原油集输系统能耗分析与综合优化设计软件开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一方面,油田在产能建设过程中一般会采用加密井网的办法来保证原油稳产,因而,需要合理布局建设集输管网;另一方面,油田进入高含水、特高含水开发阶段后,地面生产系统负荷率普遍下降,运行效率降低,系统能耗升高,原油生产成本呈逐年上升趋势,必须进行能耗分析与能量最优利用研究,优化工艺流程。由此可见,研究开发“原油集输系统能耗分析与综合优化设计”应用软件,对于控制原油生产中能耗上升,降低原油生产成本,实现油田地面工程高效、低耗运行和科学管理将起到重要作用。
     针对油田产能建设中加密油和新建管网与已建管网的布局方案优化设计问题,本文在建立优化模型过程中试图使尽可能多的新增节点进入已建管网系统,来减少投资和提高原油系统的负荷率。应用开发的软件对大庆油田第三采油厂北二西某区块的优化结果表明,2号转油站的负荷率提高了23.28%,脱水站的负荷率提高了5.12%。建立了单管树状和掺水集输管网多目标参数优化设计的数学模型,并用线性加权法将多目标优化问题转化为单目标优化问题,应用分层优化策略对模型进行求解。实例计算结果表明,与优化前相比,管网总投资降低5.64%,热力能耗降低39.55%。
     将原油集输系统划分为联合站、转油站和管网三个子系统,并建立了系统能量平衡模型和能耗评价指标体系。应用开发的软件对大庆油田第三采油厂以北二二脱水站为中心的集输系统用能现状和能损分布规律进行了研究,结果表明热能利用率低是该地区集输系统能量利用的薄弱环节。该集输系统经过节能改造后,平均站效提高3.91%,平均管线能损率降低1.81%,热能利用率提高3.76%;电能利用率提高4.32%,年节省电量8.22×10~5 kW·h,年节省天然气3.83×10~5 m3。
     将灰色系统理论中的灰色关联分析法应用于原油集输系统能耗影响因素分析中,实现了对集输系统能耗影响因素的定量分析。实例计算结果表明,对于所分析的集输系统而言,影响平均站效的主要因素是有效热能占总能耗的百分数。运用灰色系统预测理论中的GM(1,1)模型预测原油集输系统能耗状况,并对整个预测过程设计了适合计算机操作的预测流程,编制了相应的软件,实现了程序化预测。实例计算结果表明,模型的模拟精度可以达到二级,具有理想的预测效果。
On the one hand, measure of infilling well pattern has been adopted to guarantee stable production of crude oil in the oilfield during the increased production construction state. Therefore it’s badly in need of reasonable layout and construction of gathering network. On the other hand, as the oilfield is in high water and extra-high water cut stage, the problems, such as widespreadly declining load rate of surface producing system, decreasing operation efficiency, rising energy consumption of gathering system and increasing cost of crude oil production, are getting more serious. Therefore, it’s necessary to opitmize process links by research of energy consumption analysis and energy optimal utilization. Thus, research and development of“energy consumption analysis of oil gathering system and integrated optimizing design”application software will play an important role in controling energy consumption of oil production, reducing oil production cost and achieving efficient, low consumption, orderly adjustment and scientific management of oil fields surface engineering.
     In order to solve the problem of layout scheme optimization design of infill well, new construction pipeline and old pipeline network system, the strategy of making as many new nodes as possible flow into old pipeline system is adopted in optimization model to reduce investment and improve system load rate. The optimization results of a block of Daqing Oilfield is that load rate of the secend transfer station increases 23.28% and load rate of the dehydration station increases 5.12%. Firstly, multi objective parameter optimization model of single-pipe tree and water-mixing gathering pipeline network is built; Secondly, multi-objective optimization model is changed into single-objective by using linear weighting method; Then single- objective optimization is solved by multi-level optimization strategy; Lastly, network optimized design of a block of gathering pipeline network is conducted by the use of of software, and result is that pipeline construction investment reduces 5.64%, thermal energy consumption reduces 39.55%.
     Oil gathering and transportation system is divided into central gathering station, transfer station and dehydration station subsystem. Energy balance model and index system of energy consumption evaluation of each subsystem is separately built. Research on present situation of energy consumption and regularity of distribution of gathering system, the center of which is a dehydration station in Oil Recovery Plant No.3, Daqing Oilfield Corp.Ltd., is done by the use of the software. The results show that low heat energy utilization rate is the energy utilization weak links of the system in the region. After energy-saving reconstruction, average station efficiency of the system increases 3.91%, average pipeline energy dissipation rate reduces 1.81%, average heat energy utilization rate increases 3.76%, average electric energy utilization rate increases 4.32%, electricity-saving quantity per year is 6.58×10~5 kW·h and gas-saving quantity per year is 2.33×10~5 m3.
     Gray relative analysis method is used into analyzing energy consumption influential factors of oil gathering and transportation system. As a result of this, analysis of the main energy consumption influential factors of the system is done quantificationally. The result of case calculation shows percentage of effective thermal energy in total energy consumption is the main influential factor of average station efficiency of the methoded system.GM (1, 1) model of gray system theory is used into predicting energy consumption level of oil gathering and transportation system. Predicting process of the whole prediction is designed which is fit for computer operation and a corresponding software is developed. Thus, the whole prediction can be done by the computer. The result of case calculation shows the model calculation precision can reach the second level and the prediction result is credible. Key Words:production construction; parameters optimization; energy consumption
引文
[1]孙宁.油田企业能耗评价与优化决策研究[D].北京:中国石油大学,2008.
    [2]王兴峰,赵兰水,葛家理等.原油集输网络系统优化软件的开发[J].西安石油学院学报,2001,16(5):33-36.
    [3]魏立新.基于智能计算的油田地面管网优化技术研究[D].大庆:大庆石油学院,2005.
    [4]喻西崇,冯叔初,李玉星.优化集输管网系统的有效方法[J].中国海上油气(工程),2000,12(3):31-35.
    [5]黄志潜,A.Seireg.石油与天然气管道工程最优化技术的综述[J].油气储运,1987,6(2):1-6.
    [6] Hax, A. C. Natural Gas Transmission System Optimization : A Mathematical programming Model, PhD Dissertation[J].University of California, Berkeley, 1967.
    [7] Wong, P. J. and Larson, R. E. Optimization of Natural-Gas Pipeline Systems Via Dynamic Programming[J].IEEE Transaction on Automaic Control, 1968, 13(5) : 475-481.
    [8] Rothfarb, B. , Frank, H. , Rosenbaum, D. M. , Steiglitz, K. and Kleitman, D. J. Optimal Design of Offshore Natural-Gas Pipeline Systems[J].Operations Research, 1970, 18: 992-1020.
    [9] Flanigan, O. Constrained Derivatives in Natural Gas Pipeline System Optimiza- tion[J].Journal of Petroleum Technology, 1972: 549-556.
    [10] Edgar, T. F., Himmelblau, D. M. and Bickel, T. C. Optimal Design of Gas Transmission Networks[J].Society of Petroleum Engineering Journal, 1978: 96-104.
    [11] Bhaskaran, S. and Salzborn, F. J. M. Optimal Diameter Assignment for Gas Pipeline Networks[J] . Journal of Australia Mathematics Society, 21 (Series B), 1979: 129-144.
    [12]朱琦.关于长距离输气干管经济管径的研究[J].油气储运,1985,4(5):1-7.
    [13]杨廷觉.输气管道的简单经济模型[J].油田地面工程,1986,5(6):8-13.
    [14]李书文,姚亦华.天然气集输网络最优化——静态设计[J].天然气工艺,1988,8(2):83-89.
    [15]刘扬,关晓晶.油气集输系统优化设计研究[J].石油学报,1993,14(3):110-117.
    [16]刘扬,关晓晶.油气集输管网系统多目标优化设计[J].石油规划设计,1993,4(1):26-28.
    [17]魏立新,刘扬.油气集输系统生产运行方案优化方法[J].大庆石油学院学报,29(3):47-49.
    [18]刘扬,关晓晶.环形集输管网拓扑优化设计[J].天然气工业,1993,13(2):71-74.
    [19]冷建成,刘扬,赵洪激.基于神经网络方法的油气集输管网拓扑优化设计[J].石油规划设计,2001,12(6):7-9.
    [20]刘扬,魏立新,李长林,等.油气集输系统拓扑布局优化的混合遗传算法[J].油气储运,2003,22(6) :33-36.
    [21]赵洪激,刘扬,高林森.树状双管掺热水集输系统参数优化技术[J].石油学报,1997,18(1):103-110.
    [22]魏立新,刘扬,付云霞,等.油气集输系统规划方案优化计算[J].油气储运,2002,21(4):28-30.
    [23]黄善波,徐明海,陈泽芳,等.稠油油田双管掺稀油集输系统的优化设计[J].油气储运,2000,19(4):11-14.
    [24]詹华,姚士洪.对我国能源现状及未来发展的几点思考[J].能源工程,2003,3:1-4.
    [25]杨秋宝.新世纪中国能源可持续发展:战略背景、战略挑战和战略思路[J].中共云南省委党校学报,2006,7(1):75-78.
    [26]王功礼,顾利民,王雷.中国石油集团公司能耗现状与节能对策[J].中外能源,2009,14(2):106-110.
    [27]顾利民,王功礼,王雷.中国石油能耗现状与节能对策[C].第十届中国科协年会论文集(二),2008.
    [28]刘占广,张波,马庆等.滩海油田高效油水分离装置[J].石油规划设计,2000,11(6):23-26.
    [29]王平全.油田磁化技术研究与应用[J].西南石油学院学报,1994,16(3):129-134.
    [30]陈继君,韩信.磁化技术在油气集输中的应用研究[J].油田地面工程,1990,9(5):23-27.
    [31]迟尚忠.磁技术在原油生产中的研究与应用[J].节能,1991,4:6-8.
    [32]宋双勇,杜怀栋.油田联合站系统能耗测试及其节能途径的探讨[J].石油工业技术监督,2008,3:52-54.
    [33]马凯.树立和落实科学发展观推进经济增长方式的根本性转变[J].宏观经济管理,2004,6:3-11.
    [34]赵洪激,刘扬.油气集输系统站内设备优选软件[J].天然气与石油,1998,16(3):53-54.
    [35]赵洪激,刘扬.油气集输系统优化设计软件[J].天然气与石油,2000,18(1):10-14.
    [36]张兰双,魏立新,王文秀等.原油集输系统效率计算与能耗分析软件开发[J].油气田地面工程,2005,24(11):13-15.
    [37]李徐佳,李东明,王志国.石油生产耗能分析软件开发与展望[J].应用能源技术,2006,9:42-44.
    [38]周士华,张孝文,金德馨等.开发“低渗透油田总体规划方案优化软件”的构思[J].石油规划设计,1998,6:19-22.
    [39]郭荷清.现代软件工程——原理、方法与管理[M].广州:华南理工大学出版社,2005.
    [40]叶俊民.软件工程[M].北京:清华大学出版社,2006.
    [41]李维.关于版权意义下的软件分类和比较[J].科技与法律,1999,2:45-48.
    [42] GB/T 13702-92.计算机软件分类与代码[S].中华人民共和国国家标准,1992,1-4.
    [43]覃征,何坚,高洪江等.软件工程与管理[M].北京:清华大学出版社,2005.
    [44]李春潮,许舟平.软件工程的进化论[J].程序员,2008,9:53-55.
    [45]张海藩.软件工程(第二版)[M].北京:人民邮电出版社,2006.
    [46]万江平.软件工程[M].北京:清华大学出版社,北京交通大学出版社,2006.
    [47] GB/T19003-2008.软件工程GB/T19001-2000应用于计算机软件的指南[S].中华人民共和国国家标准,2008,1-31.
    [48] GB/T8566-2007.信息技术——软件生存周期[S].中华人民共和国国家标准,2007,8-22.
    [49]陈松乔,任胜兵,王国军.现代软件工程[M].北京:清华大学出版社,2005.
    [50]张友生,李雄.软件开发模型研究综述[J].计算机工程与应用,2006,3:109-115.
    [51] H A Partsch et al.Specification and Transformation of Programming [M].Springer-Verlag,1990.
    [52] Boehm B. Anchoring the Software Process[J].IEEE Software,1996:7:73-82.
    [53] Davis A,P Sitaram. Concunrrent Process Model for Software Development [J].Software Engineering Notes,ACM Press,1994,4:38-51.
    [54] Sheleg W.Concurrent Engineering: A New Paradign for C/S Development [J].Application Development Trends,1994,6:28-33.
    [55]郭荷清.现代软件工程——原理、方法与管理[M].广州:华南理工大学出版社,2005.
    [56]操云甫,赵俊文,韩永生等.面向大规模定制的软件开发模式[J].计算机研究与发展,2002,39(5):593-598.
    [57] A W Brown,K C Wallau. The current state of CBSE[J].IEEESoftware,1998,15(5):37~46.
    [58] Peter J Sackett, Douglas J Maxwell. Customizing manufacturing strategy [J].Integrated Manufacturing Systems,1997, 8(6):359~364.
    [59]何昭,李传湘,崔巍.基于面向对象框架的软件开发方法[J].计算机工程,2002,28(4):5-6.
    [60]刘飞军,汤林,王常莲.油气田地面工程面临的形势及对策探讨[J].石油规划设计,2010,21(3):1-3.
    [61]李杰训.大庆老油田地面系统优化调整措施及效果[J].石油规划设计,2007,18(3):1-4.
    [62]倪瑛.喇嘛甸油田产能建设的优化调整[J].油气田地面工程,2008,27(12):30-31.
    [63]张传绪,李福章,刘喜文等.大庆西部外围老油田地面建设系统优化调整[J].石油规划设计,2007,18(3):41-43.
    [64]冯叔初,郭揆常等.油气集输与矿场加工[M].东营:中国石油大学出版社,2006.
    [65]张卉.基于SCADA系统的供水管网模拟与综合管理系统开发[D].西安:西安建筑科技大学,2008.
    [66]李宝成.边远小区块油田产能建设的实践与探索[J].油气田地面工程,2000,19(5):3-5.
    [67]侯进才,李庆国,魏立新等.特高含水期脱水站简化优化改造的实践与分析[J].节能,2010,3:57-59.
    [68]魏立新,刘扬,付云霞等.油气集输系统新增产能建设拓扑优化方法研究[J].石油工程建设,2003,29(1):5-8.
    [69]刘扬.石油工程优化设计理论及方法[M].北京:石油工业出版社,1994.
    [70]杨光炼,赵锐,董军萍等.油气集输管网规划现状[J].油气储运,2006,25(9):9-13.
    [71]邢晓凯,陈永昌,马重芳.输油管道及保温层的同步设计[J].煤气与热力,2004,24(12):692-695.
    [72]王珊,萨师煊.数据库系统概论(第四版)[M].北京:高等教育出版社,2007.
    [73]尹买华.数据库管理系统[M].北京:清华大学出版社,2004.
    [74]杨筱蘅.输油管道设计与管理[J].东营,中国石油大学出版社,2006.
    [75] GB50350-2005,油气集输设计规范[S].中华人民共和国国家标准,2005,40-51.
    [76]油田油气集输设计技术手册(上册)[M].北京,石油工业出版社,1994,688-764.
    [77]崔慧.埋地热油管道总传热系数的研究[J].油气储运,2005,24(12):17-21.
    [78]《现代应用数学手册》编委会.运筹学与最优化理论卷[M].北京:清华大学出版社,1998.
    [79] Beggs H.D. and Brill J.P. A Study of Two Phase Flow in Inclined Pipes[J]. J.P.T.,1973,5.
    [80] Dukler A.E., Wicks M. and Cleveland R.G. Frictional Press Drop in Two Phase Flow[J]. AICHE J.,1964,1.
    [81] Lockhart R.W. and Martinelli R.C., Proposed Correlation of Data for Isothermal Two-Phase, Two-Component Flow in Pipes[J]. Chem Eng. Prog., 1949,1.
    [82] Tailel Y. and Dukler A.E., A Model for Predicting Flow Regime Transitions in Horizontal and Near Horizontal Gas-Liquid Flow[J]. AICHE J., 1976.
    [83] Orkiszewski J. Predicting Two-Phase Pressure Drops in Vertical Pipe[J]. J.P.T., 1967.
    [84] Duns H.Jr. and Ros N.C.J. Vertical Flow of Gas and Liquid Mixtures in Well[J]. Sixth World Petroleum Congress, Section 2, Paper No.22, Frankfurt, 1963.
    [85]陈家琅.石油气液两相管流[M].北京:石油工业出版社,1989.
    [86]刘扬,洪激.油气集输管网节点参数矩阵方法研究[J].石油规划设计,1999,10(6):30-31.
    [87]魏立新,刘扬,任志平.油气集输管网节点参数计算方法[J].大庆石油学院学报,2003,27(4):79-83.
    [88]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,2005.
    [89]杨建军,刘扬.油田注水系统拓扑布局优化的混合遗传算法[J].数学的实践与认识,2006,36(10):93-99.
    [90]杨建军.油田注水系统智能优化方法研究[D].大庆:大庆石油学院,2006.
    [91] Holland, J.H . Concerning Efficient Adaptive Systems. In Yovits, M.C.,Eds.,Self-Organizing Systems, 1962,215-230.
    [92] Bagley, J.D. The Behavior of Adaptive Systems Which Employ Genetic and Correlation Algorithms. Dissertation Abstracts International, 1967,28(12) .
    [93] Cavicchio, D.J.. Reproductive Adaptive Plans. Proc. of the ACM 1972 Annual Conf.,1972, 1-11.
    [94] Goldberg. D.E. Genetic Algorithms in Search, Optimization and Machine Reading, MA: Addison Wesley, 1989.
    [95] Srinivas M, Patnaik L M. Adaptive Probabilities of crossover and mutation in genetic algorithms[J].IEEE Transactions on Systems, Man and Cybernetics, 1994,24(4):656-667.
    [96]魏立新,侯进才,赵健等.不加热埋地集油管网参数优化设计[J].科学技术与工程,2010,24(10):5880-5884.
    [97]马茹.油气集输系统用能分析评价[D].北京:中国石油大学,2009.
    [98]龙凤乐,杨肖曦,李松岩.油气集输系统能量分析[J].油气储运,2005,24(12):58-60.
    [99] SY/T 5263-2006.油田生产系统能耗测试和计算方法[S].中华人民共和国石油天然气行业标准,2006,1-14.
    [100]袁永惠.油气集输能量系统的热力学评价与分析[D].大庆:大庆石油学院,2009.
    [101]秦曾煌.电工学(第五版)(上册)[M].北京:高等教育出版社,1999.
    [102] GBT 12497-2006.三相异步电动机经济运行[S].中华人民共和国国家标准,2006,1-10.
    [103] SYT 6381-1998.加热炉热工测定[S].中华人民共和国石油天然气行业标准,1998,1-4.
    [104]刘思峰,党耀国,方志耕.灰色系统理论及其应用[M].北京:科学出版社,2004.
    [105]罗运柏,于萍,宋斌等.用灰色模型预测变压器油中溶解气体的含量[J].中国电机工程学报,2001,21(3):65-69.
    [106]谷川,张岳.GM(1,1)灰色模型改进及其应用[J].海洋测绘,2008,28(3):35-37.
    [107] SY/T 5232-1999.石油工业应用软件工程规范[S].中华人民共和国石油天然气行业标准,1999,1-37.
    [108]陈灿煌.C++ Builder 6彻底研究[M].北京:中国铁道出版社,2003.
    [109]胡波,张昆.C++ Builder 6编程实例教程[M].北京:北京希望电子出版社,2002.
    [110]唐振军.用图片美化软件界面的若干方法[J].电脑编程技巧与维护,2010,11:71-75.
    [111]卢世浪,周惠成.InstallShield安装程序中的数据库及控件注册[J].辽宁工程技术大学学报(自然科学版),2001,20(2):198-200.
    [112]尹平,虚聚常,张慧颖.软件测试与软件质量评价[M].北京:国防工业出版社,2008.
    [113]张敬,宋广军,赵硕等.软件工程教程[M].北京:北京航空航天大学出版社,2003.
    [114]文斌,刘长青,田原.软件工程与软件文档写作[M].北京:清华大学出版社,北京交通大学出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700