侵蚀退化赤红壤不同生态恢复措施土壤肥力的变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
赤红壤是福建东南沿海分布最广的地带性土壤,面积达61.544公顷,占
    全省面积的5.09%,由赤红壤成土性质决定其具有强烈的淋溶作用,加上分布
    区雨量丰富,降雨量相对集中、人口密集等特点,导致赤红壤水土流失相当严
    重,生态系统极度退化。在闽南侵蚀劣地上通过人工措施(稻草覆盖与客土等措
    施)而建成的生态果园是一种典型的果园生态系统,而种植湿地松生态恢复措施
    则是一种典型的人工林生态系统。
     本文以恢复生态学理论为指导,选择福建省诏安草仔坝小流域内不同荔枝
    果园治理模式(生态恢复措施Ⅰ:荔枝果园无客土稻草覆盖处理;生态恢复措
    施Ⅱ:荔枝果园客土(多)处理;生态恢复措施Ⅲ:荔枝果园客土(少)处理)
    和人工湿地松用材林(生态恢复措施Ⅳ:)为研究对象,以天然混交次生林(对
    照Ⅱ)和光板地(对照Ⅰ)为对照,对不同生态恢复措施下赤红壤的各项土壤
    肥力指标(土壤物理性质、土壤养分含量以及不同形态土壤碳含量等)进行对
    比研究,探讨坡地侵蚀赤红壤坡地果园治理与坡地用材林治理的生态恢复效果,
    试图为坡地侵蚀赤红壤的生态恢复提供指导。
     研究结果表明:
     (1)不同措施坡地赤红壤的土壤物理性质都得到不同程度的改善,但持水
    性能最高的措施Ⅰ比对照Ⅰ仅高5.6%,相差并不多,表明赤红壤的持水性能在
    短时间内是很难恢复的。
     (2)稻草覆盖措施下的生态果园土壤微生物数量、土壤有机碳、土壤有效
    养分(速效N、P、K)都普遍得到提高。而客土措施与湿地松用材林虽然不同
    程度的改变了土壤生态环境,但效果并非稻草覆盖措施下的生态果园那么明显。
     (4)在土壤营养元素方面,全N,全P,全K的表层土含量顺序为:对照
    Ⅱ>措施Ⅰ>措施Ⅱ>措施Ⅲ>措施Ⅳ>对照Ⅰ。除对照Ⅰ外的各种措施土壤
    水解氮含量均在大于40 mg·kg~-1。,水解氮含量充足。根据所测的速效钾含量来
    看除对照、措施Ⅲ外,其余措施都测试出含量丰富的速效钾。而不同措施下的
    果园、湿地松、对照Ⅱ和对照Ⅰ土壤全磷变化范围在0.07-0.544 g·kg~-1之间,速
    效磷在0.072-18.40mg·kg~-1。范围内,差异极为显著。
     (5)把赤红壤0-10cm土层的全氮、全磷、全钾、速效氮、速效磷、速效
    钾、有机质等养分指标作为综合评价土壤肥力的指标,利用灰色关联法对土壤
The distribution of Latosolic red soil area is the widest in southeast coast in Fujian. It is up to (61.544 ) hectares, and accounts for 5.09% of the whole provincial area. Also, there is serious soil and water loss and degradation of ecosystems due to common high rainfall nature of the climate and fragile soils on steep slopes. Through artificial measure - Ecological orchard that with straw covering and soil dressing in the orchard is a kind of typical orchard ecosystem in the south of Fujian Province, and the ecology restoration measure of planting Pinus Elliottii is a kind of typical artificial forest ecosystem.In this study, soil physical properties, nutrient content and different soili organic C fractions were measured in orchard, Pinus Elliottii plantation, native mixed secondary forest and the bare land (control). This information is also important for further understanding of change in soil process and predicting consequences of soil fertility when ecology restoration measure has been done. The results showed that:(1) When different measure had been done in orchards, soil physicalproperties were improved. Water holding capacity was the highest intreatment I, but was only 5.6% higher than that in control I. This indicatedthat the restoration of water holding capacity of Latosolic red soil was slow.(2) In the straw covering orchard, amount of soil microorganism, contents of
    soil organic C and nutrient (including available N, P and K) all increased. This effect was also found in orchard where dressing soil measure had been done, and Pinus Elliottii plantation. While the soil fertility responses in the latter were not obvious.(3) The sequence of contents of soil total N, P and K was control II > treatment I > treatment II > treatment III ~> treatment IV> control I. Soil hydrolysable N content in different treatments was more than 40 mg-kg"1 except for control I. Also, various treatments had relatively higher available K content except for control and treatment III. The ranges of soil total P and available P contents in different ecosystems was 0.07-0.544 g-kg"1 and 0.072-18.40m g-kg'1 respectively. Significant difference in contents of total and available P among different treatments was found.5) Total N, total P, total K, hydrolysable N, available P, available K and soil organic matter at top 10cm soils serves as important indicators for soil fertility. The order of soil fertility in different treatments using grey relation analysis based on indicator mentioned above was treatment I (0.825)> treatment V ( 0.803)> treatment II (0.734)> treatment IV (0.529)> treatment III (0.495)> contrast I (0.333). The corresponding order for soil fertility using indicators of soil organic C, light fraction organic C, microbial biomass C and dissolved organic C at topsoil was treatment V (0.996 )> treatment I (0.797)> treatment III (0.522)> treatment IV (0.52) > treatment II (0.519)> control (0.333).
    In conclusion ,soil fertility has been greatly improved through different controlled measurement, and this effect was most obvious in measure of straw covering. Thus appropriate measurement should been made in orchard to prevent soil degradation.
引文
1.尚晓触,王鹏云,仇明华.浅析加入WTO后我国水果产的定位及对策[J].林业科技通讯,2001,(8):15-17.
    2.朱杨光,郝素琴.我国果业发展成就及存在问题与解决对策[J].中国果树,2000,(1):46-48.
    3.唐梁楠.用地与养地结合提高果园土训肥途径探讨[J].土壤肥料,1990,(5):26-29.
    4.牛自勉,吴文良,梁小娥,等.生态果园微循环的研究进展[J].中国农学通报,1998,14(6):46-49.
    5.黄炎和.侵蚀劣地果园套种绿肥对土壤肥力的影响[J].福建农业大学学报,1996,(2):204-207.
    6.杨玉盛、何宗明,林光耀,等.不同治理模式对严重退化红壤抗蚀性影响的研究[J].土壤侵蚀与水土保持学报,1996,2(2);32-37.
    7.余作岳,彭少麟.热带亚热带退化生态系统植被恢复生态学研究[M].广州:广东科技出版社,1996.
    8. Jordan W R, Gilpin M E, Aber J D. Restoration ecology: ecological restoration as a technique for basic research. In: Restoration ecology: Asynthetic approach to ecological research (Jordan W R, et al eds). Cambridge University Press, 1987
    9. Aber J D, Jordan W R. Restoration ecology: an enviroment middle ground. Bioscience, 1985, 35(7): 399
    10.康乐,马世骏主编.生态系统的恢复与重建现代生态学透视[M].科学出版社,1990.300-308
    11. Cairns, J.J. (Ed.). The Recovery process in damaged ecosystem[M]. Ann Arbor Science Publishers Inc. 1980
    12. Barrow, C.J. Land Degradation[M]. London: Cambridge University Press. 1991
    13. Sharma K. D. Degradational processes and land use[C]. In: Jain-BL; Kolarkar-AS (ed.); Joshi-DC (ed.) Rehabilitation-of-degraded-arid-ecosystem. 1992,77-84
    14. A. Miyawaki. Restoration of native forests from Japan to Malaysia[C]. In: Helmut Lieth, Martina Lohmann. Restoration of Topical Forest Ecosystems. Kluwer academic publishers. 1993, 5-24
    15. Berger, J.J. Ecological restoration and nonIndigenous plant species: a review[J].
     Restoration Ecology. 1993, 2(2): 74-82
    16.包维楷,刘照光,刘庆.生态恢复重建研究与发展现状及存在的主要问题[J].世界科技研究与发展,2001,23(1):44-48.
    17.张木匋.河田土壤保肥试验工作[J].福建水土保持,1990,(3)
    18.苏水金,林开旺,傅锡成,等.水土流失区建立草林植被的初步研究[J].福建农学院学报,1989,18(1):50-55.
    19.高传壁,刘永泉.黑荆树.水土保持林生态、经济效益研究[J].林业科学研究,1992,5(1):32-38.
    20.赵桂久,刘燕华,赵名茶.生态环境综合整治和恢复技术研究(第1集,第2集)[C].北京:科学技术出版社.1993,1995.
    21.刘良梧,龚子同.全球土壤退化评价[J].自然资源,1994,(4):26-29.
    22.赵其国.我国红壤的退化问题[J].土壤,1995,27(6):281-285.
    23.李育才主编.面向21世纪的林业发展战略[M].北京:中国林业出版社.1996.
    24.史德明,韦启潘,梁音.关于侵蚀土壤退化及其机理[J].土壤,1996,(3):140-144,164
    25.杨艳生,梁音,刘柏根.我国东南部水土流失区的开发型治理及其效益[J].土壤, 1996,4:194-197.
    26.赵跃龙编著. 中国脆弱生态环境类型分布及其综合整治[M].中国环境科学出版社.1999:118-122.
    27.赵晓英,陈怀顺,孙成权.恢复生态学一生态恢复的原理与方法[M].北京:中国环境科学出版社,2001.
    28.任海,彭少麟.恢复生态学导论[M].北京:科学出版社.2001.
    29.杨玉盛,何宗明,林光耀等.不同治理模式对严重退化红壤抗蚀性影响的研究[J].土壤侵蚀与水土保持学报,1996,2(2):36-42.
    30.阮伏水,朱鹤建著.福建省花岗岩地区土壤侵蚀与治理[M].北京:中国农业山版社,1997.
    31.万勇善,史德明,席承藩.南方花岗岩侵蚀区土壤退化的研究[J].水土保持学报,1991,5(3):80-87.
    32.金自学,谢宗平,谢晓容等.河西走廊生态系统退化特征研究[J].水土保持通报,2000,20(4):11-15.
    33.钟祥浩,罗辑.贡嘎山山地暗针叶林带自然与退化生态系统生态功能特征[J].山
     地学报,2001,19(6):201-206.
    34.章家恩,徐琪.生态退化的形成原因探讨[J].生态科学.1999,18(3):27-32.
    35.朱震达.土地荒漠化研究现状与展望[J].地理研究,1994,13(1):104-111.
    36.刘国华,傅伯杰,陈利顶等.中国生态退化的主要类型、特征及分布[J].生态学报,2000,20(1):13-19.
    37.包维楷,王春明.岷江上游山地生态系统的退化机制[J].山地学报,2000,18(1):57-62.
    38.杨玉盛,何宗明,邱仁辉等.严重退化生态系统不同恢复和重建措施的植物多样性和地力差异研究[J].生态学报,1999,19(4):490-494.
    39.杨玉盛,谢锦升,陈光水.亚热带山地侵蚀退化系统生态重建的探讨[J].水土保持学报,2000,14(6):51-55.
    40.杨玉盛,谢锦升,陈光水等.红壤侵蚀退化地生态恢复后C吸存量的变化[J].水土保持学报,2002,16(6):17-19.
    41.温远光.常绿阔叶林退化生态系统恢复过程物种多样性的发展趋势与速率[J].广西农业大学学报,1998,17(2):93-106.
    42.杨玉盛,何宗明,陈光水,等.不同生物治理措施对赤红壤抗蚀性影响的研究[J].土壤学报,1999,36(4):528-535.
    43.杨玉盛,何宗明,林光耀等.不同治理措施对闽东南沿海侵蚀性赤红壤肥力影响的研究[J].植物生态学报,1998,22(3):281-288.
    44.谢锦升,陈光水,何宗明等.退化红壤不同治理模式马尾松生长过程特点分析[J].水土保持通报,2001,21(6):24-27.
    45.谢锦升,黄荣珍,陈银秀等.严重侵蚀红壤封禁管理后群落的生物量及生产力变化[J].浙江林学院学报,2001,18(4):354-358.
    46.谢锦升,林瑞余,黄荣珍等.严重侵蚀红壤不同治理模式N、P养分循环的研究[J].水土保持学报,2001,15(3):16-19.
    47.谢锦升,林瑞余,黄荣珍等.严重退化红壤上恢复的马尾松-灌木混交林群落能量格局的研究[J].林业科学,200l,37(专刊1):131-136.
    48.谢锦升,林瑞余,江淼华等.严重侵蚀红壤不同治理模式群落能量的研究[J].水土保持学报,2001,15(6):66-69,103.
    49.谢锦升,杨玉盛,郭剑芬等.侵蚀红壤人工恢复的马尾松林水源涵养功能的研究
     [J].北京林业大学学报,2002,24(2):48-51.
    50.谢锦升,杨玉盛,陈光水等.封禁管理对严重退化群落养分循环与能量的影响[J]. 山地学报,2002,20(3):325-330.
    51.刘苑秋.亚热带红壤区生态退化及生态恢复研究综述[J].南京林业大学学报. 2000,24(增刊).
    52.朱震达.1993.中国土地沙质荒漠化[M].北京:科学出版社.
    53.孟光涛,方向京,郎南军,等.云南荒漠化土地现状及防治对策[J].水土保持通报,2000,.20(5):12-55.
    54.史玉虎,朱开宪.湖北省土地荒漠化防治途径探讨[J].水土保持通报,2000,20(1):5l-53.
    55.刘淑珍,黄成敏,张建平.云南干热河谷区土地荒漠特征与原因[J].中国沙漠,1996,16(1):1-7.
    56.董玉祥.中国北方荒漠化灾害危险度分区评价[J].地理学报,1997,52(2):146-153.
    57.朱俊风,朱震达.中国荒漠化防治[M].北京:中国科技技术大学出版社.1999.1-53.
    58.杨玉盛,叶旺,林建华.水保林对紫色土抗蚀性的影响[J].中国水土保持.1992,5:31-32.
    59.王维明.草仔坝小流域综合治理效益分析[J].水土保持研究,1997,4(1):16l-165.
    60.王维明.草仔坝小流域综合治理经济效益的灰色关联分析[J].福建水土保持,2003,6(2):49-52.
    61.田积莹,黄义瑞.子午岭连家砭地区土壤物理性质与土壤抗蚀性指标的初步研究[J].土壤学报,1964,12(3):286-296.
    62.刘进金.土壤受蚀性之定性定量[J].中华林学季刊,1984,17(1):93-105.
    63.蒋文伟,俞益武,姜培坤.湖州主要森林类型土壤肥力的灰色关联度分析与评价[J].生态学杂志,2002,21(4):18-21.
    64. ordan W. R., Gilpin M. E., Aber J. D. Restoration ecology: ecological restoration as a technique for basic research[C]. In: Restoration ecology: Asynthetic approach to ecological research (Jordan W R, et al eds). Cambridge University Press . 1987
    65.杨玉盛,何宗明,马祥庆等.论炼山对杉木人工林生态系统影响的利弊对策[J].自然资源学报,1997,11(2):153-159.
    66. Paul, E.A., Dynamics of organic matter in soil. Plant Soil, 1984, 76:275-285.
    67. Christensen B T. Physical fraction of soil and organic matter in primary particle size and density separates. Advances in Soil Science. Springer Verlag, New York,Ine,1992, 20:1-90..
    68. Bernoux M, Arrouays D, Cerrir C C & Bourennane H. Modeling vertical distribution of carbon in oxisols of the western Brazilian amazon (rondonia).Soil Science,1998,163:941-951.
    69. Wang Y & Ronald A. The impacts of land use change on C turnover in soils. Global Biogeochemical Cycles, 1999,13(1): 47-57.
    70. Solomond D, Lehmann J and Zech W H. Use effects on soil organic matter properties of chromic luvisols in semiarid northern Tanzania: carbon, nitrogen, lignin and carbohydrates. Agriculture, Ecosystems and Environment, 2000, 78: 203-213.
    71. Camberdella C A & Elliott E T. Methods for physical separation and characterization of soil organic fractions. Geoderma, 1993,56:449-457.
    72. Bernoux M, Arrouays D, Cerrir C C & Bourennane H. Modeling vertical distribution of carbon in oxisols of the western Brazilian amazon (rondonia).Soil Science,1998,163:941-951.
    73. Wang Y & Ronald A. The impacts of land use change on C turnover in soils. Global Biogeochemical Cycles, 1999,13(1): 47-57.
    74. Solomond D, Lehmann J and Zech W H. Use effects on soil organic matter properties of chromic luvisols in semiarid northern Tanzania: carbon, nitrogen, lignin and carbohydrates. Agriculture, Ecosystems and Environment, 2000, 78: 203-213.
    75. Greenland D J and Ford G W. Separation of partially humified organic materials from soils by ultrasonic vibration. 8th Int. Congr. Soil Sci. Trans, 1964, 3: 137-148.
    76. Scheffer B. Stabilization of organic matter in sand mixed cultures. In Soil organic matter studies, Int. Atomic Energy Agency, Vienna, Austria, 2: 359-363.
    77. Spycher G, Sollins P, Rose S. Carbon and nitrogen in the light fraction of a forest soil, vetical distribution and seasonal patterns. Soil Science, 1983, 135(2): 79-87
    78.倪进治,徐建民,谢正苗.土壤生物活性有机碳库及其表征指标的研究[J].植物营养与肥料学报,2001,7(1):56—63
    79.吴建国,张小全,王彦辉。徐德应.土地利用变化对土壤物理组分中有机C分配的影响[J].林业科学,2002,38(4):19—29.
    80. Boone R D. Light-fraction soil organic matter: origin and contribution to net nitrogen mineralization. Soil Biol. Biochem, 1994, 26: 1459-1468.
    81.沈宏,曹志洪.长期施肥对不同农田生态系统土壤有效碳库及碳素有效率的影响[J].热带亚热带土壤科学,1998,7(1):1-5
    82.沈宏,曹志红,胡正义.土壤活性有机碳的表征及其生态效应[J].生态学杂志,1999.18(3):32-38
    83. Powlson, D. S., P.C. Brooles, and B.T.Christensen. 1987. Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biol.Biochem, 19 :159-164.
    84. Sparling G P. Soil microbial biomass, activity and nutrient cycling as indicators of soil health. In Pankhurst C E, Doube B M, Gupta V V S R ed. Biological Indicators of Soil Health. CAB INTERNATIONAL, 1997, 97-119.
    85. Pankhurst C E. Biological indicators of soil health and sustainable productivity. In Greenland D J, Szabolcs I. Ed. Soil Resilience and Sustainable Land Use, 1994, 331-351.
    86. Marumoto T.J. and Domsch K.H. Mineralization of nutrients from soil microbial biomass. Soil Biol. Biochem, 1982,14:469-475.
    87. Gregorich F.G. and Ling B.C. Fertilization Effects on Soil Organic Matter Turnover and Corn Residue C Storage. Soil Sci. Soc.Am.J, 1996,60:472-476.
    88. Wolters V. and Joergensen R.G. Microbial carbon turnover in beech forest soils at different stages of acidification. Soil Biology and Biochemistry, 1991,23:897-902.
    89. Adams T. McM. and R.J.Laughlin.The effects of agronomy on the carbon and nitrogen contained in the soil biomass.J.Agric.Sci.(Cambridge) ,1981,97:319-327.
    90. Smith, J.L., and E.A.Paul. The significance of soil microbial biomass estimates. In Jean-Marc Bollag and G.Stotzky (ed.) Soil biochemistry, Marcel Dekker.New York. 1990, 6: 357-396.
    91.俞慎,李勇,王俊华等.土壤微生物生物量作为红壤质量生物指使的探讨[J].土壤学报,1999,36(3):413-421.
    92.姜培坤.徐秋芳.俞益武.微生物生物量碳作为林地土壤肥力指标[J].浙江林学院学报2002,19(1):17-19.
    93.钟哲科,高智慧.杨树、水杉林带枯落物对土壤微生物c、N的影响[J].2003,39(2):153一157.
    94. Bauhus J, Pare D, Cote L. Effects of tree species, stand age and soil type on soil microbial biomass and its activity in a southern boreal forest. Soil Biol. Biochem., 1998, 30: 1077-1089.
    95. Van Veen J A, Ladd J N, Martin J K, Amato M. Turnover of carbon, nitrogen and phosphorus through the microbial biomass in soils incubated with 14C-, 15N- and ~32P-labeled bacterial cells. Soil Biol. Biochem., 1987, 19: 559-565.
    96. Van Veen J A, Merckx R, van de Geijn S C. Plant- and soil related controls of the flow of carbon from roots through the soil microbial biomass. Plant and Soil, 1989, 115: 179-188.
    97. Merckx R, Hartog D A, van Veen J A. Turnover of root-derived material and related microbial biomass formation in soils of different texture. Soil Biol. Biochem., 1985, 17: 565-569.
    98. Bowden R D, Nadelhoffer K J, Boone R D, et al. Contributions of above ground litter, below ground litter, and root respiration to total soil respriation in a temperate mixed hardwood forest. Can. J. For. Res. , 1993, 23(7): 1402-1407.
    99. Ladd J N, Amato M, Zhou L K.Differential effects of rotation,plant residues and nitrogen fertilizer on microbial biomass and organic in Australian Alfisol. Soil Biol & Biochem, 1994,26:821-831.
    100.罗庆成.等.灰色关联分析与应用,江苏科学技术出版社[M].1989,8(1)2.
    101.邓聚龙.灰色系统理论教程,华中理工大学出版社[M].1990,11(1).
    102.杨玉盛.何宗明.邹双全等.格氏拷天然林与人工林根际土壤微生物及其生化特性差异的研究[J],生态学报。1998,18(2):198—202.
    103.杨玉盛,刘艳丽,陈光水,李 灵.格氏拷天然林与人工林土壤非保护性有机C含量及分配[J].生态学报,2004 24(1):1-8.
    104.彭少麟.热带亚热带恢复生态学研究与实践[M].北京:科学出版社.2003.
    105.森林土壤分析方法,中国标准出版社出版LY/T1210-1275-1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700