植入电极记录豚鼠图形视觉诱发电位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
视觉电生理检查作为一种客观、无损伤的视觉功能评定方法,尤其适用于婴幼儿、老年人、智力低下、不合作者或者伪盲者。视觉诱发电位是其中最常用的方法之一。视觉诱发电位(visual evoked potential, VEP )是大脑皮层对视觉刺激诱发的、采用脑电图技术在头皮记录的一簇电生理信号。临床上常用的有图形视觉诱发电位(pattern VEP, P-VEP)和闪光诱发电位(Flash VEP, F-VEP)。P-VEP与视网膜对图像的识别密切相关,即与人的视力密切相关,且图形比较稳定,因此被广泛用于临床,比如视神经炎、黄斑部疾病、青光眼的诊断以及司法鉴定等。F-VEP个体间变异较大,多用于P-VEP无法记录或记录不到的情况。但是动物P-VEP信号的振幅很小,极易受到心电、肌电的干扰而难于记录。因此,探索新的记录方法,提高对P-VEP记录的稳定性,减少干扰性,对推广该技术在动物实验中的应用有着重要的意义。
     豚鼠属啮齿类动物,是晚成熟动物,视网膜上视锥细胞多于一般啮齿动物(cone rich) ,与人类有着较为相似的视锥、视杆细胞比例。豚鼠的晶状体和视网膜在解剖结构、生物构成及生理功能方面都与人类及灵长类动物有相似之处,因此豚鼠可以作为一个较好的视觉研究模型动物。同时,豚鼠也是比较广泛用于各个学科基础研究的实验动物,但是有关豚鼠在视觉电生理研究的报道还比较少,因此完善豚鼠视觉功能的检查和评价,对以后的研究工作准备更加充实的资料有着重要的意义。
     激光具有单色性、相干性和方向性而有别于普通光源,自一问世,即被广泛应用于各个领域,包括军事领域和航空航天领域。激光光能在时间与空间上高度集中,不同能量的激光对机体的影响是不同的,高能量激光对生物体损伤反应受多方面因素影响,诸如功率、波长、照射时间和光斑等。但如何评价激光或其他因子对动物视觉功能,特别是形觉功能的影响仍是当前视觉科学中的一个难题。本文首先探索了豚鼠P-VEP的记录方法,即与豚鼠形觉相关的功能,再探索该方法在对激光损伤评定中的应用效果。
     本实验主要分为两大方面:一,建立植入电极记录豚鼠图形视觉诱发电位的方法。二,基于此方法,观察680nm激光对P-VEP的影响。
     材料与方法
     由第四军医大学动物实验中心提供的成年杂色雄性豚鼠,外眼和检眼镜检查屈光间质清晰;麻醉药物:速眠新,军事医学科学院军事兽医研究所,批号:(2004)005013。所有麻醉药物均有腹腔注射给药(intraperitoneal injection,ip)。棉拭子测试角膜反射消失,认为达到全麻醉状态。速眠新麻醉后进行颅骨植入电极操作,在豚鼠头顶正中线分别植入3根不锈钢螺钉作为记录电极、地极和参考电极。3天后,将清醒豚鼠固定在自制的多功能头身一体化固定台上,Ag-AgCl连接电极和RETI-port视觉电生理学记录系统( Roland Consult ,德国) ,ELSA彩色显示器(Sony),刺激方式为棋盘格(checkerboard)。记录不同条件下豚鼠的P-VEP。
     半导体激光器(北方电子设备研究所研制),波长680nm,脉宽10μs,频率20Hz,平均功率1.4mW。激光器距离豚鼠眼睛1.3m。激光束与豚鼠右眼角度为45度作用于豚鼠眼睛30s,并进行P-VEP测定。实验中我们改变激光的能量,分别设置为0.3、0.5、0.8、1.1和1.4mW,观察对豚鼠视力的影响,豚鼠视力我们以当空间频率减小至某一方格无可辨认的P波出现时,其上一级方格即为能诱发出VEP的最小方格,即豚鼠的视力,用cpd来表示。每次测定根据能量大小不同间隔时间10分钟至5分钟。
     结果
     1.植入电极记录豚鼠清醒状态下P-VEP的特点
     在豚鼠清醒状态下可以记录到稳定的P-VEP波形,呈NPN形状。空间频率对P-VEP波形有明显的影响,随着空间频率的增加,N1、P1的潜伏期都有不同程度的延长,当空间频率大于0.5cpd时,潜伏期延长明显;随着空间频率的增加振幅降低。在不同对比度(97%、60%、30%)下,P1波的振幅随着对比度的增加而提高,且任意两个对比度之间P波振幅的差异均有统计学意义(P<0.05)。在97%和60%的对比度下潜伏期差异无统计学意义(P>0.05)。不同颜色图形对P-VEP波形也有一定的影响,黑白和红绿引出的潜伏期和振幅比较明显,与红蓝和蓝绿比较,差异均有统计学意义(P<0.01);当通频带为5-50Hz时,引出的波形受干扰比较小,波形比较稳定。麻醉对P-VEP记录影响较大,速眠新麻醉条件下记录不到明显的P-VEP波形,但对F-VEP记录影响不大。
     2.680nm激光对豚鼠P-VEP的影响
     激光刺激对P-VEP影响较大,当刺激空间频率为0.1和0.3cpd时,与对照组比较,实验组潜伏期延长(P<0.05),其余空间频率差异不大。当空间频率大于0.05cpd时,P波振幅降低明显,与对照组比较差异有统计学意义(P<0.05)。激光对视力影响比较大,随着激光能量的增加,视力明显下降。
     结论
     1.建立了一种植入式电极记录清醒豚鼠P-VEP方法;豚鼠P-VEP波形记录与刺激和记录参数密切相关,在高对比度(97%)、窄通带(5-50Hz)、适当空间频率(小于0.5cpd)下可以记录稳定的P-VEP波形。
     2.豚鼠P-VEP波形明显受到680nm激光的影响,表现为P波潜伏期明显延长和振幅的降低。激光对豚鼠的视力影响大,随着激光能量的增加,视力下降明显。但是低剂量短时间680nm激光对豚鼠视网膜是否有损伤还有待于深入研究。
Examination of visual electro-physiology is an objective and noninvade evaluation method of vision function, especially for infants, aged people, mental retardation, loners and simulated blindness. Visual evoked potential is one method of the frequently used in clinical examinations. Visual evoked potential is a bunch of electrical signals from cerebral cortex which react to visual stimulus. The type commonly used in clinic consists of P-VEP and F-VEP. P-VEP correlates closely with pictorial recognition of retina, and visual acuity. And the P-VEP form is stable, so the clinical application of P-VEP is commonly in diagnosis of visual pathway diseases, such as diagnosis of optic neuritis, macula flava diseases, glaucomatous and judicial identification. F-VEP is generally used in the condition that P-VEP can not record or record incompletely because of the great variation of F-VEP. The amplitude of P-VEP is very small and it is easily interfered by electrocardio and myoelectric. So it is very important to explore a new P-VEP recording method for increase P-VEP stability and decrease interference in order to study P-VEP deeply, especially for animal experiment.
     Guinea pigs belong to rodents, and they are altricial animals. They have much more cones in retina than other rodents and they have semblable cone and rod proportion with mankind. The anatomic structure, organism construction and physiological function of crystalline lens and retina of guinea pigs are similar to mankind and primate. So guinea pigs are good models for vision research. Meanwhile guinea pigs are widespreadly used in basic research of various subjects. So they play influential role in research. But there are few reports of guinea pigs’electrophysiology research. It is very important to study the examination and evaluation of vision function of guinea pigs. And what we have done is important for future research work of guinea pig or P-VEP.
     Laser is different to common light source because of monochromaticity, coherence and directionality. When it comes out, it is utilized in various scopes, including military and aerospace territory. The energy of laser is highly concentrated in time and space. Different energy of laser has different effect on body. High-energy laser is detrimental to body and its bad effects on body are related to power, wave length, exposure time and light spot. But how to evaluate animal visual function especially form sense function of animals in the condition of laser or other factors remains a tough problem in the vision science currently. We explore a recording method of P-VEP of guinea pig, which is correlated closely to vision form sense function of guinea pigs and then explore the application effect in the condition of 680nm laser .
     The experiment concludes two parts: 1, To establish a new method to record pattern visual evoked potential (P-VEP) of guinea pigs. 2, To observe the effect of 680nm-laser on P-VEP.
     Methods and materials
     Random coloured mature male guinea pigs which had no opacity observed by ophthalmoscope were provided by animal experiment center of the Fourth Military Medical University. Anesthesia drugs: Sumianxin, which was made by military veterinary laboratory in military medical science academy in Changchun, code: (2004)005013. All guinea pigs were treated with anesthesia drugs and vehicled by intraperitoneal injection(ip). When cornea reflection vanished which was checked by cotton swab, the animals were considered getting in the anesthesia condition. After anesthesia, the guinea pigs ' scalp surface was exposed and three stainless screws were implanted as recording electrode, ground electrode and reference electrode. 3 days later, the awaked guinea pig was fixed in multifunctional head-body apparatus. Stainless screws and RETI-port system (Roland Consult, Germany) were connected with Ag-AgCl electrode to record P-VEP in different conditions. Semiconductor laser, made in north electronic equipment research institute, was used. And its wavelength is 680nm, width was 10μs, frequency was 20Hz, mean power was 1.4mW. The distance between laser and eyes of guinea pigs was 1.3 meters. The angle between laser beam and right eye was 45 degrees, and the time was 30s. We recorded PVEP simultaneously. We changed the laser energy to 0.3, 0.5, 0.8, 1.1 and 1.4mW in the experiment and observed the effect on visual acuity of the guinea pig. Visual acuity of the guinea pig was defined as the smallest checkerboard at which P wave could just be indentified. We used cpd as its visual acuity. The span time between each animal experiment was 5 to 10mins according to the different energy.
     Results
     1.The characteristic of P-VEP in awaked guinea pigs
     We could record steady P-VEP, and the typical wave form was NPN. The spatial frequency had an evident influence on P-VEP. With the spatial frequency increased, implicit time of N1 and P1 was delayed, especially beyond 0.5cpd, and amplitude of P1 decreased, too. Oppositely, implicit time was shorten and amplitude was augmented with contrast increased. The difference of amplitude between either was significant (P<0.05). But difference of implicit time of P wave between 97% and 60% was not significant (P>0.05). The amplitudes of B-W and R-G were separately higher than R-B and B-G (P<0.01). P-VEP wave form was more stable in the bandpass of 5-50Hz than the other. P-VEP was not recorded in the condition of anaesthesia, and F-VEP was not influenced significantly in the condition of anaesthesia.
     2. The effect on P-VEP of 680nm laser
     The latency of P wave of experiment group was increased significantly (P<0.05) compared with control group when the spatial frequency was in 0.1and 0.3cpd, but nonsignificant in other spatial frequencies. The amplitude of P wave of experiment group was decreased significantly (P<0.05) compared with control group when the spatial frequency was beyond 0.5cpd. 680-nm laser has an obvious effect on visual acuity. The visual acuity decreased quickly with the laser energy increased.
     Conclusions
     1. Established a method of recording P-VEP of awaked guinea pigs with implanted electrode. P-VEP has an close correlation with recording parameters, and can be stably recorded in the condition of high contrast(97%) ,narrow low bandpass(5-50Hz) and proper spatial frequency(below 0.5 cpd) .
     2. The 680nm-laser has an evident effect on P-VEP. The latency of P wave is delayed and amplitude of P wave is decreased. The effect on visual acuity is also significant. Visual acuity is decreased quickly with the energy increasing. But whether the low-energy 680nm-laser has damage to body or not is worth researching deeply.
引文
[1]夏文涛,朱广友.几种视觉诱发电位技术推断正常成人远视力的比较.法医学杂志, 2007;23(4):254-257.
    [2] Taylor MJ, McCulloch DL. Visual evoked potentials in infants and children. J Clin Neurophysiol, 1992;9(3): 357-372.
    [3] Shigeto H, Tobimatsu S, Yamamoto T, Kobayashi T, Kato M. Visual evoked cortical magnetic responses to checkerboard pattern reversal stimulation :a study on the neural generators of N75,P100 and N145. J Neurol Science, 1998;156(2): 186-194.
    [4] Di Russo F, Pitzalis S, Spitoni G, Aprile T, Patria F, Spinelli D, Hillyard SA. Identification of the neural sources of the pattern-reversal VEP. Neuroimage, 2005; 24(3): 874-886.
    [5] McCulloch DL, Skarf B.Development of the human visual system:monocular and binocular pattern VEP latency.Invest Ophthalmol Vis Sci, 1991;32(8): 2372-2381.
    [6] Cobb WA, Morton HB, Ettlinger G. Cerebral Potentials evoked by Pattern Reversal and their Suppression in Visual Rivalry. Nature, 1967;216(5120): 1123-1125.
    [7]周鑫,张玲莉,饶广勋.视觉诱发电位技术与视力客观评估.国际眼科杂志, 2005; 5:135-138.
    [8] Halliday AM, McDonald WI, Mushin J. Delayed visual evoked response in optic neuritis. Lancet, 1972; 1(7758): 982-985.
    [9]杨小丽,张皙.麻醉药对豚鼠视诱发电位的影响.眼外伤职业眼底病杂志, 2003; 25(2): 82-83.
    [10] Hughes JR, Kuruvilla A, Fino JJ. Topographic analysis of visual evoked potentials from flash and pattern reversal stimili: evidence for "travelling waves". Brain Topogr, 1992; 4(3): 215-228.
    [11] Shimoyama I, Uemura K, Morita Y, Miyanaga F, Kuroda R, Nakamura T. Visual evoked potentials to a faint light: signal propagation analyzed with peak latency and topographic mapping. Brain Topogr, 1996; 8(3): 245-247.
    [12] Kimotsuki T, Yasuda M, Tamahara S, Matsuki N, Ono K. Topographic analysis of flash visual evoked potentials in dogs. J Vet Med Sci, 2005; 67(9): 869-875.
    [13]杨雄里主编.视觉的神经机制.上海,上海科学技术出版社. 1996. 50-84.
    [14]谷万章.视觉电生理(4).航空航天医药, 2000; 11(3): 183-187.
    [15]李钟睿,董丽,张风云.图形视觉诱发电位和图形视网膜电图在黄斑疾病中应用.航空航天医药, 2004; 15(1): 25.
    [16] Sokol S. Visual evoked potential theory techniques and clinical applications. Survey Ophthal, 1976; 21(1): 18-44.
    [17] Sherman J. Simultaneous pattern-reversal electroretinograms and visual evoked potentials in diseases of the macula and optic nerve. Ann N Y Acad Sci, 1982;388: 214-226.
    [18] Watanabe M, Inukai N, Fukuda Y. Survival of retinal ganglion cells after transection of the optic in adult cats:a quantitative study within two weeks. Visual Neurosci, 2001;18(1): 137-145.
    [19] Song HS, Ku WC, Yeh SF. Clinical application of simultaneous pattern VEP and pattern ERG recording. Changgeng Yi Xue Za Zhi, 1995;18(2): 133-139.
    [20] Bodis-Wollner I, Brannan JR, Nicoll J, Frkovic S, Mylin LH. A short latency cortical component of the foval VEP is revealed by hemifield stimulation. Electroencephalogr Clin Neurophysiology, 1992; 84(3): 201-208.
    [21] Armington JC, Corwin TR, Marsetta R. Simultaneously recorded retinal and corticalresponses to patterned stimuli. J Opt Soc Am, 1971; 61(11): 1514-1521.
    [22] Parker DM, Salzen EA. The spatial sensitivity of early and late waves within the human visual evoked response. Perception,1977;6(1): 85-95.
    [23] Brigell M, Kaufman DI, Bobak P, Beydoun A. The pattern visual evoked potential. A multicenter study using standardized techniques. Doc Ophthalmol, 1994;86(1)65-79.
    [24]李生彦,周晓蓉. PRVEP P100潜伏时、空间频率阈值与视敏度关系法医学探讨.中国法医学杂志, 2006; 21(1): 32-35.
    [25]开远忠,陈林义.正常人周边区与中央区视觉诱发电位的变化规律.眼科新进展, 2006; 26(8): 611-613.
    [26] Arden GB, Vaegan. Electroretinograms evoked in man by local uniform or pattern stimulation. J Physiol, 1983; 341: 85-104.
    [27]杨继红,李西玲.空间频率对图形视觉诱发电位的影响.眼科新进展, 1992; 12(4): 3-4.
    [28]张淑倩,叶玉芳,吴晶,孙吉林,吴杰,李素敏,贾秀川,赵华东,刘连祥.图形刺激的时间频率对视觉诱发磁场的影响.河北医药, 2005; 27(10): 773-774.
    [29]何蛟,沈汝才.正常人与弱视VEP时间频率与振幅关系的研究.眼科新进展, 1989; 9(3): 8-10.
    [30] Halliday AM, McDonald WI, Mushin J. Delayed pattern evokedresponses in optic neuritis in relation to visual acuity. Trans Ophthalmol Soc U K, 1973; 93(0): 315-324.
    [31] Cant BR, Hume AL, Shaw NA. Effects of luminance on the pattern evoked potential in multiple sclerosis. Electroencephalogr Clin Neurophysiol, 1978; 45(4): 496-504.
    [32] McKerral M, Lachapelle P, Benoit J. Comparative effects of luminance and scatter on the pattern visual evoked potential and eye-hand reaction time. Doc Ophthalmol, 1992; 79(2): 177-185.
    [33] Campbell FW, Maffei L. Electrophysiologieal evidence for the existence of orientation and size detectors in the human visual system. J Physiol, 1970; 207(3): 635-652.
    [34] Wright MJ, Johnston A. The effects of contrast and length ofgratings on the visual evoked potential. Vision Res, 1982; 22(11): 1389-1399.
    [35] Regan D. Some early uses of evoked brain responses in investigations of human visual function. Vision Res, 2008; doi:10.1016/j: 1-19.
    [36] Brigell M, Bach M, Barber C, Moskowitz A, Robson J; Calibration Standard Committee of the International Society for Clinical Electrophysiology of Vision. Guidelines for calibration of stimulus and recording parameters used in clinical electrophysiology of vision. Doc Ophthalmol, 2003; 107(2): 185-193.
    [37]张忠志,夏德昭.图型刺激条件对视神经萎缩和视神经炎时视觉诱发电位潜伏期的影响.中国实用眼科杂志, 2003; 21(8): 593-595.
    [38] Katsumi O, Tetsuka S, Mehta MC, Tetsuka H, Hirose T. Effect of hemifield stimulation on simultaneous steady-state Patten reversal electroretinogram and visual evoked response. Ophthalmic Researeh, 1993;25(2): 119-127.
    [39] Hoshiyama M, Kakigi R. Effects of attention on pattern-reversal visual evoked potentials: foveal field stimulation versus peripheral field stimulation. Brain Topogr, 2001; 13(4): 293-298.
    [40] Baseler HA, Sutter EE.M and P components of the VEP and their visual field distribution. Vision Res, 1997; 37(6): 675-690.
    [41] Klistorner A, Graham SL. Objective Perimetry in glaucoma. Ophthalmol, 2000; 107: 2283-2299.
    [42] Yu MZ, Brown B.Variation of topographic visually evoked potentials across the visual field. Ophthalmo1 Physiol Opt, 1997; 17(1): 25-31.
    [43] Hood DC, Zhang X, Greenstein VC, Kangovi S, Odel JG, Liebmann JM, Ritch R. An interocular comparison of the multifocal VEP:a possible technique for detecting local damage to the optic nerve. Invest Ophthalmol Vis Sci, 2000; 41(6): 1580-1587.
    [44] Morrone MC, Fiorentini A, Burr DC.Development of the temporal properties of visual evoked potentials to luminance and color contrast in infants. Vision Res, 1996; 36(19): 3134-3155.
    [45] Vigliano P, Boffi P, Bonassi E, Gandione M, Marotta C, RainòE, Russo R, Rigardetto R. Neurophysiologic exploration:a reliable tool in HIV-1 encephalopathy diagnosis in children. Panminerva Med, 2000; 42(4): 267-272.
    [46]李莉,龙潭,郭群,赵广宇,张作明.图形视觉诱发电位最佳刺激模式的探讨.国际眼科杂志,2003;3(2): 41-42.
    [47] van der Marel H, Dagnelie G, Spekreijse H. Pattern evoked potentials in awake rhesus monkeys. Invest Ophthalmol Vis Sci, 1981; 21(3): 457-466.
    [48] Yin ZQ, Li CY, Pei X, Vaegan, Fang QX.Development of pattern ERG and pattern VEP spatial resolution in Kittens with unilateral esotropia.Invest Ophthalmol Vis Sci, 1994;35(2): 626-634. [49]刘虎,袁孝如.急性高眼压家兔图形视网膜电流图、视觉诱发电位的实验研究.南京医科大学学报,2000;20(4):266-268. [50] Zhang Z, Li S, Wu DZ.Development of P-VEP in infants and children. Eye Sci, 1993; 9(1): 23-30. [51] Crognale MA, Kelly JP, Chang S, Weiss AH, Teller DY. Development of pattern visual evoked potentials:longitudinal measurements in human infants. Optom Vis Sci, 1997;74(10): 808-815. [52] LippéS, Roy MS, Perchet C, Lassonde M. Electrophysiological markers of visuocortical development. Cereb Cortex, 2007;17(1): 100-107. [53] Brecelj J, Strucl M, Zidar I, Tekavcic-Pompe M. Pattern ERG and VEP maturation in schoolchildren. Clin Neurophysiol, 2002;113(11): 1764-1770. [54] Brecelj J. From immature to mature pattern ERG and VEP. Doc Ophthalmol, 2003;107(3): 215–224. [55]张忠志,吴景天.视觉诱发电位潜时与年龄:反抛物线相关.中国实用眼科杂志,1995;13(4): 203-207. [56] Tobimatsu S .Aging and pattern visual evoked potentials. Optom Vis Sci, 1995;72(3): 192-197. [57] Snyder EW, Dustman RE, Shearer DE. Pattern evoked potential amplitudes: life span changes. Electroencephalogr Clin Neurophysiol, 1981;52(5): 429-434. [58] Allison T, Hume AL, Wood CC, Goff WR. Developmental and aging changes in somatosensory, auditory and visual evoked potentials. Electroencephalogr Clin Neurophysiol, 1984;58(1): 14-24. [59] Adachi-Usami E, Hosoda L, Toyonaga N. Effects of aging on thetemporal frequency characteristics determined by pattern visually evoked cortical potentials. Doc Ophthalmol, 1988;69(2): 139-144.
    [60] Aso K, Watanabe K, Negoro T, Takaetsu E, Furune S, Takahashi I, Yamamoto N, Nomura K. Developmental changes of pattern reversal visual evoked potentials. Brain Dev, 1988;10(3): 154-159.
    [61] Mullis RJ, Holcomb PJ, Diner BC, Dykman RA. The effect of aging on the P3 component of the visual event related potential. Electroencephalogr Clin Neurophysiol, 1985;62(2): 141-149.
    [62] Tobimatsu S, Kurita-Tashima S, Nakayama-Hiromatsu M, Akazawa K, Kato M. Age-related changes in pattern visual evoked potentials:differential effects of luminance, contrast and check size. Electroencephalogr Clin Neurophysiol, 1993;88(1): 12-19.
    [63] Celesia GG, Kaufman D, Cone S. Effects of age and sex on pattern electroretinograms and visual evoked potentials. Electroencephalogr Clin Neurophysiol, 1987;68(3): 161-171.
    [64] Pitt MC, Daldry SJ. The use of weighted quadratic regression for the study of latencies of the P100 component of the visual evoked potential. Electroencephalogr Clin Neurophysiol, 1988; 71(2): 150-152.
    [65] Bartel PR, Vos A. Induced refractive errors and pattern electroretinograms and pattern visual evoked potentials: implications for clinical assessments. Electroencephalogr Clin Neurophysiol, 1994;92(1): 78-81.
    [66]郑传斐,刘兴本,刘技辉,徐晓明.屈光不正对P-VEP的影响及法医学意义.中国法医学杂志,2004;19(1): 33-35.
    [67] Ohn YH, Katsumi O, Matsui Y, Tetsuka H, Hirose T. Snellen visual acuity versus pattern reversal visual-evoked response acuity in clinical applications. Ophthalmic Res, 1994;26(4): 240-252.
    [68] Wilcox LM Jr, Sokol S. Changes in the binocular fixation pattern and the visually evoked potential in the treatment of esotropia with amblyopia. Ophthalmology, 1980;87(12): 1273-1281.
    [69] Roorda A, Williams DR. The arrangement of the three cone classes in the living human eye. Nature, 1999;397(6719): 520-522.
    [70] Thompson DA, Drasdo N. Colour, contrast and the visual evoked potential. Ophthalmic physiol Opt, 1992;12(2): 225-228.
    [71] Tobimatsu S, Tomoda H, Kato M. Parvocellular and magnocellular contributions to visual evoked potentials in humans:stimulation with chromatic and achromatic graftings and apparent motion. J Nenrol Sci, 1995;134(1-2): 73-82.
    [72] Izma?lov ChA, Isa?chev SA, Korshunova SG, Sokolov EN. The specific nature of the color and brighness components of the human visual evoked potential. Zh Vyssh Nerv Deiat Im IP Pavlova, 1998; 48(5): 777-787.
    [73]朱德海,庞琳.先天性色觉异常颜色视觉诱发电位的初步研究.中国斜视与小儿眼科杂志,2003;11(2): 49-53.
    [74] Wiedemayer H, Fauser B, Armbruster W, Gasser T, Stolke D. Visual evoked potentials for intraoperative neurophysiologic monitoring using total intravenous anesthesia. J Neurosurg Anesthesiol,2003;15(1): 19-24.
    [75] Wiedemayer H, Fauser B, Sandalcioglu IE, Armbruster W, Stolke D. Observations on intraoperative monitoring of visual pathways using steady-state visual evoked potentials. Eur J Anaesthesiol, 2004;21(6): 429-433.
    [76]侯豹可,张作明,顾永昊,郭群,李莉.不同麻醉药物对大鼠视觉电生理的影响.第四军医大学学报,2003;24(12): 1104-1107.
    [77] Komaromy AM, Brooks DE, Kallberg ME, Dawson WW, Sapp HL Jr,Sherwood MB, Lambrou GN, Percicot CL. Passive attenuation of cortical pattern evoked potentials with increasing body weight in young male rhesus macaques. Doc Ophthalmol,2003;106(3): 231-238.
    [78]罗光伟,龙时先.临床视觉电生理标准化进展.眼科学报,2007; 23(1): 1-8.
    [79] Odom JV, Bach M, Barber C, Brigell M, Marmor MF, Tormene AP, Holder GE, Vaegan. Visual evoked potentials standard (2004). Doc Ophthalmol, 2004;108(2): 115-123.
    [80] Tobimatsu S. Visual evoked potentials. In: American Association of Electrodiagnostic Medicine, course E: evoked potentials, 2003;27-35.
    [81] Aminoff MJ, Goodin DS. Visual evoked potentials. J Clin Neurophysiol, 1994;11(5): 493-499.
    [82] Celesia GG, Kaufman D. Pattern ERGs and visual evoked potentials in maculopathies and optic nerve diseases. Invest Ophthalmol Vis Sci, 1985; 26(5): 726-735.
    [83] Paty DW, Oger JJ, Kastrukoff LF, Hashimoto SA, Hooge JP, Eisen AA, Eisen KA, Purves SJ, Low MD, Brandejs V, et al. MRI in the diagnosis of MS:A prospective study with comparison of clinical evaluation, evoked potentials, oligoclonal banding and CT. Neurology, 1988;38(2): 180-185.
    [84] Celesia GG, Kaufman DI, Brigell M, Toleikis S, Kokinakis D, Lorance R, Lizano B. Optic neuritis: a prospective study. Neurology, 1990; 40(6): 919-923.
    [85] Kakisu Y, Adachi-Usami E, Fujimoto N. Pattern visually evoked cortical potential and magnetic resonance imaging in optic neuritis. J Clin Neuro-Ophthalmol, 1991; 11(3): 201-212.
    [86]张选琴.视觉诱发电位检测对视神经炎的诊断价值.临床神经电生理学杂志, 2008;17(4): 247-248.
    [87]周妍丽.急性球后视神经炎VEP检查的临床意义.国际眼科杂志, 2004;4(5): 949-950.
    [88]张忠志,吴景天,夏德昭.视神经萎缩和视神经炎时VEP潜时异常的比较.中国实用眼科杂志, 2003;21(7): 498-加5.
    [89] Thompson PD, Mastaglia FL, Carroll WM. Anterior ischaemic optic neuropathy.A correlative clinical and visual evoked potential study of 18 patients. J Neurol Neurosurg Psychiatry, 1986; 49(2): 128-135.
    [90]朱继志,袁莉莉. P-VEP的A/LT比值对球后视神经炎的诊断价值.中国实用眼科杂志,2004;22(12): 1019-1020.
    [91] Atilla H, Tekeli O, Ornek K, Batioglu F, Elhan AH, Eryilmaz T. Pattern electroretinography and visual evoked potentials in optic nerve diseases. J Clin Neurosci, 2006;13(1): 55-59.
    [92]王君婷,都友娟. VEP在急性球后视神经炎的早期诊断及预后评估中的应用价值.临床眼科杂志, 2008;16(4): 329-330.
    [93]王富彬,张丽君.图形VEP对视功能正常的多发性硬化症检测价值.临床眼科杂志, 2003;11(4): 347-348.
    [94]娄芳芳,崔毅,刘莹.视觉诱发电位在多发性硬化症中的应用价值.中国临床康复,2004;8(28): 6070-6075.
    [95]唐宗椿,王秦川,高英,李柱一.多发性硬化患者60例功能障碍特点及电生理、MRI分析.中国临床康复,2003;7(16): 2372.
    [96] Fuhr P, Kappos L. Evoked potentials for evaluation of multiple sclerosis. Clin Neurophysiol, 2001;112(12): 2185-2189.
    [97] Celesia GG, Brigell M, Gunnink R, Dang H. Spatial frequency evoked visuograms in multiple sclerosis. Neurology, 1992;42(5): 1067-1070.
    [98] Diem R TA, Bahr M. Decreased amplitudes in multiple sclerosis patients with normal visual acuity: a VEP study. J Clin Neurosci, 2003;10(1):67-70.
    [99] Safran AB, Landis T. Plasticity in the adult visual cortex: implications for the diagnosis of visual field defects and visual rehabilitation. Curr Opin Ophthalmol, 1996; 7(6): 53-64.
    [100] Binns KE, Salt TE. Developmental changes in NMDA receptor-mediated visual activity in the rat superior colliculus, and the effect of dark rearing. Exp Brain Res, 1998;120(3): 335-344.
    [101] Tu S, Butt CM, Pauly JR, Debski EA. Activity-dependent regulation of substance P expression and topographic map maintanance by a cholinergic pathway.J Neurosci,2000; 20(14): 5346–5357.
    [102] Gundogan FC, Demirkaya S, Sobaci G. Is Optical Coherence Tomography Really a New Biomarker Candidate in Multiple Sclerosis?—A Structural and Functional Evaluation. Invest Ophthalmol Vis Sci, 2007; 48(12): 5773-5781.
    [103] Turker H, Terzi M, Bayrak O, Cengiz N, Onar M, Us O. Visual evoked potentials in differential diagnosis of multiple sclerosis and neurobehcet's disease. Tohoku J Exp Med, 2008; 216(2): 109-116.
    [104] Aminoff MJ, Ochs AL. Pattern-onset visual evoked potentials in suspected multiple sclerosis. J Neurol Neurosurg Psychiatry, 1981;44(7): 608-614.
    [105] Riemslag FC, Spekreijse H, van Walbeek H. Pattern evoked potential diagnosis of multiple sclerosis: a comparison of various contrast stimuli. Adv Neurol, 1982;32: 417-426.
    [106]兰长骏,宋广瑶.正常人的象限图形视觉诱发电位.中华眼科杂志,1996;32(3):209-211.
    [107] Bodis-Wollner I, Brannan JR, Nicoll J, Frkovic S, Mylin LH. A shortlatency cortical component of the foveal VEP is revealed by hemifield stimulation. Electroencephalogr Clin Neurophysiol, 1992;84(3): 201-208.
    [108] Katsumi O, Tetsuka S, Mehta MC, Tetsuka H, Hirose T. Eeffet of hemifield stimulation on simultaneous steady state pattern reversal electretinogram and visual evoked response. Ophthalmic Res, 1993; 25(2): 119-227.
    [109] Hoshiyama M, Kakigi R. Effects of attention on pattern-reversal visual evoked potentials:fovea1 field stimulation versus peripheral field stimulation. Brain Topogr, 2001; 13(4): 293-298.
    [110] Bengtsson B. Evalution of VEP perimetry in normal subjects and glaucoma patients. Acta Ophthalmol Scand, 2002;80(6): 620-626.
    [111]梅军,易莲芳.视力客观检测方法的研究.临床眼科杂志, 1999; 7(2): 83-85.
    [112]王旭,于丽丽.应用PRVEP P100空间频率阈值客观评定视力的价值分析.中国法医学杂志,2007;22(3): 176-178.
    [113] Westheimer G. The spatial grain of the perifoveal visual field. Vision Res, 1982;22(1): 157-162.
    [114] Almoqbel F, Leat SJ, Irving E. The technique, validity and clinical use of the sweep VEP. Ophthalmic Physiol Opt, 2008; 28(5): 393-403.
    [115]樊云葳,李晓清,田桂芬.弱视儿童扫描视觉诱发电位视力与国际标准视力的比较.眼科,2008;17(4): 269-273.
    [116] Hashiba A, Tabuchi A, Matsuda E, Yamaguchi W. Visual acuity measured by pattern visual evoked potential. Nippon Ganka Gakkai Zasshi, 1997; 101(8): 644-647.
    [117] Nakamura A, Akio T, Matsuda E, Wakami Y. Pattern visual evoked potentials in malingering. J Neuroophthalmol, 2001;21(1): 42-45.
    [118] Nakamura A. Pattern visual evoked potentials visual acuity-the evaluationof visual acuity of less than 0.1. Nippon Ganka Gakkai Zasshi, 2000;104(9): 631-637.
    [119] Xu S, Meyer D, Yoser S, Mathews D, Elfervig JL. Pattern visual evoked potential in the diagnosis of fuctional vissual loss. Ophthalmology, 2001; 108(1): 76-81.
    [120] Gundogan FC, Sobaci G, Bayer A. Pattern visual evoked potentials in the assessment of visual acuity in malingering. Ophthalmology, 2007; 114(12): 2332-2337.
    [121] Steele M, Seiple WH, Carr RE, Klug R. The clinical utility of visual-evoked potential acuity testing. Am J Ophthal, 1989; 108(5): 572-577.
    [122] Sokol S, Hansen VC, Moskowitz A, Greenfield P, Towle VL. Evoked potential and preferential looking estimates of visual acuity in pediatric patients. Ophthalmology, 1983; 90(5): 552-562.
    [123] Shirao Y, Kawasaki K. Electrical response from diabetic retina. Prog Retin Eye Res, 1998;17(1): 59-76.
    [124]韩芳,阎明. P-VEP在早期糖尿病视网膜病变检测中的应用.中国实用眼科杂志,1999;17(12): 744-745.
    [125]饶亚平,蒋克春,彭琦,邹涓,庞春梅,王爱萍.视觉诱发电位在糖尿病视网膜病变早期诊断中的价值.江苏医药, 2008;34(2): 190-191.
    [126]黄仲委,余杨桂.糖尿病性视网膜病变的图形视觉诱发电位.眼视光学杂志, 2001;3(3): 169-171.
    [127]姚宜,刘春,朱蓓菁,夏颖,韩丽荣,夏风华.不同时期糖尿病视网膜病变患者视网膜电图、视觉诱发电位的变化分析.临床眼科杂志,2007; 15(6): 548-550.
    [128] Ozkaya YG, A? ar A, Hacio? lu G, Yargi?o? lu P. Exercise improves visualdeficits tested by visual evoked potentials in streptozotocin-induced diabetic rats. Tohoku J Exp Med, 2007;213(4): 313-321.
    [129] Levi DM, Manny RE. The pathophysiology of amblyopia: electrophysiological studies. Ann NY Acad Sci, 1982;388: 243-263.
    [130] KubováZ, Kuba M, Juran J, Blakemore C. Is the motion system relatively spared in amblyopia? Evidence from cortical evoked responses. Vision Res, 1996;36(1): 181-190.
    [131] Wright KW, Eriksen KJ, Shors TJ. Detection of amblyopia with VEP during chloral hydrate sedation. J Pediatr Ophthalmol Strabismus, 1987;24(4): 170-175.
    [132] Henc-Petrinovi? L, Deban N, Gabri? N, Petrinovi? J. Prognostic value of visual evoked responses in childhood amblyopia. Eur J Ophthalmol, 1993;3(3): 114-120.
    [133]曹春林,田农,潘丽娟.正常人与弱视患者图形视诱发电位的比较.江苏医药, 2007;33(3): 27-28.
    [134]沈星华,陈辉,于靖,蓝小川.波前像差检查在弱视儿童屈光检测中的应用.江苏医药, 2005;31(3): 179-181.
    [135]孙志河.弱视眼VEP异常发生率的研究.大连医科大学学报,2005; 27(4): 293-295.
    [136] Hansen E. The Color Receptor in Amblyopia investigated by specific Quantitative Perimetry. Acta Ophthalmol, 1979;57(4): 612-622.
    [137]王静波,陈美荣,郝永龙. 226例弱视儿童彩色图形视觉诱发电位的研究.中医研究,2006; 19(9): 28-31.
    [138]阴正勤,宋广瑶.儿童弱视的图形视觉诱发电位分析.中华眼科杂志,1988;24(5): 268-27l.
    [139]滑会兰,王超英.视觉诱发电位在斜视、弱视中的应用现状.华北国防医药,2003;15(5): 321-324.
    [140]张作明,顾永昊,郭群,龙潭,李莉,石力,侯豹可.小鼠与大鼠视网膜电图和闪光视觉诱发电位记录标准化方案建议.眼科新进展,2004;24(2): 81-83.
    [141] Over R, Moore D. Spatial acuity of the chicken. Brain Res, 1981;211(2): 424-426.
    [142] Demello LR, Foster TM, Temple W. Discriminative performance of the domestic hen in a visual acuity task. J Exp Anal Behav, 1992;58(1): 147-157.
    [143] Jarvis JR, Abeyesinghe SM, McMahon CE, Wathes CM. Measuring and modelling the spatial contrast sensitivity of the chicken(Gallus g.domesticus). Vision Res, 2009; doi:10.1016/j.visres(2009.02.019).
    [144] Gianfranceschi L, Fiorentini A, Maffei L. Behavioural visual acuity of wild type and bcl2 transgenic mouse. Vision Res, 1999;39(3): 569–574.
    [145] Prusky GT, West PW, Douglas RM. Behavioral assessment of visual acuity in mice and rats. Vision Res, 2000;40(16): 2201–2209.
    [146] Prusky GT, Harker KT, Douglas RM, Whishaw IQ. Variation in visual acuity within pigmented, and between pigmented and albino rat strains. Behav Brain Res, 2002;136(2): 339-348.
    [147] Schmid KL, Wildsoet CF. Assessment of visual acuity and contrast sensitivity in the chick using an optokinetic nystagmus paradigm. Vision Res, 1998;38(17): 2629–2634.
    [148] Padmos P, Haaijman JJ, Spekreuse H. Visually evoked cortical potentials to patterned stimuli in monkey and man. Electroencephalogr Clin Neurophysiol, 1973;35(2): 153-163.
    [149]郝光荣主编.实验动物学.第2版.上海:第二军医大学出版社. 2002,119-123.
    [150]马飞,余继锋,郭群,李莉,张作明.正常豚鼠图形视网膜电图的记录方法和波形特点.眼科新进展,2005;25(6): 532-534.
    [151]余继锋,马飞,龙潭,李莉,郭群,张作明.正常豚鼠视网膜电图的特点及记录方法.眼科新进展, 2005;25(6): 535-537.
    [152]郭群,谢蓓,顾永昊,安晶,夏峰,张作明.植入电极法记录大鼠视觉诱发电位.国际眼科杂志,2007;12(6): 1530-1534.
    [153] Demirtas S, Goksoy C. Dynamics of audio-visual interactions in the guinea pig brain: an electrophysiological study. Neuro Report, 2003; 14(16): 2061-2065.
    [154] Goksoy C, Demirtas S, Ates K. Effects of continuous conditioning noise and light on the auditory and visual evoked potentials of the guinea pig. Brain Res, 2005;1061(1): 42-49.
    [155] Komaromy AM, Brooks DE, Kallberg ME, Dawson WW, Sapp HL Jr, Sherwood MB, Lambrou GN, Percicot CL. Passive attenuation of cortical pattern evoked potentials with increasing body weight in young male rhesus macaques. Doc Ophthalmol, 2003;106(3): 231-238.
    [156] Brooks DE, K?llberg ME, Cannon RL, Komàromy AM, Ollivier FJ, Malakhova OE, Dawson WW, Sherwood MB, Kuekuerichkina EE, Lambrou GN. Functional and structural analysis of the visual system in the Rhesus monkey model of optic nerve head ischemia. Invest Ophthalmol Vis Sci, 2004;45(6): 1830-1840.
    [157] Racine J, Joly S, Rufiange M, Rosolen S, Casanova C, Lachapelle P. The photopic ERG of the albino guinea pig (Cavia porcellus): A modelof the human photopic ERG. Doc Ophthalmol, 2005;110(1): 67-77.
    [158] Armitage JA, Bui BV, Gibson R, Vingrys AJ. Postnatal development offlicker sensitivity in guinea pigs. Clin Exp Optom, 2001; 84(5): 270-275.
    [159] Lei B. The ERG of guinea pig ( Cavisporcellus ) : comparison with I type monkey and E type rat. Doc Ophthalmol, 2003;106(3): 243-249.
    [160] Ates K, Demirtas S, Goksoy C. Binocular interactions in the guinea pig's visual-evoked potentials. Brain Res, 2006; 1125(1): 26-30.
    [161] Rimmer S, Iragui V, Klauber MR, Katz B. Retinocortical time exhibits spatial selectivity. Invest Ophthalmol Vis Sci, 1989;30(9): 2045-2049.
    [162] Jacobs GH, Deegan JF 2nd. Spectral sensitivity, photopigments, and color vision in the guinea pig (Cavia porcellus). Behav Neurosci, 1994; 108(5): 993–1004.
    [163] Parry JW, Bowmaker JK.Visual pigment coexpression in guinea pig cones:a microspectrophotometric study. Invest Ophthalmol Vis Sci, 2002; 43(5): 1662-1665.
    [164]刘兰涛,夏峰,范馨燕,郭群,张磊,张作明.植入电极记录豚鼠图形视觉诱发电位.眼视光学杂志,2008;10(6): 429-434.
    [165]姚泰主编.生理学.第六版.北京:人民卫生出版社. 2003. 250-262.
    [166]闫文华,钱焕文.激光致视网膜损伤机制和治疗的研究进展.中国激光医学杂志, 2005;10(14): 322-325.
    [167]周琼,李汉林,刘永琰. 810 nm半导体激光致色素兔虹膜组织损伤的研究.眼科研究,2006;24(6): 611-614.
    [168] Hauber FA, Scherer WJ. Influence of total energy delivery on success rate after contact diode laser transscleral cyclophotocoagulation: a retrospective case review and meta-analysis. J Glaucoma, 2002;11(4): 329 -333.
    [169] Lai JS, Tham CC, Lam DS. Pupillary distortion and staphyloma followingtransscleral contact diode laser cyclophotocoagulation: a clinicopathological study of three patients. Eye, 2002;16(5): 674-675.
    [170]黄震晞,宋艳萍.微脉冲810 nm半导体激光治疗眼病.中国激光医学杂志,2008;17(3): 218-223.
    [171]何晓静,陈雪艺,钱一,胡汉华.微脉冲半导体激光对兔视网膜损伤的实验研究.中国实用眼科杂志, 2007;25(12): 1323-1325.
    [172]何晓静,陈雪艺,钱一,胡汉华.微脉冲半导体激光对兔眼视网膜损伤的形态学观察.国际眼科杂志,2007;7(4): 975-977.
    [173]曾宪英.眩光试验及其在航空医学中的应用.中华航空医学杂志, 1994;5(3): 187-190.
    [174] Sieving PA, Frishman LJ, Steinberg RH. Scotopic threshold response of proximal retina in cat. Neurophysiol, 1986;5(6): 1049-1061.
    [175] Bui BV, Edmunds B, Cioffi GA, Fortune B. The gradient of retinal functional changes during acute intraocular pressure elevation. Invest Ophthalmol Vis Sci, 2005;46(1): 202-213.
    [176] Frishman LJ, Reddy MG, Robson JG. Effects of background light on the human dark-adapted electroretinogram and psychophysical threshold. Opt Soc Am A Opt Image Sci Vis, 1996;13(3): 601-612.
    [177] Frishman LJ, Shen FF, Du L, Robson JG, Harwerth RS, Smith EL 3rd, Carter-Dawson L, Crawford ML. The scotopic electroretinogram of macaque after retinal ganglion cell loss from experimental glaucoma. Invest Ophthalmol Vis Sci, 1996;37(1): 125-141.
    [178] Saszik SM, Robson JG, Frishman LJ. The scotopic threshold response of the dark-adapted electroretinogram of the mouse. Physiol, 2002;54(3): 899-916.
    [179] Naarendorp F, Sato Y, Cajdric A, Hubbard NP. Absolute and relativesensitivity of the scotopic system of rat: electroretinography and behavior. Vis Neurosci, 2001; 18(4): 641-656.
    [180] Naarendorp F, Sieving PA. The scotopic threshold response of the cat ERG is suppressed selectively by GABA and glycine. Vision Res, 1991; 31(1): 1-15.
    [181] Vaegan, Millar TJ. Effect of kainic acid and NMDA on the pattern electroretinogram, the scotopic threshold response, the oscillatory potentials and the electroretinogram in the urethane anaesthetized cat. Vision Res, 1994;34(9): 1111-1125.
    [182]范先群,张芸芸.神经节细胞对暗视阈值反应的研究.中华眼底病杂志,1997;13(4): 215-218.
    [183] Bui BV, Fortune B. Ganglion cell contributions to the rat full-field electroretinogram. Physiol, 2004;555(1): 153-173.
    [184] Li RS, Tay DK, Chan HH, So KF. Changes of retinal functions following the induction of ocular hypertension in rats using argon laser photocoagulation. Clin Experiment Ophthalmol,2006; 34(6): 575-583.
    [185] Holcombe DJ, Lengefeld N, Gole GA, Barnett NL. Selective inner retinal dysfunction precedes ganglion cell loss in a mouse glaucoma model. Br J Ophthalmol, 2008;92(5): 683-688.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700