视网膜锥细胞失功能大鼠致病基因的鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
视网膜包括视杆与视锥两种神经回路,分别负责暗(弱光)视觉、无色视觉和明(强光)视觉、色觉信息的接受、加工和传导,这两种感光系统之间存在着复杂的联系。色觉是视觉的高级功能,色觉异常疾病在男性中的发病率可高达8%,是一种常见的遗传疾病,被认为是视觉传导通路中一些基因的重组或点突变导致的。但由于缺乏先天性色觉异常疾病的模式动物,对其发病机制的研究难以深入,因此,目前色觉异常疾病的发病机制尚不完全清楚。本实验室发现并培育了一种先天性视网膜锥细胞失功能(retinal cone dysfunction, RCD)大鼠,其遗传表型为暗适应视网膜电图基本正常,明适应视网膜电图消失;组织结构学结果显示视网膜结构层次完整,光感受器数量无明显变化。本研究将对此模式动物的致病基因、突变方式及功能等进行研究,旨在了解该模式动物的发病机制。
     方法
     1.建立突变型大鼠与野生型BN大鼠的杂交品系,得到的F1代大鼠雌雄配对,获得F2代大鼠。通过建立遗传家系,明确遗传方式。后续研究主要以F2代大鼠为研究对象。
     2.采用国际标准临床视网膜电图记录方法,进行表型鉴定。
     3.应用序列标签位点(sequence tagged site,STS)和单倍体型(haplotype)分析方法,定位突变基因。
     4.针对候选基因,采用基因克隆、测序等方法确定基因的突变方式,并观察突变基因是否与表型一致。
     5.应用荧光实时定量PCR方法和免疫荧光方法,观察突变基因在模式大鼠中的mRNA表达水平以及蛋白表达水平。
     6.采用苏木精-伊红染色及全视网膜铺片方法比较突变是否会影响不同年龄段的大鼠视网膜结构和锥体细胞的数量。
     7.记录不同光强、频率及颜色光刺激下的视觉电生理反应,分析光感受器细胞的功能。
     结果
     1.将雌性突变型大鼠与雄性野生型BN大鼠杂交,子一代互交,收集到杂交二代大鼠共441只,所有大鼠均经过临床视觉电生理学检测确定其表型。根据NCBI网站中提供的序列标签位点作为分子标记物设计引物,对441只F2代大鼠分别进行聚合酶链式反应扩增。通过比较分子标记物在不同个体中的扩增产物,分析突变基因与分子标记物间的交换重组率,结果显示突变基因与DXRat21和DXRat96有连锁关系,并位于X染色体的末端端粒区27.8 Mb的区域内。此区域内共有169个候选基因,只有中波长视蛋白基因与视觉有关。
     2.针对中波长视蛋白基因的的6个外显子分别设计引物、扩增并测序,结果显示第四内含子3’端剪接位点处保守的AG双碱基突变为AT双碱基。此突变在441只F2代大鼠中,除雄性正常表型大鼠外,其余个体中均存在;且在50只野生型SD大鼠和156种近交系大鼠中均未被发现。
     3.反转录聚合酶链式反应和荧光实时定量聚合酶链式反应结果显示,野生型SD大鼠中可以检测到中波长视蛋白基因mRNA的表达,但是突变型大鼠中无法检测到该基因mRNA的表达,表明其转录过程受到抑制;免疫荧光结果显示,花生凝集素特异性标记的锥体细胞在野生型和突变型大鼠中均可以检测到,且正常表型的野生型SD大鼠中还可以检测到中波长视蛋白的表达,但突变型大鼠中无法检测到,中波长视蛋白在突变型大鼠中未被表达。
     4.苏木精-伊红染色方法观察1个月、3个月、6个月、9个月和12个月野生型SD大鼠和突变型大鼠的视网膜结构,结果显示突变型大鼠的视网膜结构、光感受器细胞层的厚度与同龄的野生型SD大鼠相比均未发生明显变化;全视网膜铺片结果表明,同龄的突变型大鼠和野生型大鼠的锥体细胞的数量无明显差异。中波长视蛋白在野生型大鼠中表达,而突变型大鼠中无法检测到该蛋白的表达。
     5.视觉电生理学记录结果显示,在暗适应条件下,随着刺激光强的增强,记录到的视网膜电图(electroretinogram,ERG)反应的波幅值在突变型和正常表型大鼠中均逐渐增大;明适应条件下,不同频率、光强的光刺激均显示出随着光强的增强,正常表型大鼠的波幅值逐渐增大,直至达到饱和状态,而突变型大鼠即使在最大光强刺激下也无法记录到任何波形。颜色光刺激后,在明适应环境中,突变型大鼠仍然无法记录到任何波形。
     结论
     中波长视蛋白基因中内含子和外显子间保守的剪接位点发生了点突变,导致该基因无法被正常的剪接,不能转录成成熟的mRNA,蛋白质的翻译过程也被终止。感光视蛋白与11-顺式视黄醛结合形成视锥细胞中的感光色素,由于基因突变致使蛋白无法合成,锥体细胞感光后的感光换能机制受到了抑制,所以在视觉电生理学检测中显示为无法检测到锥体细胞的功能,表现为明适应下无任何波形。中波长视蛋白基因的突变会导致绿色盲或者绿色弱疾病的产生,所以模式大鼠为绿色色觉异常大鼠。
     迄今为止发现的中波长视蛋白基因的突变或是由于基因重组,或是由于外显子中的点突变引起,而该基因内含子的剪接位点突变属于首例,这为研究中波长视蛋白基因的功能、结构等方面提供了更多的机遇。蓝色锥体全色盲(blue cone monochromatism,BCM)疾病表现为感红(长波长)和感绿(中波长)锥体细胞功能丧失,而感蓝(短波长)锥体细胞和视杆细胞的功能正常。由于大鼠中只存在感绿(中波长)和感蓝(短波长)两种锥体细胞,所以,本模式大鼠可能为国际首例发现的自发突变BCM模式动物,因此具有重要的研究意义。同时,光学显微镜和全视网膜铺片实验结果显示模式大鼠视网膜结构无明显改变,光感受器细胞层的厚度及锥体细胞的数量并未发生明显变化,这为研究色觉异常机制、视网膜信号回路及基因治疗色觉异常疾病提供了理想的动物模型。
There are two signal circuits in retina: rod and cone neural circuits. Rod signal system is in charge of receiving, procession and transmission of visual information under scotopic condition, while cone signal system plays an important role under photopic condition. There is a complicated linkage in the rod and cone neural circuits. Color vision is one of the highest levels of vision. The color anomalopia is a very common inherited disease, which its prevalence is about 8% in western European men. It is presumably caused by mutations of genes in visual pathway. However, so far, the mechanisms of color anomalopia are not totally understood due to the lack of congenital color anomalopia animal model. The retinal cone dysfunction rat is a naturally occurring mutant model of X-linked cone dysfunction. In this model, the photopic electroretinogram (ERG) is abnormal, while there are no obvious histopathological changes. Here, we will screen and identify the causative gene and its function, aim to unserstand the mechanism of this disease.
     Methods
     1. Constructed a hybrid rat family by crossing the affected female rat with wild-type male BN rat. The F1 rats were intercrossed to get the F2 rats. The genetic mode was testified after the family was constructed.
     2. Identified the phenotypes of the family members by ERG recordings.
     3. Analyzed and located the mutant gene by using the sequence tagged site (STS) and haplotype method.
     4. Cloned and sequenced the candidate gene. The mutant site was determined. Checked the relationship of the mutant gene and the phenotype.
     5. Applied real-time quantitative PCR (RQ-PCR) and immunohistochemistry (IHC) methods to profile the expression levels of mRNA and protein in the retina of the affected rat.
     6. Utilized hematoxylin and eosin (HE) staining and wholemount immunocytochemistry methods to compare the retinal structures and quantities of cones in affected rats with wild rats at the same ages.
     7. Recorded electroretinograms with different intensities, frequencies and colors. With these results, functions of photoreceptors were analyzed.
     Results
     1. Cross family members were collected and 441 rats were obtained in F2 generation. Phenotypes were determined by using the ERG recordings. According to the sequence tagged sites provided by the NCBI website, 441 rats were amplified by using PCR method. After the amplified products were compared, the recombinant rates were analyzed. The affected gene showed a linkage relationship with the markers DXRat21 and DXRat96. The gene was mapped to the telomeric region of chromosome X and spanned the 27.8-Mb region. 169 candidate genes were located in this region, only the opsin 1, medium-wavelength sensitive (Opn1mw) gene had a relationship with vision.
     2. Six primers were designed to amplify the six exons of Opn1mw gene. After sequencing, the presence of a G-to-T substitution in the invariant AG dinucleotide at the 3’splcing acceptor site of intron 4 was found. This substitution showed a specific relationship to the affected rat and could not be found in 50 wild-type SD rats and 156 inbred rats.
     3. The results of reverse transcription-PCR (RT-PCR) and real-time quantitative PCR showed that the transcriptional expression of Opn1mw could be detected in wild rat but in mutant rat. The transcription was refrained. In immunohistochemistry, the marked cones with specific peanut agglutinin (PNA) could be found both in wild and mutant rats, but the protein of Opn1mw gene only were detected in wild rats, but not in mutant rats.
     4. The results of hematoxylin and eosin (HE) staining demonstrated that there were no significant change in the structure and thickness of photoreceptors between the wild and mutant rats. The wholemount immunocytochemistry showed no obvious changes of numbers of cones in these two kinds of rats. Middle-wavelength opsin (M-opsin) could be expressed in wild rat, but not in mutant rat.
     5. Under scotopic conditions, the amplitudes in wild and affected rats increased with the intensities increasing gradually and got the saturation state at last. Under photopic conditions, the same phenomenon could be seen in wild-type rats. No wave could be recorded with any intensity flashes and colorful lights in mutant rats.
     Conclusion
     A point mutation was proved to happen in the splicing acceptor site in intron 4 of Opn1mw gene. After mutation, the gene could not be spliced according to the usual way and no mRNA or protein could be synthesized. The visual pigment is consisted of opsin and 11-cis retinal. Due to the lack of M-opsin, the function of visual pathway was restrained and the cone response could not be recorded. The previous studies showed that mutations of Opn1mw gene caused deutan, so we inferred that the mutant rat would be a deuteranopia animal.
     As far as we know, the mutations of Opn1mw gene that have been reported are all rearrangements or point mutations in exons. It is the first time that the mutation was found in splcing site. This would provide an important model for researching on the structure and function of Opn1mw gene. BCM is known as a rare X-linked disorder of color vision characterized by the absence of both red and green cone sensitivities, and have only rods and blue cones. Rat has only two kinds of cones, green cones and blue cones. So, this rat model would be also a blue cone monochromatism (BCM) animal model. If that, it would be the first animal model of BCM disease reported in the world. Optical microscope and wholemount immunocytochemistry showed no change could be found in structure, thickness of photoreceptors and the quantity of cones, which hinted that this rat could be an idealized animal model for gene therarpy for curing color anomalopia diseases in human.
引文
[1] Mancuso K., Hauswirth W. W., Li Q., Connor T. B., Kuchenbecker J. A., Mauck M. C., Neitz J., Neitz M.. Gene therapy for red–green colour blindness in adult primates. Nature, 2009, 461: 784-8.
    [2] Gu Y. H., Zhang Z. M., Long T., Li L., Hou B. K., Guo Q.. A naturally occurring rat model of X-linked cone dysfunction. Invest Ophthalmol Vis Sci, 2003, 44(12): 5321-6.
    [3]张作明,顾永昊,龙潭,李莉,郭群.视网膜锥体细胞退行性变大鼠的视觉电生理学观察.第四军医大学学报, 2002, 23(11): 986-9.
    [4]谢蓓,郭群,安晶,夏峰,宋玫侠,李莉,张作明.一种视网膜锥体细胞退行性变大鼠基础生理值的测定.中国比较医学杂志, 2008, 18(4): 56-60.
    [5] Tovee M. J.. Dalton's eyes and monkey genes. Current Biology, 1995, 5(6): 583-6.
    [6] Nathans J., Thomas D., Hogness D. S.. Molecular Genetics of Human Color Vision: The Genes Encoding Blue, Green, and Red Pigments. Science, 1986, 232: 193-202.
    [7] Ostrer H., Pullarkat R. K., Kazmi M. A.. Glycosylation and palmitoylation are not required for the formation of the X-Linked cone opsin visual pigments. Molecular Vision, 1998, 4: 5.
    [8] Szel A., Rohlich P.. Two cone types of rat retina detected by anti-visual pigment antibodies. Exp Eye Res, 1992, 55: 47-52.
    [9] Jacobs G. H., Fenwick J. A., Williams G. A.. Cone-based vison of rats forultraviolet and visible lights. The Journal of Experimental Biology, 2001, 204: 2439-46.
    [10] Deegan J. F., Jacobs G. H.. On the identity of the cone types of the rat retina. Exp Eye Res, 1993, 56: 375-7.
    [11] Yanagi Y., Takezawa S., Kato S.. Distinct functions of photoreceptor cell–specific nuclear receptor, thyroid hormone receptor 2 and CRX in cone photoreceptor development. Invest Ophthalmol Vis Sci, 2002, 43(11): 3489-94.
    [12] Lyubarsky A. L., Falsini B., Pennesi M. E., Valentini P., Pugh Jr1 E. N.. UV- and midwave-sensitive cone-driven retinal responses of the mouse: A possible phenotype for coexpression of cone photopigments. The Journal of Neuroscience, 1999, 19(1): 1442-55.
    [13] Applebury M. L., Antoch P., Baxter L. C., Chun L. Y., Falk J. D., Farhangfar F., Kage K., Krzystolik M. G.,. Lyass L. A, Robbins J. T.. The murine cone photoreceptor: A single cone type expresses both S and M opsins with retinal spatial patterning. Neuron, 2000, 27(3): 513-34.
    [14] Kazmi M. A., Sakmar T. P., Ostrer H.. Mutation of a conserved cysteine in the X-Linked cone opsins causes color vision deficiencies by disrupting protein folding and stability. Invest Ophthalmol Vis Sci, 1997, 38(6): 1074-81.
    [15] Nathans J., Hogness D. S.. Isolation and nucleotide sequence of the gene encoding human rhodopsin. Proc Natl Acad Sci USA, 1984, 81: 4851-5.
    [16] Ala-Laurila P., Cornwall M. C., Crouch R. K., Kono M.. The action of 11-cis-retinol on cone opsins and intact cone photoreceptors. J Biol Chem, 2009, 284(24): 16492-500.
    [17]张颖,张卯年.眼细胞间通讯研究进展.眼科研究,2005, 23: 213-7.
    [18] Ostrer H., Kazmi M. A.. Mutation of a conserved proline disrupts theretinal-binding pocket of the X-linked cone opsins. Molecular Vision, 1997, 3: 4.
    [19] Michaelides M., Johnson, Simunovic M. P., Bradshaw K., Holder G., Mollon J. D., Moore A., Hunt D.. Blue cone monochromatism: a phenotype and genotype assessment with evidence of progressive loss of cone function in older individuals. Nature Publishing Group, 2005, 19: 2-10.
    [20] Gardner J. C., Michaelides M., Holder G. E., Kanuga N., Webb T. R., Mollon J. D., Moore A. T., Hardcastle A. J.. Blue cone monochromacy: Causative mutations and associated phenotypes. Molecular Vision, 2009,15: 876-84.
    [21] Reyniers E., LLe M-N., Thienen V., Meire F. O., Boulle K. D., Devries K., Kestelijn P., Willems P. J.. Gene conversion between red and defective green opsin gene in blue cone monochromacy. Genomics, 1995, 29: 323-8.
    [22]冯琛莉,戴锦晖,褚仁远.视蛋白的研究进展.国际眼科纵览, 2006, 30: 217-20.
    [23] Hargrave P. A., McDowell J. H., Feldmann R. J., Atkinson P. H., Rao J. K., Argos P.. Rhodopsin's protein and carbohydrate structure: selected aspects. Vision Res, 1984, 24: 1487-99.
    [24] http://en.wikipedia.org/wiki/Opsin.
    [25] Smallwood P. M., Lveczky B. P. O., Williams G. L., Jacobs G. H., Reese B. E., Meister M., Nathans J.. Genetically engineered mice with an additional class of cone photoreceptors: Implications for the evolution of color vision. PNAS, 2003, 100(20): 11706-11.
    [26] Yokoyama S., Radlwimmer F. B.. The "Five-Sites" rule and the evolution of red and green color vision in mammals. Mol Biol Evol, 1998, 15(5): 560-7.
    [27] Zhao Z., Hewett-Emmett D., Li W. H.. Frequent gene conversion betweenhuman red and green opsin genes. J Mol Evol, 1998, 46: 494-6.
    [28] Wlnderlckx J., Battlstl L., Hlbtya Y., Motulsky A. G., Deeb S. S.. Haplotype diversity in the human red and green opsin genes: evidence for frequent sequence exchange in exon 3. Human Molecular Genetics, 1993, 2(9): 1413-21.
    [29] Nathans J., Maumenee I. H., Zrenner E., Sadowski B., Sharpe L. T., Lewis R. A., Hansen E., Rosenberg T., Heckenlively J. R., Elias Traboulsi R. K., Bech-Hansen N. T., LaRoche G. R., Pagon R. A., Murphey W. H., Welebertt R. G.. Genetic heterogeneity among blue-cone monochromats. Am J Hum Genet, 1993, 53: 987-1000.
    [30]党凤良.谈人的色觉与色盲.生物学教学, 2007, 32(12): 61-3.
    [31] http://wzulin.vip.sina.com/DIP2007/34022720Ly.doc.
    [32] Nathans J., Davenport C. M., Maumenee I. H., Lewis R. A., Hejtmancik J. F., Litt M., Lovrien E., Weleber R., Bachynski B., Zwas F., Klingaman R., Fishman G.. Molecular genetics of human blue cone monochromacy. Science, 1989, 245: 831-8.
    [33] Michaelides M., Hunt D. M., Moore A. T.. The cone dysfunction syndromes. Br J Ophthalmol, 2004, 88: 291-7.
    [34] Deeb S. S.. Molecular genetics of colour vision deficiencies. Clin Exp Optom, 2004, 87(4-5): 224-9.
    [35] Kellner U., Wissinger B., Tippmann S., Kohl S., Kraus H., Foerster M. H.. Blue cone monochromatism: clinical findings in patients with mutations in the red/green opsin gene cluster. Graefe's Arch Clin Exp Ophthalmol, 2004, 242: 2381-7.
    [36] Ladekj?r-Mikkelsen A. S., Rosenberg T., J?rgensen A. L.. A new mechanism in blue cone monochromatism. Hum Genet, 1996, 98: 403-8.
    [37] Deeb S. S., Molecular genetics of color-vision deficiencies. Vis Neurosci, 2004, 21: 191-6.
    [38] Ueyama H., Kuwayama S., Imai H., Tanabe S., Oda S., Nishida Y., Wada A., Shichida Y., Yamade S.. Novel missense mutations in red/green opsin genes in congenital color-vision deficiencies. Biochem Biophys Res Commun, 2002, 294: 205-9.
    [39] Winderickx J., Sanocki E., Lindsey D. T., Teller D. Y., Motulsky A. G., Deeb S. S.. Defective colour vision associated with a missense mutation in the human green visual pigment gene. Nat Genet, 1992, 1(4): 251-6.
    [40] Winderickx J., Battisti L., Motulsky A. G., Deeb S. S.. Selective expression of human X chromosome-linked green opsin genes. Proc Natl Acad Sci USA, 1992, 89(20): 9710-4.
    [41] Crognale M. A., Fry M., Highsmith J., Haegerstrom-Portnoy G., Neitz M., Neitz J., Webster M. A.. Characterization of a novel form of X-linked incomplete achromatopsia. Visual Neuroscience, 2004, 21 : 197-203.
    [42] Lewis R. A, Holcomb J. D., Bromley W. C., Wilson M. C., Roderick T. H., Hejtmancik J. F.. Mapping X-linked ophthalmic diseases III. Provisional assignment of the locus for blue cone monochromacy to Xq28. Arch Ophthalmol, 1987, 105: 1055-9.
    [43] Padmos P., Norren D. V., Faijer J. W. J.. Blue cone function in a family with an inherited tritan defect, tested with electroretinography and psychophysics. Assoc for Res in Vis and Ophthal, 1978, 17(5): 436-41.
    [44] Weitz C. J., Miyake Y., Shinzato K., Montag E., Zrenner E., Went L. N., Nathans J.. Human tritanopia associated with two amino acid substitutions in the blue-sensitive opsin. Am J Hum Genet, 1992, 50: 498-507.
    [45] Hernandez D., Lacalzada J., Salido E., Linares J., Barragan A., Lorenzo V., Higueras L., Martin B., Rodriguez A., Laynez I., Gonzalez-Posada J. M., Torres A.. Regression of left ventricular hypertrophy by lisinopril after renal transplantation: role of ACE gene polymorphism. Kidney Int, 200, 58: 889-97.
    [46] Jaeger W., Alexandridis E., Kafer O., Tenner A., Kraus-Mackiw E.. Hereditary degenerative diseases of the retinal periphery. Ber Zusammenkunft Dtsch Ophthalmol Ges, 1977, 74: 481-529.
    [47] Moser H. W.. Adrenoleukodystrophy: from bedside to molecular biology. J Child Neurol, 1987, 2: 140-50.
    [48] Koenekoop R. K., Lopez I., Hollander A. I., Allikmets R., Cremers F. P.. Genetic testing for retinal dystrophies and dysfunctions: benefits, dilemmas and solutions. Clin Experiment Ophthalmol, 2007, 35: 473-85.
    [49] Li C. C., Chao M. C., Huang S. P., Chou Y. H., Huang C. H., Chen A. H., Wu Y. P.. Kallmann syndrome--a case report. Kaohsiung J Med Sci, 2002, 18: 355-8.
    [50] Merin S., Rowe H., Auerbach E., Landau J.. Syndrome of congenital high myopia with nyctalopia. Report of findings in 25 families. Am J Ophthalmol, 1970, 70: 541-7.
    [51] Alfredson H.. The chronic painful Achilles and patellar tendon: research on basic biology and treatment. Scand J Med Sci Sports, 2005, 15: 252-9.
    [52] al-Ubaidi M. R., Font R. L., Quiambao A. B., Keener M. J., Liou G. I., Overbeek P. A., Baehr W.. Bilateral retinal and brain tumors in transgenic mice expressing simian virus 40 large T antigen under control of the human interphotoreceptor retinoid-binding protein promoter. J Cell Biol, 1992, 119: 1681-7.
    [53] Min S. H., Molday L. L., Seeliger M. W., Dinculescu A., Timmers A. M.,Janssen A., Tonagel F., Tanimoto N., Weber B. H., Molday R. S., Hauswirth W. W.. Prolonged recovery of retinal structure /function after gene therapy in an Rs1h-deficient mouse model of x-linked juvenile retinoschisis. Mol Ther, 2005, 12: 644-51.
    [54] Cashman S. M., McCullough L., Kumar-Singh R.. Improved retinal transduction in vivo and photoreceptor-specific transgene expression using adenovirus vectors with modified penton base. Mol Ther, 2007, 15: 1640-6.
    [55] Rex T. S., Peet J. A., Surace E. M., Calvert P. D., Nikonov S. S., Lyubarsky A. L., Bendo E., Hughes T., Pugh E. N., Bennett J.. The distribution, concentration, and toxicity of enhanced green fluorescent protein in retinal cells after genomic or somatic (virus-mediated) gene transfer. Mol Vis, 2005, 11: 1236-45.
    [56] Rhee K. D., Ruiz A., Duncan J. L., Hauswirth W. W., Lavail M. M., Bok D., Yang X. J.. Molecular and cellular alterations induced by sustained expression of ciliary neurotrophic factor in a mouse model of retinitis pigmentosa. Invest Ophthalmol Vis Sci, 2007, 48: 1389-1400.
    [57] Takahashi M., Miyoshi H., Verma I. M., Gage F. H.. Rescue from photoreceptor degeneration in the rd mouse by human immunodeficiency virus vector-mediated gene transfer. J Virol, 1999, 73: 7812-6.
    [58] Yang M., Wang X. G., Stout J. T., Chen P., Hjelmeland L. M., Appukuttan B., Fong H. K.. Expression of a recombinant human RGR opsin in Lentivirus-transduced cultured cells. Mol Vis,2000, 6 : 237-42.
    [59] Hamel C. P.. Cone rod dystrophies. Orphanet J Rare Dis, 2007, 2: 7.
    [60] Alexander J. J., Hauswirth W. W.. Prospects for retinal cone-targeted gene therapy. Drug News Perspect, 2008, 21: 267-71.
    [61] Korf , Gotz W., Herken R., Theuring F., Gruss P., Schachenmayr W.. S-antigenand rod-opsin immunoreactions in midline brain neoplasms of transgenic mice: similarities to pineal cell tumors and certain medulloblastomas in man. J Neuropathol Exp Neurol, 1990, 49: 424-37.
    [62] Liu J., Timmers A. M., Lewin A. S., Hauswirth W. W.. Ribozyme knockdown of the gamma-subunit of rod cGMP phosphodiesterase alters the ERG and retinal morphology in wild-type mice. Invest Ophthalmol Vis Sci, 2005, 46: 3836-44.
    [63] Peachey N. S., Goto Y., Quiambao A. B., al-Ubaidi M. R.. Functional consequences of oncogene-induced photoreceptor degeneration in transgenic mice. Vis Neurosci, 1995, 12: 513-22.
    [64] Quiambao A. B., Peachey N. S., Mangini N. J., Rohlich P., Hollyfield J. G., al-Ubaidi M. R.. A 221-bp fragment of the mouse opsin promoter directs expression specifically to the rod photoreceptors of transgenic mice. Vis Neurosci, 1997, 14: 617-25.
    [65] Tan E., Ding X. Q., Saadi A., Agarwal N., Naash M. I., Al-Ubaidi M. R.. Expression of cone-photoreceptor-specific antigens in a cell line derived from retinal tumors in transgenic mice. Invest Ophthalmol Vis Sci, 2004, 45: 764-8.
    [66] White D. A., Fritz J. J., Hauswirth W. W., Kaushal S., Lewin A. S.. Increased sensitivity to light-induced damage in a mouse model of autosomal dominant retinal disease. Invest Ophthalmol Vis Sci, 2007, 48: 1942-51.
    [67] Gorbatyuk M., Justilien V., Liu J., Hauswirth W. W., Lewin A. S.. Preservation of photoreceptor morphology and function in P23H rats using an allele independent ribozyme. Exp Eye Res, 2007, 84: 44-52.
    [68] Lin B., Masland R. H., Strettoi E.. Remodeling of cone photoreceptor cells after rod degeneration in rd mice. Exp Eye Res, 2009, 88: 589-99.
    [69] O'Reilly M., Palfi A., Chadderton N., Millington-Ward S., Ader M., Cronin T., Tuohy T., Auricchio A., Hildinger M., Tivnan A., McNally N., Humphries M. M., Kiang A. S., Humphries P., Kenna P. F., Farrar G. J.. RNA interference-mediated suppression and replacement of human rhodopsin in vivo. Am J Hum Genet, 2007, 81: 127-35.
    [70] Pawlyk B. S., Smith A. J., Buch P. K., Adamian M., Hong D. H., Sandberg M. A., Ali R. R., Li T.. Gene replacement therapy rescues photoreceptor degeneration in a murine model of Leber congenital amaurosis lacking RPGRIP. Invest Ophthalmol Vis Sci, 2005, 46: 3039-45.
    [71] Li Q., Timmers A. M., Guy J., Pang J., Hauswirth W. W.. Cone-specific expression using a human red opsin promoter in recombinant AAV. Vision Res, 2008, 48: 332-8.
    [72] Khani S. C., Pawlyk B. S., Bulgakov O. V., Kasperek E., Young J. E., Adamian M., Sun X., Smith A. J., Ali R. R., Li T.. AAV-mediated expression targeting of rod and cone photoreceptors with a human rhodopsin kinase promoter. Invest Ophthalmol Vis Sci, 2007, 48: 3954-61.
    [73] Liang F. Q., Dejneka N. S., Cohen D. R., Krasnoperova N. V., Lem J., Maguire A. M., Dudus L., Fisher K. J., Bennett J.. AAV-mediated delivery of ciliary neurotrophic factor prolongs photoreceptor survival in the rhodopsin knockout mouse. Mol Ther, 2001, 3: 241-8.
    [74] Bennett J., Zeng Y., Bajwa R., Klatt L., Li Y., Maguire A. M.. Adenovirus-mediated delivery of rhodopsin-promoted bcl-2 results in a delay in photoreceptor cell death in the rd/rd mouse. Gene Ther, 1998, 5: 1156-64.
    [75] Pang J. J., Chang B., Kumar A., Nusinowitz S., Noorwez S. M., Li J., Rani A., Foster T. C., Chiodo V. A., Doyle T., Li H., Malhotra R., Teusner J. T.,McDowell J. H., Min S. H., Li Q., Kaushal S., Hauswirth W. W.. Gene therapy restores vision-dependent behavior as well as retinal structure and function in a mouse model of RPE65 Leber congenital amaurosis. Mol Ther, 2006, 13: 565-72.
    [76] Shapley R.. Gene therapy in colour. Nature, 2009, 461: 737-8.
    [77] Bennett J.. Gene therapy for color blindness. N Engl J Med, 2009, 361: 2483-4.
    [78] Sight for blind mice. Lab Anim (NY), 2007, 36: 8.
    [79] Atasoy D., Aponte Y., Su H. H., Sternson S. M.. A FLEX switch targets Channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. J Neurosci, 2008, 28: 7025-30.
    [80] Govaerts C., Blanpain C., Deupi X., Ballet S., Ballesteros J. A., Wodak S.J ., Vassart G., Pardo L., Parmentier M.. The TXP motif in the second transmembrane helix of CCR5. A structural determinant of chemokine-induced activation. J Biol Chem, 2001, 276: 13217-25.
    [81] Hong D. H., Pawlyk B. S., Adamian M., Sandberg M. A., Li T.. A single, abbreviated RPGR-ORF15 variant reconstitutes RPGR function in vivo. Invest Ophthalmol Vis Sci, 2005, 46: 435-41.
    [82] Bemelmans A. P., Kostic C., Crippa S. V., Hauswirth W. W., Lem J., Munier F. L., Seeliger M. W., Wenzel A., Arsenijevic Y.. Lentiviral gene transfer of RPE65 rescues survival and function of cones in a mouse model of Leber congenital amaurosis. PLoS Med, 2006, 3: 347.
    [83] Chen Y., Moiseyev G., Takahashi Y., Ma J. X.. RPE65 gene delivery restores isomerohydrolase activity and prevents early cone loss in Rpe65-/- mice. Invest Ophthalmol Vis Sci, 2006, 47: 1177-84.
    [84] Cayouette M., Behn D., Sendtner M., Lachapelle P., Gravel C.. Intraoculargene transfer of ciliary neurotrophic factor prevents death and increases responsiveness of rod photoreceptors in the retinal degeneration slow mouse. J Neurosci, 1998, 18: 9282-93.
    [85] Zhang Y., Schlachetzki F., Li J. Y., Boado R. J., Pardridge W. M.. Organ-specific gene expression in the rhesus monkey eye following intravenous non-viral gene transfer. Mol Vis, 2003, 9: 465-72.
    [86]张作明,顾永昊,郭群,龙潭,李莉,石力,侯豹可.小鼠与大鼠视网膜电图和闪光视觉诱发电位记录标准化方案建议.眼科新进展, 2004, 24(2): 81-3.
    [87] Nakanishi S., Kuramoto T., Serikawa T.. Simple Genotyping Method Using Ampdirect? Plus and FTA? Technologies: Application to the Identification of Transgenic Animals and Their Routine Genetic Monitoring. Lab Anim Res, 2009, 25(1): 75-8.
    [88]http://www.ncbi.nlm.nih.gov/projects/mapview/maps.cgi?TAXID=10116&CHR=X&MAPS=shr%2Cmcw%2Csts-r&QSTR=DXRat21&QUERY=uid%2814695852%29&BEG=23M&END=&thmb=on.
    [89] Bonilha V. L., Hollyfield J. G., Grover S., Fishman G. A.. Abnormal distribution of red/green cone opsins in a patient with an autosomal dominant cone dystrophy. Ophthalmic Genet, 2005, 26: 69-76.
    [90] Jiang L., Katz B. J., Yang Z., Zhao Y., Faulkner N., Hu J., Baird J., Baehr W., Creel D. J., Zhang K.. Autosomal dominant cone dystrophy caused by a novel mutation in the GCAP1 gene (GUCA1A). Molecular Vision, 2005, 11: 143-51.
    [91] Downes S. M., Holder G. E., Fitzke F. W., Payne A. M., Warren M. J., Bhattacharya S. S., Bird A. C.. Autosomal Dominant Cone and Cone-Rod Dystrophy With Mutations in the Guanylate Cyclase Activator 1AGene-Encoding Guanylate Cyclase Activating Protein-1. Ophthalmic molecular genetics, 2001, 119: 96-105.
    [92]http://www.ncbi.nlm.nih.gov/projects/mapview/maps.cgi?TAXID=10116&CHR=X&MAPS=ensgenes,naMm,rnaHs,rna,genes[130000000.00%3A160118600.00]-r&QSTR=Opn1mw&QUERY=uid(725441,1980566,1741040,16235278,15910784)&CMD=DN.
    [93]http://www.ncbi.nlm.nih.gov/projects/mapview/maps.cgi?TAXID=10116&CHR=X&MAPS=shr%2Cmcw%2Csts-r&QSTR=DXRat103&QUERY=uid%2814698017%29&BEG=143%2C200K&END=153%2C200K&thmb=on.
    [94] Kuramoto T., Kuwamura M., Serikawa T.. Rat neurological mutations cerebellar vermis defect and hobble are caused by mutations in the netrin-1 receptor gene Unc5h3. Molecular Brain Research, 2004, 122: 103-8.
    [95]张书永,冯美文,周兴涛.内含子对真核生物基因表达的影响.科技经济市场, 2009, 9: 11.
    [96] Corbo J. C., Cepko C. L.. A Hybrid Photoreceptor Expressing Both Rod and Cone Genes in a Mouse Model of Enhanced S-Cone Syndrome. Genetics, 2005, 1: 140-53.
    [97] Smallwood P. M., Olveczky B. P., Williams G. L., Jacobs G. H., Reese B. E., Meister M., Nathans J.. Genetically engineered mice with an additional class of cone photoreceptors: implications for the evolution of color vision. Proc Natl Acad Sci USA, 2003, 100(20): 11706-11.
    [98] Liu H., Etter P., Hayes S., Jones I., Nelson B., Hartman B., Forrest D., Reh T. A.. NeuroD1 Regulates Expression of Thyroid Hormonev Receptor 2 and Cone Opsins in the Developing Mouse Retina. The Journal of Neuroscience, 2008, 28: 749-56.
    [99] Ng L., Hurley J. B., Dierks B., Srinivas M., SaltóC., Vennstr?m B., Reh T. A., Forrest D.. A thyroid hormone receptor that is required for the development of green cone photoreceptors. Nature genetics, 2001, 27: 94-8.
    [100] Srinivas M., Ng L., Liu H., Jia L., Forrest D.. Activation of the blue opsin gene in cone photoreceptor development by retinoid-related orphan receptorβ. Molecular Endocrinology, 2006, 20: 1728-41.
    [101] Sun H., Macke J. P., Nathans J.. Mechanisms of spectral tuning in the mouse green cone pigment. Proc Natl Acad Sci USA, 1997, 94: 8860-65.
    [102] Yokoyama S., Radlwimmer F. B.. The Molecular Genetics and Evolution of Red and Green Color Vision in Vertebrates. Genetics, 2001, 158: 1697-710.
    [103] Wikler K. C., Rakic P.. An array of early differentiating cones precedes the emergence of the photoreceptor mosaic in the fetal monkey retina. Proc Nati Acad Sci USA, 1994, 91: 6534-8.
    [104] Roberts M. R., Hendrickson A., McGuire C. R., Reh T. A.. Retinoid X receptor is necessary to establish the S-opsin gradient in cone photoreceptors of the developing mouse retina. Invest Ophthalmol Vis Sci, 2005, 46: 2897-904.
    [105]马建洲,贺翔鸽,谢琳,许建涛,孙亚丽,王永堂,龙在云,李应玉.慢性高眼压青光眼动物模型的构建和鉴定.国际眼科杂志, 2007, 7: 951-5.
    [106] Peachey N. S., Ball S. L.. Electrophysiological analysis of visual function in mutant mice. Doc Ophthalmol, 2003, 107: 13-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700