [92] Z. Q. Li, X. H. Zhang, H. Liu, X. J. Liu, X. D. Liu, W. B. Mi, H. L. Bai, X. N. Jing and E. Y. Jiang, Solid State Comm., 2004, 130, 563.
    [93] X. J. Liu, E. Y. Jiang, Z. Q. Lia, B. L. Lia, W. R. Lia, A. Yu and H. L. Bai, Physica B, 2004, 348, 146.
    [94] Z. Q. Li, X. H. Zhang, J. S. Yu, X. J. Liu, X. D. Liu, P. Wu, H. L. Bai, C. Q. Sun, J. J. Lin and E. Y. Jiang, Phys. Lett. A, 2004, 325, 430.
    [95] S. Bhattacharyaa, S. Pala, R. K. Mukherjeea, B. K. Chaudhuria, S. Neeleshwarb, Y. Y. Chenb, S. Mollahc and H. D. Yang, J. Magn. Magnetic Mater., 2004, 269, 359.
    [96] N. Abdelmoula, A. C. Rouhou and L. Reversat, J. Phys.: Condens. Matter, 2001, 13, 449.
    [97] K. E. Nelson and R. L. Cook, Am. Ceram. Soc. Bull., 1959, 38, 499.
    [98] E. D. Kim, Y. E. Hyung and M. S. Yun, Am. Ceram. Soc. Bull., 1991, 70, 1783.
    [99] V. S. Tiwari, N. Singh and D. Paudey, J. Am. Ceram. Soc., 1994, 77, 1813.
    [100] A. Beauger, J. C. Mutin and J. C. Niepce, J. Mater. Sci., 1983, 18, 3041.
    [101] W. S. Clabaugh, E. M. Swiggard and R. Gilchrist, J. Res. Nation. Bur. Stand, 1956,56, 2677.
    [102] K. Kudaka, K. Itzuni and K. Sasaki, Am. Ceram. Soc. Bull., 1982, 61, 1236.
    [103] T. T. Fang and H. B. Lin, J. Am. Ceram. Soc., 1989, 72, 1899.
    [104] T. T. Fang, H. B. Lin and J. B. Huang, J. Am. Ceram. Soc., 1990, 73, 3363.
    [105] F. Shrey, J. Am. Ceram. Soc., 1956, 48, 401.
    [106] G. Limmer, H. Buerke, R. Kohl and G. Tomandl, Sprechsaal, 1988, 121, 1099.
    [107] H. C. Lu, L. E. Burkhart and G. L. Schrader, J. Am. Ceram. Soc., 1991, 74, 968.
    [108] B. M. Melnick, J. D. Cuchiaro and L. D. McMillan, Erroelectrics, 1990, 112, 329.
    [109] K. D. Budd, S. K. Dey and D. A. Payne, Br. Ceram. Proc., 1985, 36, 107.
    [110] S. S. Dana, K. F. Etzold and J. Clabes, J. Appl. Phys., 1991, 4, 398.
    [111] S. D. Ramamurthi and D. A. Payne, J. Am. Ceram. Soc., 1990, 73, 2547.
    [112] R. W. Schwartz, D. A. Payne and A. J. Holland, Ceramic Powder Processing Science, Proc. Int. Conf. 2, Mtg, 1988(Eds: H. Hausner, G.L. Messing, S. Hirano), Dtsch. Keram. Ges., Cologne 1989, pp. 165-172.
    [113] S. Sun, Y. Li and W. Rei, Ferroelectrics, 1990, 108, 9.
    [114] D. S. Hagberg, D. J. Eichorst and D. A. Payne, Proc. SPIE-Int Soc. Opt. Eng., 1990, 1328, 466.
    [115] M. I. Yanovskaya, E. P. Turevskaya and A. P. Leonov, J. Mater. Sci., 1988, 23, 395.
    [116] K. Nashimoto, M. J. Cima and W. E. Rgine, Mater. Res. Soc. Symp. Proc., 1991, 202, 439.
    [117] S. I. Hirano and K. Kato, Bull. Chem. Soc. Jpn., 1989, 62, 429.
    [118] J. Ravez, N. P. Castaings and F. Duboudin, Ferroelectrics, 1988, 81, 313.
    [119] L. F. Francis, Y. J. Oh and D. A. Payne, J. Mater. Sci., 1990, 25, 5007.
    [120] J. Livage, M. Henry and C. Sanchez, Prog. Solid State Chem., 1988, 18, 259.
    [121] Sol-Gel Technology for Thin Films, Fibers, Preforms, Electronics andSpeciality Shapes(Ed: L. C. Klein), Noyes, New York 1988.
    [122] M. J. Hampden-Smith, T. A. Wark and C. J. Brinker, Coord. Chem. Rev., 1992, 112, 81.
    [123] A. J. Moulson and J. M. Herbert, Electroceramics: Materials, Properties and Applications, Chapman and Hall, London 1990.
    [124] R. M. Barrer, Hydrothermal chemistry of zeolites, London: Academic Press, 1982, 132.
    [125] 徐如人,庞文琴,无机合成与制备化学,高等教育出版社,1992.
    [126] Y. Chen, H. M. Yuan, G. Tian, G. H. Zhang and S. H. Feng, J. Solid State Chem., 2007, 180, 1340.
    [127] J. Spooren, A. Rumplecker, F. Millange and R. I. Walton, Chem. Mater., 2003, 15, 1401.
    [128] D. Wang, R. Yu, S. Feng, W. Zheng, G. Pang and H. Zhao, Chem. J. Chin. Univ., 1998, 19, 165.
    [129] D. L. Zhu, H. Zhu and Y. H. Zhang, Appl. Phys. Lett., 2002, 80, 1634.
    [130] D. L. Zhu, H. Zhu and Y. H. Zhang, J. Cryst. Growth, 2003, 249, 172.
    [131] J. Liu, H. Wang, M. Zhu, B. Wang and H. Yan, Mater. Res. Bull., 2003, 38, 817.
    [132] T. Zhang, C. G. Jin, T. Qian, X. L. Lu, J. M. Bai and X. G. Li, J. Mater. Chem., 2004, 14, 2787.
    [133] J. J. Urban, L. Ouyang, M. H. Jo, D. S. Wang and H. Park, Nano Letters, 2004, 4, 1547.
    [134] J. Q. Li, W. A. Sun. W. Q. Ao and J. N. Tang, J. Magn. Magn. Mater., 2006, 302, 463.
    [135] Y. W. Wang, X. Y. Lu, Y. Chen, F. L. Chi, S. H. Feng and X. Y. Lu, J.Solid State Chem., 2005, 178, 1317.
    [136] J. Spooren, R. I. Walton and F. Millange, J. Mater. Chem., 2005, 15, 1542.
    [137] 张寒琦,王芬蒂,施文,光谱化学分析,吉林大学出版社,1996.
    [138] 姜月顺,杨文胜,化学中的电子过程,2004.
    [139] 方容川,固体光谱学,中国科技大学出版社,2001.
    [140] 中本一雄,无机和配位化合物的红外和拉曼光谱,第四版.
    [141] G. R. 彭采尔,分子发射光谱(荧光和磷光),1985.
    [142] Michael Gaft, Renata Reisfeld, Gerard Panczer, Modern Luminescence Spectroscopy of Minerals and Materials, 2005.
    [143] A. J. Millis, B. I. Shraiman and R. Mueller,Phys. Rev. Lett., 1996, 77, 175.
    [144] H. Roder, J. Zang and A. R. Bishop, Phys. Rev. Lett., 1996, 76, 1356.
    [145] C. N. R. Rao, J. Phys. Chem. B, 2000, 104, 5877.
    [146] Y. Tokura and N. Naogosa, Science, 2000, 288, 462.
    [147] T. Hotta, A. L. Malvezzi and E. Dagotto, Phys. Rev. B, 2000, 62, 9432.
    [1] 娄向东,赵晓华,成庆堂,卢雁,传感器技术,2002, 21 (7), 5.
    [2] 洪广言, 王丽萍,功能材料,1998, 10, 1081.
    [3] 孙琦, 盛京化工进展, 1997, 1, 48.
    [4] 李凌辉,熊宏齐,朱延技, 化学时刊,2004, 18 (7),19.
    [5] 黄云辉,王泽明,朱淘,高等学校化学学报,2001, 22 (1),6.
    [6] 侯识华,宋世庚,郑应智,马远新,郑毓峰, 材料科学与工艺, 2002 , (061).
    [7] J. Shu and S. Kaliaguine, Appl. Catalysis B: Environmental, 1998, 16, 303.
    [8] L. Simonot, F. Garin and G. Maire, Appl. Catalysis B: Environmental, 1997, 11, 167.
    [9] 肖军,洪广言,应用化学,1992, 9(5), 104.
    [10] 王秉济,李梅君,中国稀土学报,1993, 15(1), 74.
    [11] J. Kirchnerova and D. Klvana, Solid State Ionics, 1999, 123, 307.
    [12] 崔秀兰,杨桔材,刘源,稀土,2000, 21(3), 23.
    [13] M. Hackenberger, K. Stephan and D. Kiebling, Solid State Ionics, 1997, 101, 1195.
    [14] 梁珍成,秦永宁,乔冠东,化学物理学报,1997, 10(1), 60.
    [15] 傅希贤,孙艺环,王俊珍,催化学报,1999, 20 (6), 623.
    [16] 白树林,傅希贤,桑立被,高等学校化学学报,2001, 22(4), 663.
    [17] 夏定国,沙其赛,刘庆国,稀土,1994, 15(1), 25.
    [18] 赵兵,张瑞香,卢立柱,功能材料,1997, 28(5), 500.
    [19] 宋宽秀,傅希贤,单志兴,天津大学学报,1995, 28(4), 546.
    [20] 刘韩星,刘志坚,欧阳世翁,化学学报,1999, 57, 472.
    [21] 徐如人, 庞文琴,无机合成与制备化学,2001.
    [22] W. Hertl, J. Am. Ceram. Soc., 1988, 71, 879.
    [23] P. K. Dutta and J. R. Gregg, Chem. Mater., 1992, 4, 843.
    [24] I. J. Clark, T. Takeuchi, N. Ohtori and D. C. Sinclair, J. Mater. Chem., 1999, 9, 83.
    [25] M. Traianidis, C. Courtois, A. Leriche and B. Thierry, J. Eur. Ceram. Soc., 1999, 19, 1023.
    [26] Y. Deng, L. Liu, Y. Cheng, C. W. Nan and S. J. Zhao, Mater. Lett., 2003, 57, 1675.
    [27] P. Pinceloup, C. Courtois, J. Vicens, A. Leriche and B. Thierry, J. Eur. Ceram. Soc., 1999, 19, 973.
    [28] S. B. Cho, M. Oledzka and R. E. Riman, J. Cryst. Growth, 2001, 226, 313.
    [29] J. O. Eckert, C. C. Hung-Houston, B. L. Gersten, M. M. Lencka and R. E. Riman, J. Am. Ceram. Soc., 1996, 79, 2929.
    [30] R. I. Walton, F. Millange, R. I. Smith, T. Hansen and D. OHare, J. Am. Chem. Soc., 2001, 123, 12547.
    [31] A. Testino, M. T. Buscaglia, V. Buscaglia, M. Viviani, C. Bottino and P. Nanni, Chem. Mater., 2004, 16, 1536.
    [32] C. Chen, X. Jiao, D. Chen and Y. Zhao, Mater. Res. Bull., 2001, 36, 2119.
    [33] D. Chen and R. Xu, J. Mater. Chem., 1998, 8, 965.
    [34] C. S. Wright, R. I. Walton, D. Thompsett and J. Fisher, Inorg. Chem., 2004, 43, 2189.
    [35] W. Zheng, W. Pang and G. Meng, Solid State Ionics, 1998, 108, 37.
    [36] T. R. N. Kutty, R. Vivekanandan and S. Philip, J. Mater. Sci., 1990, 25,3649.
    [37] G. K. L. Goh, F. F. Lange, S. M. Haile and C. G. Levi, J. Mater. Res., 2003, 18, 338.
    [38] Y. He, Y. Zhu and N. Wu, J. Solid State Chem., 2004, 177, 3868.
    [39] Y. He, Y. F. Zhu and N. Z. Wu, J. Solid State Chem., 2004, 177, 2985.
    [40] T. R. N. Kutty and R. Vivekanandan, Mater. Res. Bull., 1984, 19, 1479.
    [41] T. R. N. Kutty and R. Vivekanandan, Mater. Lett., 1987, 5, 78.
    [42] T. R. N. Kutty and R. Vivekanandan, J. Mater. Sci., 1990, 25, 3649.
    [43] J. Spooren, A. Rumplecker, F. Millange and R. I. Walton, Chem. Mater., 2003, 15, 1401.
    [44] D. Wang, R. Yu, S. Feng, W. Zheng, G. Pang and H. Zhao, Chem. J. Chin. Univ., 1998, 19, 165.
    [45] D. L. Zhu, H. Zhu and Y. H. Zhang, Appl. Phys. Lett., 2002, 80, 1634.
    [46] D. L. Zhu, H. Zhu and Y. H. Zhang, J. Cryst. Growth, 2003, 249, 172.
    [47] J. Liu, H. Wang, M. Zhu, B. Wang and H. Yan, Mater. Res. Bull., 2003, 38, 817.
    [48] T. Zhang, C. G. Jin, T. Qian, X. L. Lu, J. M. Bai and X. G. Li, J. Mater. Chem., 2004, 14, 2787.
    [49] J. J. Urban, L. Ouyang, M. H. Jo, D. S. Wang and H. Park, Nano Letters, 2004, 4, 1547.
    [50] J. Q. Li, W. A. Sun. W. Q. Ao and J. N. Tang, J. Magn. Magn. Mater., 2006, 302, 463.
    [51] Y. Chen, H. M. Yuan, G. H. Li, G. Tian and S. H. Feng, J. Cryst. Growth, 2007, 305, 242.
    [52] Y. W. Wang, X. Y. Lu, Y. Chen, F. L. Chi, S. H. Feng and X. Y. Lu, J.Solid State Chem., 2005, 178, 1317.
    [53] J. Spooren, R. I. Walton and F. Millange, J. Mater. Chem., 2005, 15, 1542.
    [54] S. H. Feng, H. M. Yuan, Z. Shi, Y. Chen, Y. W. Wang, K. K. Huang, C. M. Hou, J. X. Li, G. S. Pang and Y. Hou, J Mater Sci., 2008, 43, 2131.
    [55] B. Li, Y. Hakuta and H. Hayashi, Chem. Commun., 2005, 1732.
    [56] Y. C. Mao, G. S. Li, W. Xu and S. H. Feng, J. Mater. Chem., 2000, 10, 479.
    [57] SMART and SAINT; Siemens Analytical X-ray Instruments, Inc.: Madison, W I, 1996.
    [58] SHELXTL, Version 5.1; Siemens Industrial Automation, Inc., 1997.
    [59] J. Spooren and R. I. Walton, J. Solid State Chem., 2005, 178, 1683.
    [1] G. 赫兹堡著, 王鼎昌译, 分子光谱与分子结构-双原子分子光谱,科学出版社,1983
    [2] 周公度,段连运 编著, 结构化学基础,北京大学出版社 1995.
    [3] C. W. Bauschlicher, R. S. Ram, P. F. Bernath, C. G. Parsons and D. Galehouse, J. Chem. Phys., 2001, 115, 1312.
    [4] D. M. Goodridge, D. F. Hullah and J. M. Brown, J. Chem. Phys., 1998, 108, 428.
    [5] C. Wilson, H. M. Cook and J. M. Brown, J. Chem. Phys., 2001, 115, 5973.
    [6] C. Wilson and J. M. Brown, J. Mol. Spectrosc., 1999, 197, 188.
    [7] H. Korsgen, W. Urban and J. M. Brown, J. Mol. Spectrosc., 1999, 110, 3961.
    [8] S. P. Beaton and K. M. Evenson, J. Chem. Phys., 1988, 7, 89.
    [9] S. P. Beaton, K. M. Evenson and J. M. Brown , J. Mol. Spectrosc., 1994, 164, 395.
    [10] M. Barnes, A. J. Merer and G. F. Metha, J. Mol. Spectrosc., 1995,173,100.
    [11] H. Birk and H. Jones, Chem. Phys. Lett., 1989, 161, 27.
    [12] R-D. Urban, H. Birk, P. Polomsky and H. Jones, J. Chem. Phys., 1991, 94, 2523.
    [13] T. Zieglar, J. G. Snijders, and E. J. Baerends, J. Chem. Phys., 1981, 74, 127.
    [14] M. Bames, A. J. Merer and G. F. Metha, J. Mol. Spectrosc, 1997,181,180.
    [15] K. I. Namiki, S. Saiti, J. S. Robinson, and T. C. Steimle, J. Mol.Spectrosc., 2002, 214, 196.
    [16] K. Kobayashi, G. E. Hall, J. T. Muckerman, T. J. Sears and A. J. Merer, J. Mol. Spectrosc., 2002, 212, 133.
    [17] B. Simard, S. A. Mitchell, M. R. Humphries, and P. A. Hackett, J. Mol. Spectrosc., 1988, 29, 186.
    [18] D. Kraus, R. J. Saykally and V. E. Bondybey, Chem. Phys. Lett., 1998, 295, 285.
    [19] K. M. Green, R. P. Kampf and J. M. Parson, J. Chem. Phys., 2000, 112, 1721.
    [20] J. Lei and P. J. Dagdigian, J. Mol. Spectrosc., 2000, 203, 345.
    [21] J. Husband, F. Aguirre, P. Ferguson and R. B. Metz, J. Chem. Phys., 1999, 111, 1433.
    [22] J. H. Kim, X. Li, L. S. Wang, H. L. D. Clercq, C. A. Fancher, O. C. Thomas and K. H. Bowen, J. Phys. Chem. A, 2001, 105, 5709.
    [23] A. G. Adam, Y. Azuma, T. A. Barry, G. Huang, M. P. J. Lyne, A. J. Merer and J. O. Schroder, J. Chem. Phys., 1987, 10, 86.
    [24] K. C. Namiki and S. Saito, J. Chem. Phys.,2001, 114, 9390.
    [25] R. S. Ram, C. N. Jarman and P. F. Bernath, J. Mol. Spectosc., 1993, 160, 574.
    [26] R. S. Ram, A. G. Adam, A. Tsouli, J. Lievin and P. F. Bernath, J. Chem. Phys., 2001, 114, 3977.
    [27] Ira N. 赖文著,徐广智等译. 分子光谱学. 高等教育出版社,1985.
    [28] 张允武等著. 分子光谱学. 中国科学技术大学出版社,1988.
    [29] J. I. 斯坦菲尔德著,蒋栋成等译. 分子和辐射-近代分子光谱导论.科学出版社,1983.
    [30] 夏慧荣,王祖赓著, 分子光谱学和激光光谱学导论, 华东师范大学出版社,1989.
    [31] M. A. Noginov, G. B. Loutts, N. Noginova, S. Hurling and S. Skuck Phys. Rev. B, 2000, 61, 1884.
    [32] Z. Bryknar, V. Trepakov, Z. Potucek and L. Jastrabik, J. Lumin., 2000, 87-89, 605.
    [33] J. M. Hughes, A. Ertl, H-J Bernhardt, G. R. Rossman and J. Rakovan American Mineralogist, 2004, 89, 629.
    [34] I. Reiche, C. Vignaud, B. Champagnon, G. Panczer, C. Brouder, G. Morin, V.A. Sole, L. Charlet and M. Menu, Am. Mineralogist, 2001, 86, 1519.
    [35] J. D. Kingsley, J. S. Prener and B. Segall, Phys. Rev., 1965, 137, A189.
    [36] M. Jáky and L. I. Simándi, J. C. S. PerkinII, 1972, 1481.
    [37] A. M. Shaker, Int. J. Chem. Kinetics, 2001, 33, 605.
    [38] Y. Shen, T. Riedener and K. L. Bray, Phys. Rev. B, 2000, 61, 9277.
    [39] U. Oetliker, M. Herren, H. U. Gudel, U. Kesper, C. Albrecht and D. Reinen, J. Chem. Phys., 1994, 100, 8657.
    [40] K. Dardenne, D. Vivien and D. Huguenin, J.Solid State Chem., 1999, 146, 464.
    [41] B. Han, B. W. Wessels and M. P. Ulmer, Appl. Phys. Lett., 2005, 86, 042505.
    [42] T. Murata, T. Tanoue, M. Iwasaki, K. Morinaga and T. Hase, J. Lumin., 2005, 114, 207.
    [43] M. Gaft, L. Nagli, R. Reisfeld, G. Panczer and M. Brestel, J. Lumin., 2003, 102-103, 349.
    [44] D. S. McClure, J. Chem. Phys., 1962, 36, 2757.
    [45] Z. Goldschmidt, W. Low and M. Foguel, Phys. Lett., 1965, 19, 17.
    [46] M. J. Weber and L. A. Riseberg, J. Chem. Phys. Lett., 1971, 55, 2031.
    [47] C. Reber, H. U. Gudel, G. Meyer, T. Shield and C. Daul, Inorg. Chem., 1989, 28, 3249.
    [48] D. R. Wilson, D. H. Brown and W. E. Smith, Inorg. Chem., 1986, 25, 898.
    [49] U. Hommerich, H. Eilers, W. M. Yen and H. R. Verdun, Chem. Phys. Lett., 1993, 213, 163.
    [50] S. Kuck, K. L. Schepler and B. H. T. Chai, J. Opt. Soc. Am. B, 1997, 14, 957.
    [51] K. Takenaka, Y. Sawaki, R. Shiozaki and S. Sugai, Phys. Rev. B,2000,62, 13864.
    [52] P. Postorino, A. Congeduti, P. Dore, A. Sacchetti, F. Gorelli, L. Ulivi, A. Kumar, and D. D. Sarma, Phys.Rev. Lett., 2003, 91, 175501.
    [53] A. Congeduti, P. Postorino, E. Caramagno, M. Nardone, A. Kumar, and D. D. Sarma, Phys. Rev. Lett., 2001, 86, 1251.
    [54] M. N. Iliev, M. V. Abrashev, V. N. Popov and V. G. Hadjiev, Phys. Rev. B, 2003, 67, 212301.
    [55] C. Roy and R. C. Budhani, Phys. Rev. B, 1998, 58, 8174.
    [56]李淑玲,吴淑琪. 红外分光光度计及其应用.分析测试仪器通讯. 3: 125.
    [57] V. S. Kurnosov, V. V. Pishko and V. V. Tsapenko, Low Temp. Phys., 2007, 33, 872.
    [58] N. Chasserio, B. Durand, S. Guillemet and A. Rousset, J. Mater. Sci., 2007, 1, 47.
    [59] M. Wierschem, S. Kapphan, V. S. Vikhnin, FERROELECTRICS, 2004,299, 49.
    [60] N. N. Loshkareva, L. V. Nomerovannaya, E. V. Mostovshchikova, A. A. Makhnev, Y. P. Sukhorukov, N. I. Solin, T. I. Arbuzova, S. V. Naumov, N. V. Kostromitina, A. M. Balbashov and L. N. Rybina, Phys. Rev. B, 2004, 70, 224406.
    [61] Y. P. Sukhorukov, E. A. Gan’shina, B. I. Belevtsev, N. N. Loshkareva, A. N. Vinogradov, K. D. D. Rathnayaka, A. Parasiris and D. G. Naugle, J. Appl. Phys., 2002, 91, 4403.
    [62] F. Gao, R. A. Lewis, X. L. Wang and S. X. Dou, PHYSICA C, 2000, 341, 2235.
    [63] L. Pejov and V. M. Petrusevski, Spectro. Acta Part A, 2002, 58, 2991.
    [64] 中本一雄,无机和配位化合物的红外和拉曼光谱,1991.
    [65] A. Sacchetti, M. Baldini, P. Postorino, C. Martin and A. Maignan, J. Raman Spectr.,2006, 37, 591.
    [66] W. G. Fateley, F. R. Dollish, H. T. McDevitt and F. F. Bentley, Infrared and Raman Selection Rules for Molecular and Lattice Vibrations: The Correlation Method , Wiley-Interscience, 1972.
    [67] Y. S. Lee, T. W. Noh, J. H. Park, K. B. Lee, G. Cao, J. E. Crow, M. K. Lee, C. B. Eom, E. J. Oh and I. S. Yang, Phys. Rev. B,2002, 65, 235113.
    [68] L. K. Noda, M. C. C .Ribeiro, N. S. Goncalves, A. H. Jubert and O. Sala, J. Raman Spectrosc., 1999, 30, 697.
    [69] W. P. Kilroy, S. Dallek and J. Zaykoski, J. Power Sources, 2002, 105, 75. 104
    [1] S. B. Oseroff, M. Torikachvili, J. Singley, A. Ali, S. W. Cheong and S. Schultz, Phys. Rev. B, 1996, 53, 6521 .
    [2] S. E. Lofland, S. M. Bhagat, H. L. Ju, G. C. Xiong, T. Venkatesan and R. L. Greene, Phys. Rev. B, 1995, 52, 15058.
    [3] A. Shengelaya, G. M. Zhao, H. Keller and K. A. Muller, Phys. Rev. Lett., 1996, 77, 5296.
    [4] C. Rettori, D. Rao, J. Singley, D. Kidwell, S. B. Oseroff, M. T. Causa, J. J. Neumeier, K. J. McClellan, S.W. Cheong and S. Schultz, Phys. Rev. B, 1997, 55, 3083.
    [5] S. E. Lofland, P. Kim, P. Dahiroc, S. M. Bhagat, S. D. Tyagi, S. G. Karabashev, D. A. Shulyatev, A. A. Arsenov and Y. Mukovskii, Phys. Lett. A , 1997, 233, 476.
    [6] C. Oliva, L. Forni, P. Pasqualin, A. D’Ambrosio and A. V. Vishniakov, Phys. Chem. Phys., 1999, 1, 355.
    [7] A. I. Shames, E. Rozenberg, G. Gorodetsky, B. Revzin, D. Mogilyanski, J. Pelleg and I. Felner, J. Magn. Magn. Mater., 1999, 203, 259.
    [8] D. L. Huber, G. Alejandro, A. Caneiro, M. T. Causa, F. Prado, M. Tovar and S. B. Oseroff, Phys. Rev. B, 1999, 60, 12155.
    [9] A. Shengelaya, G. M. Zhao, H. Keller, K. A. Muller and B. I. Kochelaev, Phys. Rev. B, 2000, 61, 5888.
    [10] R. Gupta, J. P. Joshi, S. V. Bhat, A. K. Sood and C. N. R. Rao, J. Phys.: Condens. Matter, 2000, 12, 6919.
    [11] S. B. Oseroff, N. O. Moreno, P. G. Pagliuso, C. Rettori, D. L. Huber, J. S. Gardner, J. L. Sarrao, J. D. Thompson, M. T. Causa, G. Alejandro, M. Tovar and B. R. Alascio, J. Appl. Phys., 2000, 87, 5810.
    [12] A. N. Ulyanov, S. C. Yu, S. G. Min and G. G. Levchenko, J. Appl. Phys.,2002, 91, 7926.
    [13] S. Angappane, G. Rangarajan and K. Sethupathi, J. Appl. Phys., 2003, 93, 8334.
    [14] N. O. Moreno, P. G. Pagliuso, C. Rettori, J. S. Gardner, J. L. Sarrao, J. D. Thompson, D. L. Huber, J. F. Mitchell, J. J. Martinez and S. B. Oseroff, Phys. Rev. B, 2001, 63, 174413.
    [15] M. S. Seehra, M. M. Ibrahim, V. S. Babu and G. Srinivasan, J. Phys.: Condens. Matter, 1996, 8, 11283.
    [16] D. L. Huber, J. Appl. Phys., 1998, 83, 6949.
    [17] S. Angappane, M. Pattabiraman, G. Rangarajan, K. Sethupathi and V. S. Sastry, Phys. Rev. B, 2004, 69, 094437.
    [18] J. Deisenhofer, M. Paraskevopoulos, H.-A. Krug von Niddal and A. Loidl, Phys. Rev. B, 2002, 66, 054414.
    [19] J. Deisenhofer, M. V. Eremin, D. V. Zakharov, V. A. Ivanshin, R. M. Eremina, H. A. Krug von Nidda, A. A. Mukhin, A. M. Balbashov and A. Loidl, Phys. Rev. B, 2002, 65, 104440.
    [20] J. P. Joshi, A. R. Bhagwat, S. Sarangi, A. Sharma and S.V. Bhat, Physica B, 2004, 349, 35.
    [21] T. Zajac, L. Folcik, A. Kolodziejczyk, H. Drulis, K. Krop and G. Gritzner, J. Magn. Magn. Mater., 2004, 272, 120.
    [22] M. C. Mozzati, L. Malavasi, C. B. Azzoni and G. Flor, J. Magn. Magn. Mater., 2004, 272-276, 1579.
    [23] A. N. Ulyanov, G. G. Levchenko and S. C. Yu, Solid State Commun,2002, 123, 383.
    [24] G. Alejandro, M. T. Causa, M. Tovar, J. Fontcuberta and X. Obradors, J. Appl. Phys., 2000, 87, 5603.
    [25] F. Rivadulla, P. Sande, M. T. Causa, L. E. Hueso, M. A. López-Quintela and J. Rivas, J. Appl. Phys., 2001, 89, 7422.
    [26] F. Rivadulla, M. Freita-Alvite, M. A. Lo′pez-Quintela, L. E. Hueso, D. R. Miguens, P. Sande and J. Rivas, J. Appl. Phys., 2002, 91, 785.
    [27] F. Rivadulla, L. E. Hueso, D. R. Miguens, P. Sande, A. Fondado, J. Rivas, M. A. Lopez-Quintela and C. A. Ramos, J. Appl. Phys., 2002, 91, 7412.
    [28] R. D. Sanchez, D. Niebieskikwiat and C. Ramos, J. Magn. Magn. Mater., 2004, 272-276, 422.
    [29] G. T. Tan, S. Dai, P. Duan, Y. L. Zhou, H. B. Lu and Z. H. Chen, Phys. Rev. B, 2003, 68, 014426.
    [30] D. Niebieskikwiat, R. D. Sanchez, L. Morales and B. Maiorov, Phys. Rev. B, 2002, 66, 134422.
    [31] A. I. Shames, E. Rozenberg, W. H. McCarroll, M. Greenblatt and G. Gorodetsky, Phys. Rev. B, 2001, 64, 172401.
    [32] M. T. Causa, M. Tovar, A. Caneiro, F. Prado, G. Ibanez, C. A. Ramos, A. Butera, B. Alascio, X. Obradors, S. Pinol, F. Rivadulla, C. Vazquez-Vazquez, M. A. Lopez-Quintela, J. Rivas, Y. Tokura and S. B. Oseroff, Phys. Rev. B, 1998, 58, 3233.
    [33] V. A. Ivanshin, J. Deisenhofer, H. A. Krug von Nidda, A. Loidl, A. A. Mukhin, A. M. Balbashov and M. V. Eremin, Phys. Rev. B, 2000, 61, 6213.
    [34] K. H. Kim, M. Uehara and S. W. Cheong, Phys. Rev. B, 2000, 62, R11945.
    [35] Y. Liu, S. L. Wan and X. G. Li, J. Phys.: Condens. Matter, 2007, 19, 196213.
    [36] C. Zener, Phys. Rev. 1951, 82, 403.
    [37] A. J. Millis, P. B. Littlewood and B. I. Shraiman, Phys. Rev. Lett., 1995, 74, 5144.
    [38] A. J. Millis, B. I. Shraiman and R. Mueller, Phys. Rev. Lett., 1996, 77, 175.
    [39] J. P. Joshi, K. V. Sarathy, A. K. Sood, S. V. Bhat and C. N. R. Rao, J. Phys.: Condens. Matter, 2004, 16, 2869.
    [40] C. W. Searle and S. T. Wang, Can. J. Phys., 1969, 47, 2703.
    [41] C. W. Searle and S. T. Wang, Can. J. Phys., 1970, 48, 2023..
    [42] T. L. Phan, N. V. Khiem, J. Zidanic, N. X. Phuc and S. C. Yu, IEEE Trans. Magn., 2005, 41, 2769.
    [43] N. A. Viglin, S. V. Naumov and Ya. M. Mukovskii, Phys. Solid State, 2001, 43, 1934.
    [44] L. Pi, X. Xu and Y. Zhang, Phys. Rev. B, 2000, 62, 5667.
    [45] L. Pi, L. Zheng and Y. Zhang, Phys. Rev. B, 2000, 61, 8917.
    [46] S. L. Yuan, G. Li and Y, Jiang, J.Phys.: Condens.Matter, 2000,12, L109.
    [47] M. Dominguez, S. E. Lofand, S. M. Bhagat, A. K. Raychaudhuri, H. L. Ju, T. Venkatesan and R. L. Greene, Solid State Commun, 1996, 97, 193.
    [48] M. Rubinstein, D. J. Gillespie, J. E. Snyder and T. M. Tritt, Phys.Rev.B,1997, 56, 5412.
    [49] R. Gupta, J. P. Joshi, S. V. Bhat, A. K. Sood and C. N. R. Rao, J.Phys.:Condens. Matter, 2000, 12, 6919.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700