昆虫酚氧化酶免疫学功能及其对杀虫剂等外来干扰因子的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酚氧化酶(phenoloxidase, EC.1.14.18.1, PO),又称酪氨酸酶,在昆虫的正常发育过程中具有重要的生理作用。它主要参与表皮的硬化、黑化过程;参与对外来侵染物的免疫防御反应;参与伤口愈合反应。研究酚氧化酶的特性及其在昆虫生长发育过程中的活性变化和生理功能对开发以酚氧化酶为靶标的新型害虫控制剂具有重要的理论意义。本文在前人的研究基础之上,以黄粉虫和小菜蛾为材料,研究了酚氧化酶在昆虫生长发育过程中的活性变化、生理学意义及免疫学功能。
     1.为了本研究的简便易行,首先比较了传统的紫外分光光度计比色法与酶标仪微量法在测定酚氧化酶活性和蛋白质含量方面的异同。研究发现,两者都能准确地测定酚氧化酶的活性和蛋白质含量,但是相比而言,酶标仪微量法更简捷、方便、灵活,对试剂的消耗更少,重复性更稳定。
     2.研究了黄粉虫蜕皮后血淋巴和体壁中的酚氧化酶活性变化。刚完成蜕皮过程的幼虫血淋巴中PO活性较高,但随着蜕皮后时间的延长,其活性呈现下降趋势,在3~4小时内达到最低点,而后PO活性逐渐上升,7小时的酶活性上升至最高,并接近于正常幼虫;在刚蜕完皮后的1小时内,体壁PO活性基本没有变化,但随后即开始下降,3小时左右降到最低点,然后开始回升,6~7小时左右恢复到正常水平,并趋于稳定;通过双倒数曲线做图法求得黄粉虫血淋巴PO的Km=1.176mmol/L,体壁PO的Km=0.881mmol/L,表明血淋巴和体壁中的酚氧化酶可能是不同的同工酶,体壁PO催化能力要高于血淋巴PO。
     3.研究了抑制剂槲皮素对黄粉虫血淋巴酚氧化酶的生理效应。结果表明,在离体条件下,槲皮素对黄粉虫血淋巴PO的IC50为0.625 mmol/L;在活体情况下,当槲皮素-DMSO溶液或槲皮素水悬浮液(5μL)注入虫体后,在浓度低于1 mmol/L时对黄粉虫血淋巴PO具有激活作用,当浓度高于2 mmol/L时则对PO具有明显的抑制作用;单独注射5μL DMSO溶液对PO活性亦有一定的激活作用,但是注射水对酚氧化酶活性没有影响。试虫被注射不同浓度的槲皮素后,PO活性在2~4 h内迅速下降,然后缓慢上升,处理后8 h左右达到最高点,其后低浓度处理PO活性保持不变,而高浓度处理则逐渐下降,表明低浓度槲皮素可以在一定程度上引起试虫的免疫反应。在PO测活体系中加入0.5%的牛血清蛋白(BSA)后对PO活性无影响,并能使槲皮素在测活体系中保持稳定。
     4.以大肠杆菌Escherichia coli DH5α菌株为免疫刺激因子,研究了黄粉虫在受到细菌侵染后所产生的免疫反应及酚氧化酶活性变化。结果表明,大肠杆菌水悬浮液与黄粉虫血淋巴一起冰浴后,其血淋巴酚氧化酶活性明显上升,大约为对照的2.4倍;将血淋巴进行离心除去血细胞后与E. coli一起冰浴,则不能使酚氧化酶活性升高;但是将离心后的血淋巴与胰蛋白酶一起冰浴,随着胰蛋白酶浓度的升高,酚氧化酶活性也逐渐升高,说明血浆中有酚氧化酶酶原(PPO)存在;综合以上实验结果,认为黄粉虫体内对入侵病原菌E. coli起识别作用的识别因子存在于血细胞或其它大分子的表面,这些细胞或大分子在离心过程中被除去,因而血浆与E. coli冰浴后不能启动PPO级联反应,即不能使酚氧化酶活性升高。将病原菌E. coli采用注射法注入黄粉虫体内1小时后,黄粉虫体内很快出现黑色的结节(nodules),表明很快就发生了免疫防御反应,10小时后结节数量达到最高峰,严重时大量的结节可联结成片;在结节形成的同时,黄粉虫血淋巴酚氧化酶的活性亦发生变化,在E. coli注入的初期,酚氧化酶活性大幅下降,12小时左右达到最低点,然后随着时间的延长,酚氧化酶活性逐渐恢复,20小时左右恢复到正常水平,说明酚氧化酶参与了结节的形成。
     5.研究了经丁烯氟虫腈抗性筛选后抗性小菜蛾与敏感小菜蛾酚氧化酶活性的变化。结果表明:无论是抗性品系还是敏感品系,其酚氧化酶都有相近的Km值,分别是1.108mmol/L和1.114mmol/L,但最大反应速度有明显的差别,抗性品系PO的最大反应速度为153.84μmol/L·min-1·mg-1蛋白,敏感品系PO的最大反应速度为67.114μmol/L·min-1·mg-1蛋白,抗性品系是敏感品系的2.29倍;抗性品系和敏感品系酚氧化酶的最适pH均为6.5,并且均在pH 7.0处最为稳定;抗性品系酚氧化酶在pH=5.5的环境下较敏感品系酚氧化酶稳定,两者在pH=4.4的环境下均不稳定,且蛋白质产生变性而产生沉淀;两者具有相似的温度稳定性,即在25~40℃范围内相对较为稳定,温度高于40℃时活性明显下降。以上数据说明,抗性品系与敏感品系相比较具有较高的酚氧化酶活性,酚氧化酶可能对昆虫抗性的产生具有重要的贡献。
     6.以5种不同类型与4种不同作用机制的杀虫剂为胁迫因子,研究了其在亚致死剂量下对黄粉虫血淋巴酚氧化酶活性的影响:氨基甲酸酯类的灭多威与沙蚕毒素类的杀虫单对酚氧化酶的活性影响相似,即在较高的剂量浓度下可提高酚氧化酶活性,而低剂量浓度下对酚氧化酶活性无明显影响;有机磷类的毒死蜱在亚致死剂量下可降低酚氧化酶的活性;拟除虫菊酯类的高效氯氰菊酯在亚致死剂量下对酚氧化酶活性无影响;昆虫生长调节剂类的除虫脲在亚致死剂量下可使黄粉虫血淋巴酚氧化酶活性升高。以上结果表明不同作用机制或不同分子结构的化学药剂对黄粉虫酚氧化酶的活性影响不同。
Phenoloxidase (EC.1.14.18.1, PO), also known as tyrosinase, is a key enzyme of insects, which can take part in many physiological process, such as cuticle hardening, stabilizing and staining. Moreover, PO plays an important role in innate immune system, also in wound healing of insect. To approach the characteristics and the physiological function of PO in the growth of insect is helpful to the development of the newly“insect controller”, which act on phenoloxidase, a novel mode of action. Follows the previous work in the same lab, both the characteristics, physiological and immune functions of phenoloxidase of Tenebrio molitor and Plutella xylostella have been studied in present thesis.
     The results showed that:
     1. Phenoloxidase activity and protein content was assayed using microtitration and colorimetry experiments and the difference of the two methods was compared. Results indicated that there was no remarkable difference in the activity values using the two methods. However, microtitration was found to be the more rapid and convenient method as compared to traditionally used colorimetry, and costed less reagents.
     2. Study the PO activity from hemolymph and cuticle of T. molitor after it molted at different times (from 1 to 7 hours). Results showed that the hemolymph PO activity was slowly decreased during larvae molted for 0 to 3 hours, then the PO activity increased during 4 to 7 hours, after molted for 7 hours, the activity was near to the normal larvae; the cuticle PO activity has no remarkable difference during molted for 1 hour, while with the passage of time, the activity was also decreased till molted for 3 hours, then increased agagin. 6 hours later, the activity was near to the normal larvae. The Km value of PO extracted from hemolymph and cuticle were determined by Lineweaver-Burk plot, the former is 1.176mmol/L, and the latter is 0.881mmol/L, indicating that PO from cuticle has more high catalyze ability than PO from hemolymph.
     3. The Physiological effect of quercetin on phenoloxidase from Tenebrio molitor (in vitro or in vivo) was determined, and the results showed that the inhibition concentration showing 50% of the maximum inhibition (IC50) was to be 0.625 mmol/L. PO activity of hemolymph (in vivo) was increased when the quercetin-DMSO solution or quercetin-water suspension (5μL) with concentration of 0.1~1.0 mmol/L was injected into the larvae of T. molitor, but the compound would decrease the PO activity while the concentration of quercetin was going higher that is beyond the concentration of 2 mmol/L. Meanwhile, PO activity also was increased when DMSO was injected into the tested insect (5μL) (in vivo). During 2~4 hours after injection of quercetin into the body of the insect PO activity have been decreased rapidly but the PO activity went slowly up until at about 8 h after the compound injected. The PO activity reached its highest point after treatment 8h and then dropped down again except the low concentration treatment. The results above indicated that quercetin with low concentration can cause immune response to the tested insect. The present paper showed also that it have significant effectiveness while 0.5% BSA was added to the assay system in order to prevent quercetin sedimentating and the protein has no effects on PO activity as well.
     4. Investigated the phenoloxidase and the immune response of T. molitor after immune challenged by Escherichia coli (DH5αstrain). The results showed that when E. coli incubated with hemolymph at 0℃for 30 minutes, the PO activity increased 1.4 folds; after the hemolymph was centrifuged to remove the hemocytes, the supernatant was used as plasma to incubated with E. coli at 0℃for 30 minutes, the PO activity of plasma was as same as control; after the plasma incubated with trypsin solutions, the PO activity was also increased. The data above indicated that the recognition factor of T. molitor to E. coli may distributed on the hemocytes or other big molecules (such as fat body), not in the plasma.
     After the E. coli was injected to the body of T. molitor for 1hour, some black nodules were formatted, indicating that the immune system of larvae responded to invaders soon after the infection, and the numbers of nodule increased. About 10 hours later, the nodule formation has completed, sometimes many nodules adhered together to form patch structure. At the same time with the nodules formation, the PO activity decreased rapidly, 12 hours later reached the lowest point, and then slowly increased. The results indicated that the phenoloxdiase participated in the formation of nodules.
     5. Using microtitration, the relationship between PO activity and the resistance of the diamondback moth Plutella xylostella (Linnaeus) to the novel insecticide butane-fipronil was determined in vitro. The results indicated that PO activity was obviously enhanced by the application of butane-fipronil. Phenoloxidase activity of the resistant strain (POr) was 2.29-fold higher than the susceptible one (POs); but the Km and optimum pH values, 1.11 mmol/L and 6.5, respectively, were similar for both samples. Both POr and POs have maximum stability at pH values less than 7.0, although POs was less stable at lower pH values than POr. In addition, the thermal stabilities of the two samples were very similar. The data suggested that PO may play an important role in the increasing resistance of pests to pesticides.
     6. Effect of five different insecticides to phenoloxidase activity was studied with sub-lethal dosage. The results showed that methomyl and monosultap, which belongs to carbamates and nerestoxin insecticide respectively, have the same effect on PO activity. Both of them can increase the PO activity of hemolymph from T. molitor with higher concentration, while there was no effect with lower concentrations compared with control. Chlorpyrifos, an organophosphorous insecticide, can decrease the PO activity with sub-lethal dosage. Beta-cypermethrin, a member of pyrethroid family, had no effect on the PO activity with sub-lethal dosage. Diflubenzuron, belongs to the benzoylurea family, can also increased the PO activity with sub-lethal dosage.
引文
白洁,李永祺,李岿然.久效磷对中国对虾血淋巴酚氧化酶活力影响的初步研究[J].海洋科学. 1998, (3): 35-37.
    长谷川金作著,张义成,陆明贤译.昆虫变态的生理化学[M].北京:农业出版社,1988,43-47.
    陈万义,薛振祥,王能武.新农药研究与开发[M].北京:化学工业出版社. 1995.
    陈文柱,李兵,贡成良,沈卫德.酚氧化酶在家蚕血淋巴中的活力分布及影响因素的研究[J].江苏蚕业. 2005, (2): 12-15.
    程振衡,梁子才.亚洲玉米螟血淋巴中酚氧化酶的研究[J].昆虫学报. 1990, 33(4):424-429.
    冯从经,杜予州,陆自强,符文俊.亚洲玉米螟幼虫血淋巴中酚氧化酶原的性质[J].昆虫学报. 2005, 48(5): 649-654.
    冯献启,宫照龙,傅风华.微量快速蛋白质测定法[J].滨州医学院学报.1999,22(6): 545-546
    高兴祥,罗万春,于天丛,王树栋,丁琦,赵淑英.几种苯甲酸类化合物对甜菜夜蛾多酚氧化酶活性的影响[J].农药学学报. 2004, 6(1): 26-30.
    郭兑山,潘莉莉,王富伟,金东岩.应用酶标仪快速测定丙氨酸氨基转移酶的活性浓度[J].中国输血杂志.1998, 11(2): 88.
    韩招久,韩召军,姜志宽,钱万红.沙蚕毒素类杀虫剂的毒理学研究新进展[J].现代农药. 2004, 3(6): 5-8.
    侯超,王新宁.腺苷脱氨酶(ADA)微量测定法的研究[J].实用医技杂志. 2003, 10(7): 744-745.
    寇宇,倪晓平,葛朝珍,任樟尧,蒋辉权,孙建荣.全自动酶标仪测定淡色库蚊抗药性应用研究[J].中国卫生检验杂志. 2003, 13(3): 286-288.
    李国荣,张士璀,李红岩,王昌留.酚氧化酶研究概况Ⅰ:特性、功能、分布和在胚胎发育中的变化[J].海洋科学. 2003, 27(4): 4-8.
    李立程,寇欣.紫外分光光度法测定甲硝唑克林霉素凝胶剂中甲硝唑的含量[J].天津药学. 2006, 18 (3): 18-19.
    李士根,蒋滨,甄天民,王凤刚,刘永春,孙传红,王怀位.微量滴定板法测定蚊虫非特异性酯酶检测抗药性的研究[J].中国媒介生物学及控制杂志. 2002, 13(3): 178~180.
    李彦威,杨秀花,勾洪磊,王志.紫外分光光度法同时测定电合成产物苯甲醛和苯甲酸[J].光谱实验室. 2006, 23(4): 684~689.
    李志强,陈国生,王茂先,王国秀.昆虫休液免疫的分子生物学[J].生命化学. 2003, 23 (5): 348-351.
    刘春英,罗万春,李方正,王晓云.槐尺蠖多酚氧化酶的纯化及酶学特征[J].昆虫学报. 2004, 47(2): 184-188.
    刘德育,雷焕强.杨梅黄素及蛇葡萄素对酪氨酸酶的抑制作用[J].生物化学杂志,1996, 5: 618-620.
    鲁兴萌.多酚氧化酶的研究进展[J].中国蚕业. 2000, (2): 49-50.
    罗克斯坦M.编,李绍文等译.昆虫生物化学[M].北京:科学出版社. 1988, 138-157.
    罗万春.世界新农药与环境-发展中的新型杀虫剂[M].北京:世界知识出版社. 2002.
    罗万春,高兴祥,于天丛,王树栋.栎皮酮对甜菜夜蛾酚氧化酶的抑制作用[J].昆虫学报. 2005, 48(1): 36-41.
    雷质文,黄捷,杨冰,张立敬,俞开康. 96孔酶标板法测定中国对虾血淋巴上清液抗菌活力和酚氧化酶活性的初步研究[J].海洋湖沼通报. 2001, 4: 33-37.
    牛洪涛,罗万春,江改青,朱秀凤.丁烯氟虫腈对小菜蛾的生物活性及田间防治效果[J].植物保护学报. 2007, 34(3): 316-320.
    邱宗文,张锡林,徐文岳.按蚊中肠前酚氧化酶原与约氏疟原虫卵囊黑化的关系[J]. 中国寄生虫病防治杂志. 2003, 16(6): 321-324.
    时超美.昆虫酚氧化酶原活化及其在免疫中的作用[J].昆虫知识. 2000, 37(5): 310-314.
    谭爱平,钟陵,黄滨.测定总氮的影响因素探讨[J].中国环境监测, 2006, 22(1): 58-59.
    王春,吴秋华,王志,陈大刚.槲皮素与牛血淋巴白蛋白相互作用的研究[J].光谱学与光谱分析, 2006, 26(9): 1672-1675.
    王勤,柯莉娜,薛超彬,贺量,罗万春,陈清西.几种苯甲酸族化合物对菜青虫多酚氧化酶的抑制作用[J].厦门大学学报(自然科学版) . 2006, 45(3): 428-431.
    王树栋,罗万春,高兴祥,丁琦.曲酸对小菜蛾酚氧化酶抑制作用的研究[J].中国农业科学. 2004, 37(9): 1316-1321.
    王荫长.昆虫生物化学[M].北京:中国农业出版社. 2001,129-130.
    吴刚,尚稚珍.抑太保对亚洲玉米螟表皮酚氧化酶及几丁质酶活力的影响[J].昆虫学报. 1992, 35(3): 306-311.
    谢春艳,宾金华,陈兆平,莫熙穆.多酚氧化酶及其生理功能[J].生物学通报. 1999, 34(6): 11-13.
    徐厚镕,凌尔军.家蚕五龄幼虫多酚氧化酶活力测定[J].蚕桑茶叶通讯. 1997, (4): 17-19.
    薛超彬.菜青虫酚氧化酶性质及抑制剂对其活性的抑制作用研究[D].山东农业大学. 硕士学位论文. 2004.
    薛超彬,陈清西,王勤,柯莉娜,罗万春.菜青虫不同虫态及虫龄的多酚氧化酶性质比较[J].昆虫学报. 2004, 47(3): 305-309
    尹丽红,王琛柱,钦俊德.棉铃虫血淋巴酚氧化酶活性的微量测定[J].昆虫知识. 2001, 38(2): 119-122.
    叶雅杰.姜黄素、槲皮素等八种效应物对光肩星天牛幼虫ppo影响的试验研究[D]. 东北师范大学.硕士学位论文. 2006.
    张孝山,李研,李忠平,朱秀文,潘彤.速率法与微板法测定定值血淋巴谷丙转氨酶比较[J].天津医药. 2004, 32(9): 573-575.
    张小玉,汪贞,黄泽夫,王国秀,刘绪生.棉铃虫不同虫态及虫龄血淋巴中酚氧化酶活力的比较[J].昆虫知识. 2006, 43(3): 330-332.
    张宗炳,冷欣夫.杀虫药剂毒力及应用[M].北京:化学工业出版社. 1993, 331-337.
    郑健,陈焕文,刘宏伟,李宝华,张寒琦,于爱民,金钦汉.紫外-可见分光光度法在药物分析中的应用[J].分析科学学报, 2002, 18(2): 158~163.
    Abt M., Rivers D. B. Characterization of phenoloxidase activity in venom from the ectoparastioid Nasonia vitripennis (Walker) (Hymenoptera: Pteromalidae) [J]. Journalof Invertebrate Pathology . 2007, 94(2): 108-118.
    Armitage S.A.O, Siva-Jothy MT. Immune function responds to selection for cuticular colour in tenebrio molitor[J]. Heredity . 2005, 94: 650-656.
    Arakane Y., Muthukrishnan S., Beeman R.W., Kanost M. R., Kramer K. J. Laccase 2 is the phenoloxidase gene required for beetle cuticle tanning[J]. Proc. Natl. Acad. Sci. 2005, 102: 11337-11342.
    Asano T., Ashida M. Cuticular pro-phenoloxidase of the silkworm, bombyx mori: Purification and demonstration of its transport from hemolymph[J]. The Journal of Biological Chemistry . 2001, 276(14): 11100-11112.
    Ashida M., Brey P. T. Role of the integument in insect defense: Pro-phenol oxidase cascade in the cuticular matrix[J]. Proc. Natl. Acad. Sci. USA. 1995, 92: 10698-10702.
    Ashida M. The prophenoloxidase cascade in insect immunity[J]. Res. Immunol. 1990, 141: 908-910.
    Ashida M., Brey P. T. Recent advances in research on the insect prophenoloxidase cascade. In: Brey, P.T., Hultmark, D. (Eds.), Molecular Mechanisms of Immune Responses in Insects[M]. 1998, Chapman & Hall, London, 135–172.
    Ashida M., Yamazaki H. Molting and metamorphosis (Ohnishi, E., and Ishizaki, H. eds) [M]. pp. 239–265, Japan Science Society Press/Springer-Verlag, Tokyo. 1990.
    Aso Y., Kramer K., Hopkins T. Characterization of haemolymph protyrosinase and a cuticular activator from Manduca sexta (L.) [J]. Insect Biochem. 1985, 15, 9–17.
    Barrett F. M. Physiology in the insect epidermis[M]. 195–210, CSIRO Publications, Australia.1991.
    Benjamin N. D., Montgomery M. W. Polyphenol oxidase of royal ann cherries: purification and characterization[J]. J Food Sci. 1973, 38: 798-806.
    Bidla G., Lindgren M., Theopold U., Dushay M. S. Hemolymph coagulation and phenoloxidase in Drosophila larvae[J]. Developmental and Comparative Immunology. 2005, 29: 669–679.
    Boman H. G., Faye I., Gudmundsson G. H., Lee J. Y., Lidholm D. A. Cell-free immunity in Cecropia. A model system for antibacterial proteins[J]. Eur. J. Biochem. 1991, 201: 23-31.
    Bonmatin J. M., Bonnat J. L., Gallet X., Vovelle F., Ptak M., Reichhart J.M., Hoffmann J. A., Keppi E., Legrain M., Achstetter T. Two-dimensional 1H-NMR study of recombinant insect defemin A in water: resonance assignments, secondary structure and global folding[J]. J. giomol. NMR. 1992, 2: 235-256.
    Bradfold M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing theprinciple of protein-dye binding[J]. Analytical Biochemistry. 72 1976, 248-254
    Brown G. D., Gordon S. Immune recognition of fungalβ-glucans[J]. Cellular Microbiology. 2005, 7(4): 471-479.
    Cerenius L., Soderhall K., The prophenoloxidase-activating system in invertebrates[J]. Immunol. Rev. 2004, 198: 116–126.
    Cociancich S., Bulet P., Hetru C., Hoffmann J. A. The inducible antibacterial peptides of insects[J]. Parasitol Today. 1994, 10:132-139.
    Colliot F., Kukorowski K. A., Hakins D. W., Roberts D. A. Fipronil: A new soil and foliar broad spectrum insecticide[J]. Proc. Brighton Crop Protect. Conf-Pests Diseases. 1992, 29: 34.
    Conrad J. S., Dawso S. R., Hubbard E. R., Meyers T. E., Strothkamp K. G. Inhibitor binding to the binuclear active site of tyrosinase: temperature, pH, and solvent deuterium isotope effects [J]. Biochemistry, 1994, 33(19): 5739-5744.
    Córdoba-Aguilar A., Contreras-Gardu?o J., Peralta-Vázquez H., Luna-González A., Campa-Córdovac A. I., Ascencio F. Sexual comparisons in immune ability, survival and parasite intensity in two damselfly species[J]. Journal of Insect Physiology. 2006, 52: 861–869.
    Chabanet A. Coldberg R., Catesson A. M., Quinét-Szely M., Delaunay A. M., Faye L. Characterization and localization of a phenoloxidase in mung bean hypocotyl cell walls[J]. Plant physiol. 1994, 106:1095-1102.
    Chang C. F., Su M. S., Chen H. Y., Liao I. C. Dietaryβ-1,3-glucan effectively improves immunity and survival of penaeus monodon challenged with white spot syndrome virus[J]. Fish & Shellfish Immunology . 2003, (15): 297-310.
    Christensen B., Fink J., Merrifield R. B., Mauzerall D. Channelforming properties of cecropins and related model compounds incorporated into planar lipid membranes[J]. Proc Nail Acad Sci USA .1988, 85:5072-5076.
    Decker H., Jaenicke E. Recent findings on phenoloxidase activity and antimicrobial activity of hemocyanins[J]. Developmental and Comparative Immunology. 2004, 28: 673-687.
    Goldsworthy G., Chandrakant S., Opoku-Ware K. Adipokinetic hormone enhances nodule formation and phenoloxidase activation in adult locusts injected with bacterial lipopolysaccharide[J]. Journal of Insect Physiology. 2003, (49): 795-803.
    FAO. Method for diamond back moth (Plutella xylostella L.) [J]. FAO Plant protection. 1979, 27: 44-46.
    Gillespie J. P., Kanost M. R., Trenczek T. Biological mediators of insect immunity[J]. Annual Review of Entomology. 1997, 42: 611–643.
    Gollas-Galvan T., Hernandez-Lopez J.,Vargas-Albores F. Prophenoloxidase from brown shrimp (penaeus californiensis) hemocytes[J]. Comp Biochem Physiol. 1999, 122: 77-82.
    Hara T. Miyoshi T., Tsukamoto T. Comparative studies on larval and pupal phenoloxidase of the housefly, Musca domestica L[J]. Comp Biochem Physicl. 1993, 106: 287-293.
    Harcourt D. G. Biology of the diamondbackmoth, Plutella maculipennis (Curt.) (Lepidoptera: Plutellidae) in eastern Ontario. I. Distribution, economic history,synonomy and general description[M], 37th Report of the Quebec Society for the Protection of Plants.1956, pp. 155–160.
    Hernaundez-Lopez J., Gollas-Galvan T., Gomez-Jimenez S., Ortillo-Clark G., Vargas-Albores F. In the spiny lobster (panulirus interruptus) the prophenoloxidase is located in plasma not in haemocytes[J]. Fish & Shellfish Immunology. 2003, (14): 105-114.
    Hillyer J. F., Christensen B. M. Mosquitophenoloxidase and defensin colocalize in melanization innate immune responses[J]. Journal of Histochemistry & Cytochemistry. 2005, 53: 689-698.
    Hiruma K., Riddiford L M. Granular phenoloxidase involved in cuticular melanization in the tobaccohornworm:regulation of its synthesis in the epidermis by juvenile hormone[J]. Dev Biol. 1998, 40: 87-97.
    Hoffmann J. A. Innate immunity of insects[J]. Current Opinion in Immunology. 1995, 7: 4-10.
    Hoffmann J. A., Hetru C. Insect defensins: inducible antibacterial peptides[J]. Immunol Today. 1992, 13: 411-415.
    Hoffmann J. A., Hetru. C., Reichhart J. M. The Immoral antibacterial response of Drosophila[J]. FEBS Lett. 1993, 325:63-66.
    Hoffmann J. A., Kafatos F. C., Janeway C. A., Ezekowitz R. A. B. Phylogenetic perspectives in innate immunity[J]. Science. 1999, 284:1313–1318.
    Hughes J.A., Hurlbert R.E., Rupp R.A., Spence K.D. Bacteria-induced haemolymph proteins of Manduca sexta pupae and larvae[J]. J Insect Physiol. 1983, 29:625–632.
    Hultmark D. Immune reactions in Drosophila and other insects: a model for innate immunity[J]. Trends Genet. 1993, 9:1 78-183.
    Ismail F., Wright D. J. Cross-resistance between acylurea insect grossth regulators in a strain of Plutella xylostella (L.)(Lepidoptera: Yponomeutidae) from Malaysia[J]. Pesticide Science. 1991, 33: 359-370.
    Iwai H., Nakajima Y., Natori S., Arata Y., Shimada h. Solution conformation of an antibacterial peptide, sarcotoxin IA, as determined by H-NMR[J]. Eur J Biochem. 1993, 217: 639-644.
    Iwanaga S. The limulus clotting reaction[J]. Curr. Opin. Immunol. 1993, 5:74-82.
    Jiang H., Kanost M. R. The clip-domain family of serine proteinases in arthropods[J]. Insect Biochemistry and Molecular Biology. 2000, 30, 95–105.
    Jiang H. Ma C. Lu Z. Q. Kanost M. R.β-1,3-Glucan recognition protein-2 (βGRP-2) from Manduca sexta: an acute-phase protein that bindsβ-1,3-glucan and lipoteichoic acid to aggregate fungi and bacteria and stimulate prophenoloxidase activation[J]. Insect Biochemistry and Molecular Biology. 2004, 34: 89–100.
    Kanost M. R., Jiang H., Yu X. Q. Innate immune responses of a lepidopteran insect, Manduca sexta[J]. Immunol. Rev. 2004 ,198: 97–105.
    Kim M. S., Baek. M. J., Lee M. H., Park. J. W., Lee S. Y., Soderhall K., Lee B. L. A new easter-type serine protease cleaves a masquerade-like protein during prophenoloxidase activation in holotrichia diomphalia larvae[J]. The Journal of Biological Chemistry. 2002, 277(42): 39999-40004.
    Krem M. M., Di Cera E. Evolution of enzyme cascades from embryonic development to blood coagulation[J]. Trends in Biochemical Sciences. 2002, 27, 67–74.
    Kristensen M., Jespersen J. B., Knorr M., Cross-resistance potential of fipronil in Musca domestica[J]. Pest Manag. Sci. 2004, 60: 894–900.
    Kwon T. H., Kim M. S., Choi H. W., Joo C. H., Cho M. Y., Lee B. L. A masquerade-like serine proteinase homologue is necessary for phenoloxidase activity in the coleopteran insect, holotrichia diomphalia larvae[J]. Eur. J. Biochem. 2000, 267: 6188-6196.
    Lavine M. D., Strand M. R. Insect hemocytes and their role in immunity[J]. Insect Biochem. Mol. Biol. 2002,32:1295–1309.
    Lee H. S., Cho M. Y., Lee K. M., Kwon T. H., Homma Ko-ichi, Natori S. Lee B. L. The pro-phenoloxidase of coleopteran insect, Tenebrio molitor, larvae was activatedduring cell clump/cell adhesion of insect cellular defense reactions[J]. FEBS Letters, 1999, 444 : 255-259.
    Lee K. M., Lee K. Y., Choi H. W., Cho M. Y., Kwon T. H., Kawabata S. I., Lee B. L. Activated phenoloxidase from Tenebrio molitor larvae enhances the synthesis of melanin by using a vitellogenin-like protein in the presence of dopamine[J]. Eur. J. Biochem. 2000, 267: 3695-3703.
    Lee K. Y., Horodyski F. M., Valaitis A. P., Denlinger D. L. Molecular characterization of the insect immune protein hemolin and its high induction during embryonic diapause in the gypsy moth, Lymantria dispar[J]. Insect Biochem. Mol. Biol. 2002, 32:1457–1467.
    Li J., Christensen B. M. Involvement of L-tyrosine and phenol oxidase in the tanning of Aedes aegypti eggs [J]. Insect Biochem. Mol. Biol. 1993, 23:739-748
    Li X. T., Huang Q. C., Yuan J. Z., Tang Z. H. Fipronil resistance mechanisms in the rice stem borer, Chilo suppressalis Walker[J]. Pesticide Biochemistry and Physiology. 2007, 89: 169-174.
    Ling E., Yu X. Q. Hemocytes from the tobacco hornworm Manduca sexta have distinct functions in phagocytosis of foreign particles and self dead cells[J]. Dev. Comp. Immunol. 2006, 30(3): 301-309
    Ling E., Shirai K., Kanekatsu R., Kiguchi K. Classification of larval circulating hemocytes of the silkworm, Bombyx mori, by acridine orange and propidium iodide staining[J]. Histochem. Cell Biol. 2003, 120:505–511.
    Liu N. N., Zhu F., Xu Q., Pridgeon J. W., Gao X. W. Behavioral change, physiological modification, and metabolic detoxification: mechanisms of insecticide resistance[J]. Acta Entomologica Sinica. 2006, 49: 671-679.
    Lockey T D., Ourth D. D. Isolation and characterization of hemolymph phenoloxidase from heliothis virescens larvae[J]. Comp Biochem Physiol. 1992, 102B: 891-896.
    Ma C. C., Kanost M. R. Aβ1,3-glucan recognition protein from an insect, manduca sexta, agglutinates microorganisms and activates the phenoloxidase cascade[J]. The Journal of Biological Chemistry. 2000, 275(11): 7505-7514.
    Mavrouli M. D., Tsakas S., Theodorou G. L., Lampropoulou M., Marmaras V. J. MAP kinases mediate phagocytosis and melanization via prophenoloxidase activation in medfly hemocytes[J]. Biochim. Biophys. Acta. 2005, 1744: 145–156.
    Medzhitov R., Janeway JrC. A., Decoding the patterns of self and nonself by the innate immune system[J]. Science. 2002, 296 (5566), 298–300.
    Michelle M. R., Arnab P., Kurt R. K. and Arun K. D. The lipopolysaccharide and β-1,3-glucan binding protein gene is upregulated in white spot virus-infected shrimp (penaeus stylirostris) [J]. Journal of Virology. 2002, 76(14): 7140-7149.
    Mohan M., Gujar G. T. Local variation in susceptibility of thediamonback moth Plutella oxylostella Linnaeus to insecticides and role of detoxification enzymes[J]. Crop Protection. 2003, 22: 495–504.
    Moret Y., Siva-Jothy M. T. Adaptive innate immunity? Responsive-mode prophylaxis in the mealworm beetle, tenebrio molitor[J]. Proc. R. Soc. Lond. B. 2003, (270): 2475-2480.
    Mullen L. M., Goldsworthy G. J. Immune responses of locusts to challenge with the pathogenic fungus metarhizium or high doses of laminarin[J]. Journal of Insect Physiology. 2006, 52: 389–398.
    Nagai T., Osaki T., Kawabata S. Functional conversion of hemocyanin to phenoloxidase by horseshoe crab antimicrobial peptides[J]. The Journal of Biological Chemistry. 2001, 276(29): 27166-27170.
    Nappi A. J., Christensen B. M. Melanogenesis and associated cytotoxic reactions: applications to insect innate immunity[J]. Insect Biochem. Mol. Biol. 2005., 5: 443-459.
    Nappi A. J., Vass E. Cytotoxic reactions associated with insect immunity[J]. Advances in Experimental Medicine and Biology. 2001, 484:329-348.
    Newton K., Peters R., Raftos D. Phenoloxidase and QX disease resistance in Sydney rock oysters (Saccostrea glomerata) [J]. Developmental and Comparative Immunology. 2004, 28: 565–569.
    Ochiai M., Ashida M. A pattern-recognition protein forβ-1, 3-glucan: The binding domain and the cDNA cloning ofβ-1, 3-glucan recognition protein from the silkworm, bombyx mori[J]. The Journal of Biological Chemistry. 2000, 275(5): 4995-5002.
    Palmer J. K., Roberts J. B. Inhibition of banana polyphenoloxidase by 2-mercaptobenzothiazole[J]. Science. 1967.157: 200-201.
    Plapp F. J., Hoyer R. F. Insecticide resistance in the housefly: decreased rate of absorption as the mechanism of action of a gene that act as an intensifier of resistance[J]. J. Econ. Entomol. 1968, 61: 1298-1303.
    Polacheck I., Hearing V. J., Kwon-chung K. J. Biochemical studies of phenoloxidase and utilization of catecholamines in cryptococcus neoformans[J]. Journal of Bacteriology. 1982, 150(3): 1212-1220.
    Prabhakaran K., Harris E. B., Kirchheimer W. F. Effect of inhibitors on phenoloxidase of mycobacterium leprae[J]. Journal of Bacteriology. 1969, 100(2): 935-938.
    Prabhakaran K., Kirchheimer W. F., Harris E. B. Oxidation of phenolic compounds by Mycobacterium leprae and inhibition of phenolase by substrate analogues and copper chelators[J]. Journal of Bacteriology. 1968, 95(8): 2051-2053.
    Riberio C., Simòns N., Brehélin M. Insect immunity: the haemocytes of the armyworm Mythimna unipuncta (Lepidoptera: Noctuidae) and their role in defence reactions. In vivo and in vitro studies[J]. J. Insect Physiol. 1996, 42: 815-822.
    Rolff, J. Batemans principle and immunity[J]. Proceedings of the Royal Society of London, Series B. 2002, 269: 867–872.
    Rolff J., Siva-Jothy M. T. Selection on insect immunity in the wild[J]. Proc. R. Soc. Lond. B. 2004, 271: 2157-2160.
    Sawicki R. Interaction between the factor delaying penetration of insecticides and the demethylation mechanisms of resistance to organophosphorus-resistant houseflies[J]. Pestic. Sci. 1970, 1: 84-871.
    Sayyed A. H., Wright D. J. Fipronil resistance in the diamondback moth (Lepidoptera: Plutellidae): inheritance and number of genes involved[J]. J. Econ. Entomol. 2004,97 :2043–2050.
    Sayyed A. H., Omar D., Wright D. J. Genetics of spinosad resistance in a multi-resistant field-selected population of Plutella xylostella[J]. Pest Manag. Sci. 2004, 60: 827–832.
    Schmid-Hempel P. Variation in immune defense as a question in evolutionary ecology[J]. Proceedings of the Royal Society of London, Series B. 2003, 270: 357–366.
    Simpson B. K., Marshall M. R., Otwell W. S. Phenoloxidase from shrimp (Penaues setiferus): purification and some properties[J]. Journal of Agricultural and Food Chemistry. 1987, 35: 918–921.
    Sonoda S., Tsumuki H. Studies on glutathione S-transferase gene involved in chlorfluazuron resistance of the diamondback moth, Plutella xylostella L. (Lepidoptera: Yponomeutidae) [J]. Pesticide Biochemistry and Physiology. 2005, 82: 94-101.
    Suderman, R. J. Dittmer N. T., Kanost M. R., Kramer K. J. Model reactions for insect cuticle sclerotization: Cross-linking of recombinant cuticular proteins upon their laccase-catalyzed oxidative conjugation with catechols[J]. Insect Biochemistry and Molecular Biology. 2006, 36: 353-365.
    Su X. D., Gastinel L. N., Vaughn D. E., Faye I., Poon P., Bjorkman P. J. Crystal structure of hemolin: A horseshoe shape with implications for homophilic adhesion[J]. Science. 1998, 281:991–995.
    Sugumaran M. Comparative biochemistry of eumelanogenesis and the protective roles of phenoloxidase and melanin in insects[J]. Pigment Cell Res. 2002, 15: 2-9.
    Theopold U., Li D., Fabbri M., Scherfer C., Schmidt O. The coagulation of insect hemolymph[J]. Cell Mol Life Sci. 2002, 59:363–72.
    Theopold U., Schmidt O., Derh?ll K. S., Dushay M. S. Coagulation in arthropods: Defence, wound closure and healing[J]. Trends in Immunology. 2004, 25(6): 289-294.
    Wang X. Y., Liu C. Y., Zhang J. D., Luo W. C. Inhibitiory kinetics of quercetin on phenoloxidase from loopworm[J]. Insect science. 2005, 12: 231-240.
    Werner T., Liu G., Kang D., Ekengren S., Steiner H., Hultmark D. A family of peptidoglycan recognition proteins in the fruit fly Drosophila melanogaster[J]. Proc. Natl. Acad. Sci. 2000, 97(25): 13772-13777.
    Wen Z. M., Scott J. G. Genetic and biochemical mechanisms limiting fipronil toxicity in the LPR strain of house fly, Musca domestica[J]. Pesticide Sci. 1999, 55: 988–992.
    Xue C. B., Luo W. C., Chen Q. X., Wang Q., Ke L. N. Enzymatic properties of phenoloxidase from Pieris rapae (Lepidoptera) larvae[J]. Insect Science. 2006, 13: 251-256.
    Yu S. J., Nguyen S. N. Insecticide susceptibility and detoxication enzyme activities in permethrin-selected diamondback moths[J]. Pesticide Biochemistry and Physiology. 1996, 56: 69-77.
    Yu X. Q., Kanost M. R. Developmental expression of Manduca sexta hemolin[J]. Arch Insect Biochem. Physiol. 1999, 42: 198–212.
    Yu X. Q., ZhuY., Ma C., Fabrick J. A., Kanost M.R. Pattern recognition proteins in Manduca sexta plasma[J]. Insect Biochemistry and Molecular Biology. 2002, 32: 1287-1293.
    Zhang R., Cho H. Y., Kim H. S., Ma Y. G., Osaki T., Kawabata S. I., S?derh?ll K., Lee B. L. Characterization and properties of a 1,3-β-D-Glucan pattern recognition protein of Tenebrio molitor larvae that is specifically degraded by serine protease during prophenoloxidase activation[J]. The Journal of Biological Chemistry. 2003, 278(43): 42072-42079.
    Zhao M. Y., S?derh?ll I., Park J. W., Ma. Y. J., Osaki T., Ha N. T., Wu C. F., S?derh?ll K. Lee B. L. A novel 43-kDa protein as a negative regulatory component of phenoloxidase-induced melanin synthesis[J]. The Journal of Biological Chemistry. 2005, 280(6): 24744-24751.
    Zhou Z., Mangahas P. M., Yu X. The genetics of hiding the corpse: engulfment and degradation of apoptotic cells in C. elegans and D. melanogaster[J]. Curr. Top. Dev. Biol. 2004, 63: 91-143.
    Zuk M., Stoehr A. M., Immune defense and host life history[J]. American Naturalist. 2002,160: 9–22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700