基于PMMA的聚合物光开关器件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文阐述了以甲基丙烯酸甲酯和甲基丙烯酸环氧丙酯的共聚物(P(MMA-GMA))为基础材料,利用加载条形、脊型和矩形波导设计与制备聚合物电光开关和热光开关的工作。P(MMA-GMA)是一种低成本,且具有良好光学特性,适于制作平面光路(PLC)器件的聚合物材料。论文重点介绍了采用分散红(DR1)合成掺杂型DR1/TiO_2/SiO_2复合材料,利用P(MMA-GMA)、金属电极制备极化聚合物电光开关的详细过程;制作了基于多模干涉(MMI)耦合器的Polymer/Silica结构2×2热光开关。本论文的主要创新点为:
     1.利用溶胶-凝胶(Sol-gel)方法合成了掺杂型DR1/TiO_2/SiO_2有机-无机复合电光材料,它具有不小于20pm/V的电光系数和良好的极化稳定性。根据材料特点制作了以P(MMA-GMA)为引导层的加载条形光波导,采用标准平面半导体工艺制作了Mach-Zehnder(M-Z)型电光调制器和定向耦合器(DC)结构2×2电光开关。经测试,开关时间达到百纳秒量级。
     2.根据有机聚合物材料热光系数大的特点,将硅衬底作为理想热沉,设计了以SiO2为下包层,P(MMA-GMA)为芯层和包层的2×2多模干涉(MMI)型热光开关,器件结构简单,光学性能稳定,开关的上升和下降时间均为0.5ms
Fiber has been widely used in modern communication system for the merits of low transition loss and wide band. Since optical networks have huge capacity, good wavelength transparency, compatibility and expansibility, it has become the best choice for high speed communication system. As key parts of optical networks, optical switches are widely used in wavelength-division multiplexing (WDM) system. Polymer could be applied to the fabrications of arrayed waveguide gate, optical splitter, variable optical attenuator, modulator, micro-ring resonance, and other photonics devices. Especially in the applications of thermal optical switches and high-speed electro-optic (EO) switches, polymers show unique advantages and have become the research focus of many researchers.
     In the middle of 90’s last century, great progress has been made for poled polymers devices in optical performances and structures. Recently, the developing directions of polymer optical switches are high-speed, low loss, low switching voltage and low cross talk. In 2008, a 2×2 high-speed electro-optic switch based on multimode interference coupler was demonstrated by Fuji Xerox Inc. of Japan, switching time of which is smaller than 6ns. Domestic research in this area started late in 1980’s, research institutions, such as, Zhejiang University, Tsinghua University, Shanghai Jiaotong University and other research institutes began to carry out research in this field and has made some progress. However, there is still a wide gap when compared with foreign countries. Taking into account the good application prospects of polymer-optical switches in high-speed optical communication, we did related research work with the aid of National Key Basic Research Program. We synthesized organic/inorganic hybrid electro-optic material by use of sol-gel method. According to the device structures, side-chain non-linear materials of DR1/PMMA and hybrid materials DR1/TiO 2 /SiO2 are used in the electro-optical switch fabrication of strip-loading and ridge waveguide. A detailed study of the material synthesis, characterization of polarization, switching waveguides and electrodes design, devices preparation process and parametric test are introduced in this thesis. With the development of communication system, there are urgent needs for simple structure, high-performance, low-power, low-cost solutions in automatic protection in optical network switching, IP routing, optical fiber communications device testing, trunk and optical cross connect(OXC) and other less demanding applications on the speed. Polymer thermo-optic (TO) switches just could meet the above requirements. Much work has been carried out by NTT of Japan, HHI of Germany, the Akzo of Netherland, IBM of the United States, many other world famous companies and high-tech research institutes. A variety of interference type and numerical structure thermo-optic switches and switch arrays has developed. Therefore, we studied on thermo-optic switches based on epoxy polymer PMMA material. Firstly, the software Rsoft is used to design waveguide switches in simulation, and then Si substrate with thermal oxidation growth SiO2 film is chosen as the lower cladding, methyl methacrylate-glycidyl with epoxy resin is selected for the waveguide core layer, using photolithography, plasma etching and other semiconductor process, a 2×2 multimode interference thermo-optic switch is fabricated. The switching power, crosstalk, extinction ratio and other parameters were tested. The main content and innovation points are as follows:
     In Chapter I, it briefly describes the important applications of optical switch in the optical fiber communication network, which illustrates the needs to carry out the research work. Materials and structures of optical switches based on different working principles are discussed in detail. Comparing the characteristics of polymers and inorganic materials, it points out the advantages of polymer optical switch. Development and research status of polymer EO/TO switches are reviewed.
     In Chapter II, it describes the working principle of the electro-optic switch, analyzes the characteristics of organic/inorganic material DR1/TiO2 /SiO2 . Strip-loading and quasi-rectangular waveguide based on the above EO material and ridge waveguide based on DR1/PMMA material are analyzed according to planar optical waveguide theory, respectively. Through software Rsoft, the output lights of waveguides are simulated.
     In Chapter III, on the basis of non-linear mechanism of electro-optic materials, sol-gel method is adopted in the preparation of organic/inorganic hybrid material DR1/TiO2 /SiO2 . A detailed analysis of the reaction affected by the composite change of ethanol, hydrochloric acid, water and temperature is carried out. Refractive index of composite materials is found to be changed in the range 1.48~1.66 measured by ellipsometer, which facilitate the design of the waveguide structure. By using of atomic force microscopy, the film-forming properties are characterized. Nonlinearity generated by contact poling and corona poling is studied, too. Electro-optic coefficientsγ3 3 of DR1/TiO2 / SiO2 , DR1/PMMA films are measured by use of reflection method. It is about 20pm/V at the wavelength of 1310nm and has a good uniformity and stability of polarization for DR1/TiO2 /SiO2 . According to the characteristics of different electro-optic materials, rectangle, strip-loading and quasi-rectangular waveguides are designed and fabricated. Through the fiber-coupling test system, the output light of the waveguide is observed. Optical and electrical properties of directional coupler and multimode interference 2×2 electro-optic switches are tested, and switching time, insertion loss, crosstalk and other related parameters are obtained. According to microwave theory, the coplanar waveguide (CPW) and micro-strip line (MSL) switching electrodes are designed. Coupling between the electric field and optical field generated by different electrodes is compared. Microwave transmission characteristics of metal electrodes are characterized with vector network analyzer, results of which show that the 3dB bandwidth of electrodes on Si substrate is greater than 1.5GHz. It fully meets the design requirements.
     In Chapter IV, related theory on the silicon-based polymer thermo-optic switch is introduced, in particular the part of multi-mode interference coupler design. Because poly-methyl methacrylate (PMMA) has merits of good adaptability for fabrication and low-cost, it is adopted in the design of 2×2 multimode interference coupler switch, which selects Si as substrates and SiO2 as lower cladding. Through Rsoft thermal analysis software modules to simulate the waveguide thermo-optic effect, the crosstalk in the design at cross state and bar state is found to be -24.2dB and -21.9dB, respectively. Extinction ratio at cross state and bar state is 29.8dB and 23dB, respectively. The switching power is about 3.6mW.
     In Chapter V, thermo-optic characteristics of the PMMA material are described. It explains the reason why selecting PMMA material to fabricate polymer thermo-optic switches from the point of view of thermo-optic coefficient stability. A 1×1 M-Z thermo-optic switch with PMMA as the main material is fabricated by planar microelectronics techniques of spin-coating, photolithography, plasma etching and evaporation, which substrate is Si. The 2×2 multimode interference coupler thermo-optic switch with SiO2 as the lower cladding is fabricated too. Characteristics of the device, such as switching power, switching speed, insertion loss, extinction ratio, crosstalk, are obtained. Test results show that the rise time and fall time of M-Z thermo-optic switch are both about 0.4ms. The switching power is about 15.1mW and the extinction ratio is 16.5dB. Rise time and fall time of the 2×2 multimode interference thermo-optic switch are 0.5ms, respectively. Fiber to fiber insertion loss is about 17dB, switching power is about 45mW. Crosstalk in the cross state and bar state is -19dB and -21dB, respectively, and the extinction ratio is 27dB and 19dB at each state. The further improvements of the device indicators are proposed too. The above work built a solid foundation for the realization of planar optical waveguide devices integration.
     The innovation points are:
     (1) Organic/inorganic EO material of DR1/TiO2/SiO2 is synthesized by sol-gel method, analyzed effects of different reaction conditions to the material properties. According to material characteristics, a strip-loading waveguide electro-optic switch with PMMA as the guide layer is fabricated by standard semiconductor planar fabrication techniques. Electrical and optical properties of the device are tested through the system built by ourselves.
     (2) According to the advantage of possessing large thermo-optic coefficient, a 2×2 multimode interference thermo-optic switch with SiO2 lower cladding and P(MMA-GMA) waveguide material is designed and fabricated. The structure is simple and switching performance is stable.
引文
[1]严清峰,余金中,夏金松.光开关及其在WDM光网络中的应用[J].飞通光电子技术,2001,1(4):198 - 203.
    [2]胡剑,李刚炎.光开关及其控制技术[J].现代制造工程,2007(3):133 - 136.
    [3]胡军武,吴涛.光开关和光开关阵列技术的发展研究[J].光通信研究,2001(6):58 - 62.
    [4]隋志成,姜希军,吴志坚.光开关及其在全光网络中的应用[J].光通信技术,2002,26(3):27 - 32.
    [5]景玉鹏,黄钦文,石莎莉等.日本近年RF MEMS开关研究的进展[J].电子工业专用设备,2006,35(1):43 - 45.
    [6]郑惟彬,黄庆安,李拂晓.微波电路的MEMS开关进展[J].微波学报,2001,17(3):87 - 93.
    [7]张立宪.射频(RF)MEMS开关的模拟、制备和力学分析[D].北京:中国科学院力学研究所,2003.
    [8] Krahenbuhl R. Low-loss polarization-insensitive InP-InGaAsP optical space switches for fiber optical communication [J]. IEEE Photonics Technology Letters, 1996, 8(5), 632 - 634.
    [9]廖先炳.光开关的开发渐入佳境[J].国际线缆与连接,2004(4):12 - 16.
    [10] Goh T, Himeno A et al.. High-extinction ratio and low-loss silica-based 8×8 strictly nonblocking thermooptic matrix switch [J]. IEEE Photonics Technology Letters, 1998, 10(6), 810.
    [11] Soref R A et al.. Large single-mode rib waveguides in GeSi and Si-on-SiO2 [J]. IEEE J. Quantum Electronics, 1991, 27(8), 1971.
    [12]刘琳.光开关技术发展及应用[J].光纤与电缆及其应用技术,2002(6):10 - 13.
    [13]程晓飞,方来付,等.光开关技术综述[J].通讯世界,2001(7):11 - 16.
    [14] MAKIHARA M, SHIMOKAWA F, KANEKO K. Strictly non-blocking N×N thermo-capillarity optical matrix switch using silica-based waveguide[C]. Optical Fiber Communication Conference, 2000, 1, 207-210.
    [15] KEIL N, YAO H H, ZAWADZKI C, STREBEL B. Rearrangeable nonblocking polymer waveguide thermo-optic 4×4 switching matrix with low power consumption at 1.55μm [J]. Electronics Letters, 1995, 31(5), 403 - 404.
    [16]吕新杰,杨军,明海.聚合物光波导器件的最新进展[J].光电子技术与信息,2004,17(6):6.
    [17]叶成,朱培旺,王鹏等.二阶非线性光学聚合物光波导与器件的现状与问题[J].物理,2000,29(3):148 - 151.
    [18] L. R. Dalton. Rational design of organic electro-optic materials[J]. J. Phys. Condens. Matter., 2003, 15, 897-934.
    [19]陈钢进.应用于非线性光学技术中的极化聚合物材料[J].浙江师大学报,1999(22):4.
    [20] G. Meredith, J. Van Dusen, D. Williams. Nonlinear Optical Properties of Organic and Polymer Materials, D.Williams Ed. ACS SympSeries, 1983, 232, 109.
    [21] Y. Enami, C. T. DeRose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N.Peyghambarian. Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients [J]. Nat. Photonics, 2007, 1, 180.
    [22] C. T. DeRose, Y. Enami, C. Loychik, R. A. Norwood, D. Mathine, M.Fallahi, N. Peyghambarian, J. Luo, A. Jen, M. Kathaperumal, and M.Yamamoto. Appl. Phys. Lett., 2006, 89, 131102.
    [23] Y. Enami, G. Meredith, N. Peyghambarian, and A. K.-Y. Jen. Appl. Phys.Lett., 2003, 83, 4692.
    [24] DIEMEER M B J,BRONS J J,TROMMEL E S. Polymeric optical waveguide switch using the thermooptic effect[J]. Journal of Lightwave Technology, 1989, 73, 449-453.
    [25] ELDADA L,SHACKLETTE L W. Advances in polymer integrated optics[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6(1), 54-68.
    [26]杨方辉,江晓清,杨建义,王明华.有机聚合物热光开关的研究进展[J].半导体技术,2001,26(9):38 - 41.
    [27] HIDA Y, ONOSE H, IMAMURA S. Polymer waveguide thermooptic switch with low electric power consumption at 1.3μm[J]. IEEE Photonics Technology Letters, 1993, 5(7), 782-784.
    [28] KEIL N, YAO H H, ZAWADZKI C. A novel type of 2×2 digital optical switch realized by polymer waveguide technology[C]. 22nd European Conference on Optical Communication, 1996, 2, 71-74.
    [29] TICKNOR J, LYTEL R S, LIPSCOMB G. F. Single-mode 1×N solid state optical switches: packaging and applications[C]. SPIE, Nonlinear Optical Properties of Organic Materials IX, 1996, 2852, 270-276.
    [30] BORREMAN A, HOEKSTRA T, DIEMEER M, HOEKSTRA H, LAMBECK P. Polymeric 8×8 digital optical switch matrix[C]. 22nd European Conference on Optical Communication, 1996, 5, 59-62.
    [31] MOOSBURGER R, PETERMANN K. 4×4 digital matrix switch using polymeric oversized rib waveguides [J]. IEEE Photonics Technology Letters, 1998, 10(5), 684-686.
    [32] Diemeer M,Brons J,Trommel E.. Polymeric optical waveguide switch using the thermooptic effect [J]. Lightwave Technoly, 1989, 7, 449-453.
    [33] SeongKu Kim, DongHo Cha, Qibing Pei, and Kevin Geary. Polymer Optical Waveguide Switch Using Thermo-Optic Total-Internal-Reflection and Strain-Effect [J]. Photonics Technology Letters, 2010, 22, 197-199.
    [34] Young-Tak Han, Jang-Uk Shin, Sang-Ho Park, Sang-Pil Han, Chul-Hee Lee, Young-Ouk Noh, Hyung-Jong Lee, Yongsoon Baek. Crosstalk-Enhanced DOS Integrated with Modified Radiation-Type Attenuators [J]. ETRI Journal, 2008, 30, 744-746.
    [35] Abdulaziz M. al-hetar, I. Yulianti, Abu Sahmah M. Supa’at, A.B. Mohammad. Thermo-optic Multimode Interference Switches with Air and Silicon Trenches [J]. Optics Communications, 2008, 281, 4653-4657.
    [36] Abdulaziz M. al-hetar, Abu Sahmah M. Supa’at, A.B. Mohammad, I. Yulianti. Crosstalk Improvement of A Thermo-optic Polymer Waveguide MZI-MMI Switch [J]. Optics Communications, 2008, 281, 5764-5767.
    [37] Xiaolong Wang, Brie Howley, Maggie Y. Chen, Ray Chen. Crosstalk-Minimized Polymeric 2×2 Thermooptic Switch [J]. Photonics Technology Letters, 2006, 18, 16-18.
    [38] Kaixin Chen, Pak L.Chu, Kin Seng Chiang, Hau Ping Chan. Design and Fabrication of a Broadband Polymer Vertically Coupled Optical Switch [J]. Journal of Lightwave Technology, 2006, 24, 904-911.
    [39] Jianyi Yang, Qingjun Zhou, Ray T. Chen. Polymide-waveguide-based Thermal Optical Switch Using Total-internal-reflection effect [J]. Applied Physics Letters, 2002, 81, 2947-2949.
    [40] Yang Jianyi, Jiang Xiaoqing, Yang Fanghui, Wang Minghua. Polymer Thermo-Optic Switches with Y-Branch [J]. Acta Optica Sinica, 2002, 22, 735-738.
    [41] Fan Wang, Jianyi Yang, Limei Chen, Xiaoqing Jiang, Minghua Wang. Optical Switch Based on Multimode Interference Coupler [J]. Photonics Technology Letters, 2006, 18, 421-423.
    [42] Liang Kun, Chen Wang, Wu Boyu, Luo Shuyun, Yin Jianjun, Ye Gang. Polymeric Thermo-Optic Digital Optical Switches [J]. Chinese Journal of Semiconductors, 2006, 27, 747-750.
    [43] Kim S, Cha D, Pei QB, Geary K. Polymer Optical Waveguide Switch Using Thermo-Optic Total-Internal-Reflection and Strain-Effect[J]. IEEE PHOTONICS TECHNOLOGY LETTERS. 2010, 22(4), 197-199.
    [44] Oh MC, Noh YO, Lee HJ. Ultra-low crosstalk polymer waveguide thermo-optic switches[J]. PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS (SPIE), 2006, 6351, 300-305.
    [45] Zhu FH, Qiu FX, Yang DY, et al.. Thermo-optic properties of a fluorine-containing organic polymer[J]. RARE METAL MATERIALS AND ENGINEERING, 2008, 37, 641-643.
    [46] Song Y, Wang JY, Li GH, et al.. Synthesis, characterization and optical properties of cross-linkable poly (phthalazinone ether ketone sulfone) [J]. POLYMER, 2008, 49(3), 724-731.
    [47]张希珍. 1.55μm波段聚合物光波导放大器的基础研究[D].长春:吉林大学,2007:7.
    [48] Liu H B, Wang C C. Preparation of mono-dispersed fluorescent PMMA/GMA/DVB polymer microspheres with different sizes[J]. ACTA CHIMICA SINICA, 2008, 66(10), 1269-1273.
    [49] Ming Zhou. Low-loss polymeric materials for passive waveguide components in fiber optical telecommunication[J]. Opt. Eng., 2002, 41, 1631.
    [1]董孝义.光波电子学[M].天津:南开大学出版社,1987: 312.
    [2] Shaul Mukamel. Principles of Nonlinear Optical Spectroscopy[M]. Oxford: Oxford University Press, 1995.
    [3]罗敬东,詹才茂,秦金贵.极化聚合物电光材料研究进展[J].高分子通报,2000,3:9-19.
    [4] Xin Yin, Qiwei Pan, Wei Shi, et al.. Improvement of the interferometric method for measuring electro-optic coefficients of poled polymer thin films [J]. APPLIED OPTICS, 2002, 41(28), 5929-5932.
    [5]王夺元.有机分子的非线性光学效应与光子学功能材料[J].中国科学基金,2000,5:274-278.
    [6] K. D. Singer, J. E. Sohn, L. A. King, H. M. Gordon, H. E. Katz, and C. W. Dirk. Second-order nonlinear-optical properties of donor- and acceptor-substituted aromatic compounds[J]. JOSA B, 1989, 6(7), 1339-1350.
    [7] K.D. Singer, J.E. Sohn, and S.J. Lalama. Second harmonic generation in polymer films [J]. Applied Physics Letters. 1986, 49(5), 248-250.
    [8]蒋伟春,浦鸿汀,李新碗,陈建平.二阶非线性光学聚合物材料的最新研究进展[J].高分子通报,2004,5:28-38.
    [9] H. I. Hampsch, J. Yang. Orientatoin and second harmonic generation in dopped polystyrene and poly(methyl methacrylate) film[J]. Macromolecules, 1988, 21, 526-532.
    [10] R. H. Page, M.C. Jurich, B. Reck, A. Sen, R. J. Twieg, J. D. Swalen, G.C. Bjorklund, and C.G. Willson. Electrochromic and optical waveguide studies of corona-poled electro-optic polymer films[J]. JOSA B, 1990, 7(7), 1239-1250.
    [11] Thomas G. Pedersen, Kim Jespersen, Per M. Johansen, and John Wyller. Dc and ac Electro-optic response of chromophores in a viscoelastic polymer matrix: analytical model[J]. JOSA B, 2002, 19(11), 2622-2631.
    [12] R. J. Jeng, Y.M. Chen, A.K. Jain, S.K. Tripathya and J. Kumar. A new guest-host system: towards stable second-order optical nonlinearity[J]. Optics Communications, 1992, 89(2-4), 212-216.
    [13]郑建邦,汪远,任驹,侯超奇.气相沉积法制备含酞菁铜聚酰亚胺薄膜的光电性能[J].半导体光电,2005,26(4):338-349.
    [14] Shi W, Xu Z, Fang C, et al. Single-mode rib polymer waveguides and electro-optic polymer waveguide switches[J], Optics and Lasers in Engineering, 1999, 32, 139-145.
    [15] Mingqian He, Thomas M. Leslie, John A. Sinicropi, Sean M. Garner, and Leon D. Reed. Synthesis of Chromophores with Extremely High Electro-optic Activities. 2. Isophorone- andCombined Isophorone?Thiophene-Based Chromophores[J], Chem. Mater., 2002, 14(11), 4669-4675.
    [16] Dong Hoon Choi, Sun Jin Lim, Woong Sang Jahng, Nakjoong Kim, Organically modified sol-gel materials for second-order nonlinear optics[J], Thin Solid Films, 1996, 287, 220-224.
    [17] J. S. Lee, G. Cho, Y. G. Shul, Stable second-order nonlinear optical properties of organic compounds in silica matrixes[J]. Adv. Nonlin. Opt., 1997, 4: 99-108.
    [18] G. L. Zhao, S. Utsumi, H. Kozuka, T. Yoko. Photoelectrochemical properties of sol-gel derived anatase and rutile TiO2 films[J]. J. Mater. Sci., 1998, 33, 3655-3660.
    [19]方俊鑫,曹庄琪,杨傅子.光波导技术物理基础[M].上海:上海交通大学,1987.
    [20]陈抗生,微波与光导波技术教程[M],杭州:浙江大学出版社,2005.
    [21] M. Oswald, V. Hessel, R. Riedel. Formation of ultrathin ceramic TiO2 films by the Langmuir-Blodgett technique-a two-dimensional sol-gel process at the air-water interface[J]. Thin Solid Films, 1999, 339, 284-289.
    [22] Y. Enami, C. T. Derose, D. Mathine, C. Loychik, et al.. Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients[J]. Nature Photonics, 2007, 1, 180-185.
    [23]佘守宪.导波光学物理基础[M].北京:北方交通大学出版社,2002.
    [24] Richard A.Soref, Joachim Schmidtchen and Klaus Petermann. Large Single-Mode Rib Waveguides in GeSi-Si and Si-on-SO2[J], IEEE JOURNAL OF QUANTUM ELECTRONICS, 1991, 27(8), 1971-1974.
    [25]黄勇,曾庆济.实际1×3单模光纤分束器的特性分析[J].光学学报,1994,14(9):970-975.
    [26]赵鸿麟,潘姬,潘善臻,杨恩泽. GeSi合金1×4Y级联分束器的有限差分束传播法的模拟设计[J].光学学报,1996,16(8):1114-1117.
    [27]陈抱雪,袁一方等.新型低损耗氧化硅Y分支光波导[J].光学学报,2001,21(5):552-555.
    [28]鲍俊峰,吴兴坤.一种定向耦合器型高聚物光开关设计[J].光子学报,2005,34(3):361-365.
    [29]马春生,刘式墉.光波导模式理论[M].长春:吉林大学出版社,2006:322-329.
    [30] Chuan-Tao Zheng, Chun-Sheng Ma, Xin Yan, et al. Simulation and optimization of polymer directional coupler electro-optic switch with push-pull electrodes[J]. Optics Communications, 2008, 281, 3695-3702.
    [1] BRINKER, C J, SCHERER G W. Sol→gel→glass: I.Gelation and gel structure[J]. Journal of Non-Crystalline Solids, 1985, 70(3), 301-322.
    [2] WEN J, WILKES G L. Organic/inorganic hybrid network materials by the sol-gel approach[J].Chemistry of Materials, 1996, 8(8), 1667-1681.
    [3]黄剑锋.溶胶-凝胶原理与技术[M].北京:化学工业出版社,2005,58.
    [4] West J. K., Hench L. L. The Sol-Gel process[J]. J Chemical Review.1990, 90: 33-72.
    [5] Sandhya K. Yesodha, Chennakattu K. Sadashiva Pillai, Naoto Tsutsumi. Stable polymeric materials for nonlinear optics: a review based on azobenzene systems[J]. Progress in Polymer Science, 2004, 29(1), 45-74.
    [6] Ging-Ho Hsiue, Rong-Ho Lee, Ru-Jong Jeng. A New Class of Organic?Inorganic Sol?Gel Materials for Second-Order Nonlinear Optics[J]. Chem. Mater., 1997, 9 (4), 883–888.
    [7] Vladimir S. Mylnikov, Photoconducting polymers[M], Heidelberg: Springer Berlin, 1994.
    [8] Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood. Hybrid cross-linkable polymer/sol-gel waveguide modulators with 0.65 V half wave voltage at 1550 nm [J], Nature Photonics, 2007, 1, 180-185.
    [9] Buestrich R, K ahlenberg F, et al., Ormocers for Optical Interconnection Technology[J]. J. Sol-Gel Science and Technology, 2001, 20, 812186.
    [10] KIM H K, KANG S-J, CHOI S-K, et al. Highly efficient organic/inorganichybrid nonlinear optic materials via sol–gel process: synthesis,optical properties,and photobleaching for channel waveguides[J]. Chem. Mater., 1999, 11(3), 779-788.
    [11] Lu P., Li J., Hua J.L., Qin J.G., Qin A.J., Ye C., Two novel fluorinated poly(arylene ether)s with pendant chromophores for second-order nonlinear optical application [J]. Maeromolecules,2004,37, 7089-7096.
    [12] Y.B. XIE, X.Z. LI. Preparation and characterization of TiO2/Ti film electrodes by anodization at low voltage for photoelectrocatalytic application[J]. Journal of Applied Electrochemistry, 36(6), 663-668.
    [13]冀勇斌,李铁虎,林起浪,王小宪,王文志.溶胶-凝胶法在材料制备中的应用[J].化工中间体,2005,1:31-33.
    [14]吴腊英,李长江.纳米二氧化钛粉末的溶胶-凝胶法合成及晶相转化[J].无机化学学报,2002,18(4):399-403.
    [15] M. Aizawa, Y. Nosakaa, N. Fujiia. Preparation of TiO2-SiO2 glass via sol-gel process containing a large amount of chlorine[J]. Journal of Non-Crystalline Solids, 1994, 168, 49-55.
    [16] Takeshi Kijima, Hiroshi Ishiwara. Preparation of Ferroelectric Thin Films Using Sol-Gel Solutions Dissolved in Supercritical Carbon Dioxide[J]. Jpn. J. Appl. Phys., 2003, 23, 404-405.
    [17] J. R. Duffield, F. Marsicano, D. R. Williams. Chemical speciation modelling and thermodynamic database compilation—I. Data uncertainties[J]. Polyhedron, 1991, 10(10), 1105-1111.
    [18] F. Michelotti, E. Toussaere, Pulse poling of side-chain and croslinkable copolymers[J]. J. Appl. Phys., 1997, 82(11), 5728-5744.
    [19] J. W. Wu. Birefringent and electro-optic effects in poled polymer films: steady-state and transient properties[J].JOSA B, 1991, 8(1), 142-152.
    [20]徐建东,王瑞波,张雷,李淳飞.非线性光学聚合物的电晕极化与弛豫特性研究[J].光子学报,1995,24(1):30-35.
    [21] Siegfried Bauer. Poled polymers for sensors and photonic applications[J]. Journal of Applied Physics, 1996, 80(10): 5531-5558.
    [22] Raquel Alicante, Rafael Cases, Patricia Forcén, Luis Oriol, Belén Villacampa. Synthesis and Nonlinear Optical Properties of Side Chain Liquid Crystalline Polymers Containing Azobenzene Push-Pull Chromophores[J]. JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2010, 48(1): 232-242.
    [23] Sandhya K. Yesodha, Channekattu K. Sadashiva Pillai, Naoto Tsutsumi. Stable polymeric materials for nonlinear optics: a review based onazobenzene systems[J], Progress in polymer science, 2004, 29, 45~74.
    [24] R. H. Page, M. C. Jurich, B. Reck, A. Sen, R. J. Twieg, J. D. Swalen, G.C. Bjorklund, C.G. Willson. Electrochromic and optical waveguide studies of corona-poled electro-optic polymer films[J]. JOSA B, 1990, 7(7), 1239-1250.
    [25] B. L. Anderson, R. C. Hall, B. G. Higgins, G. A. Lindsay, P. Stroeve, S. T. Kowel, Quadratically enhanced second harmonic generation in polymer-dye Langmuir–Blodgett films: a new bilayer architecture[J]. Synth. Metals., 1989, 28, 683-688.
    [26]史伟,房昌水,潘奇伟等.简单反射法测量聚合物薄膜线形电光系数的研究[J].物理学报,2000,49(2):262-266.
    [27] C. C. Teng, H. T. Man. Simple reflection technique for measuring the electro-optic coefficient of poled polymers[J]. Applied Physics Letters, 1990, 56(18), 1734-1736.
    [28] Yi Jiang, Zhuangqi Cao, Qishun Shen, Xiaoming Dou, Yingli, ChenImproved attenuated-total-reflection technique for measuring the electro-optic coefficients of nonlinear optical polymers[J]. J. Opt. Soc. Am. B, 2000, 17(5), 805-808.
    [29] Shuto, Yoshito Amano, Michiyuki, Reflection measurement technique of electro-optic coefficients in lithium niobate crystals and poled polymer films[J]. Journal of Applied Physics, 1995, 77(9), 4632-4638.
    [30] W. H. Wong, E. Y. B. Pun. Polymeric waveguide wavelength filters using electron beam direct writing[J]. Appl. Phys. Lett., 2001, 79, 22.
    [1] M. Haruna, J. Koyama. Thermooptic deflection and switching in glass[J]. Appl. Optics Lett., 1982, 21(19), 3461-3465.
    [2] M. Haruna, Koyama. Thermo-optic effect in LiNbO3 for light defection and switching[J]. Electron. Lett., 1981, 17(22), 842-844.
    [3]马传国,容敏智,章明秋.导热高分子复合材料的研究与应用[J].材料工程,2002,7:40-45.
    [4] J. F. Nye. Physical Properties of Crystals. Oxford University Press, Oxford, 1979.
    [5] R. M. Waxler. Polymeric thermo-optic space switches for optical communications[J]. Appl. Opt., 1997, 18(1): 101-104.
    [6] D. W. Van Krevelen. Properties of polymers[M]. Elsevier, Amsterdam, 1990, 417.
    [7] O. G. Ramer. Integrated Optic electro-optic modulator electrode analysis[J], IEEE J. Quantum Electron., 1982, 18(3), 386-392.
    [8] Jianyi Yang, Qingjun Zhou, Ray T. Chen. Polyimide-waveguide-based thermal optical switch using total-internal-reflection effect[J]. Applied Physics Letters, 2002, 18(16), 2947-2949.
    [9] L. B. Soldano, E. C. M. Pennings, Optical multi-mode interference devices based on self-imaging: Principles and applications[J]. IEEE J. Lightwave Technol., 1995, 13(4), 615-627.
    [10] M. Bachmann, P. A. Besse, H. Melchior. Overlapping-image multimode interference couplers with a reduced number of self-images for uniform and nonuniform power splitting[J]. Appl. Opt., 1995, 30, 6898-6910.
    [11] N. Keil, H. H. Yao, C. Zawadzki, K. Losch, K. Satzke, W. Wischmann, J.V. Wirth, J.Schneider, J. Bauer, M. Bauer. Hybrid polymer/silica vertical coupler switch with<-32 dB polarization independent crosstalk[J]. Electron. Lett., 2001, 37(2): 89-90.
    [12] L. B. Soldano, E. C. M. Pennings. Optical multi-mode interference devices based on self-imaging: Principles and applications[J]. IEEE Journal of Lightwave Technology, 1995, 13(4), 615-27.
    [13] Abdulaziz M. Al-Hetar, Abu Sahmah M. Supa’at, A.B. Mohammad, I. Yulianti. Crosstalk improvement of a thermo-optic polymer waveguide MZI-MMI switch[J]. Optics Communications, 2008, 281, 6764-5767.
    [14] J. M. Cariou, J. Dugas, L. Martin, P. Michel. Refractive-index variations with temperature of PMMA and polycarbonate[J]. Appllied Optics, 1986, 25(3), 334-346.
    [15] Yasuhiro Hida, Hidekatsu Onose, Saburo Imamura. Polyer waveguide thermooptic switch with low electric power consumption at 1.3μm[J]. IEEE Photonics Technology Letters, 1993, 5(7), 782-784.
    [16] Alberto A. Bilotti. Static Temperature Distribution in IC Chips with Isothermal Heat Sources[J]. IEEE Transactions on Electron Devices, 1974, 21(3), 217-226.
    [17] Y. Jaluria, K. E. Torrance. Computational Heat Transfer, second ed., Taylor & Francis, NY, 2003.
    [1] Chen L, Zhu Y M, Zhang D W, et al.. Investigation of the limit of lateral beam shifts on a symmetrical metal-cladding waveguide[J]. CHINESE PHYSICS B, 2009, 18(11), 4875-4880.
    [2] Lan Y F, Peng W C, Lo Y H, et al.. Durability under mechanical bending of the indium tin oxide films deposited on polymer substrate by thermionically enhanced sputtering[J]. ORGANIC ELECTRONICS, 2010, 11(4), 670-676.
    [3] Zhang X Y, Tang Q L, Yi X J, et al.. Cylindrical microlens array fabricated by argon ion-beam etching[J]. OPTICAL ENGINEERING, 2000, 39(11), 3001-3007.
    [4]黄汉尧,李乃平.半导体器件工艺原理[M].北京:国防工业出版社, 1983,64-71.
    [5]刘秀喜,高大江.半导体器件制造工艺常用数据手册[M].北京:电子工业出版社, 1992, 113-118.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700