Basigin/CD147在人神经胶质瘤侵袭中的作用机制及其反义RNA抑制神经胶质瘤侵袭的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胶质瘤是颅内常见恶性肿瘤,占颅内肿瘤的35.26%~60.96%,平均44.69%,目前尚无根治方法。胶质瘤具有发病率、复发率、死亡率高和治愈率低等“三高一低”的特点。恶性胶质瘤预后极差,中位生存时间少于18个月,2年存活率约为5%。胶质瘤多呈浸润性生长,手术难以全切,需结合放疗、化疗、生物治疗等综合治疗手段以延长病人生存期。随着影像学技术的发展,胶质瘤的诊断、治疗取得了一定进展,但总体疗效并未实现突破。因此,神经胶质瘤是神经外科的难题和医学研究的重要课题之一。
     造成神经胶质瘤死亡率高的主要原因是神经胶质瘤的高侵袭性。其侵袭过程中的一个重要因素是细胞外基质的降解,其中,起重要作用的是一类Zn2+依赖的基质金属蛋白酶MMPs(Matrix metalloproteinases)。MMPs能够破坏局部组织结构和基底膜屏障,促进肿瘤生长和转移,并且可促进肿瘤新生血管的形成。CD147作为MMPs的诱导因子,是一个广泛表达的质膜糖蛋白,参与机体多种生理和病理过程。CD147分子表达于许多正常细胞类型,包括成体和胚胎组织。它在炎症的发生发展、病毒的易化介导、细胞之间的黏附及胚胎发育等方面起着一定的作用。研究证实,CD147表达于各种肿瘤组织特别是恶性肿瘤,如乳腺癌、肺癌、肾癌、恶性黑色素瘤、淋巴瘤等,同时其表达较相应正常组织明显要高。
     近年来一些研究发现在中枢神经系统,CD147表达于血脑屏障内皮细胞、脉络膜上皮细胞和视网膜色素上皮细胞,并在血脑屏障中起作用。但缺乏CD147分子在神经系统及神经系统肿瘤中表达的系统性研究。以往研究虽然表明CD147功能上与某些恶性肿瘤,如肝癌存在相关性,提示其在致病机制上是一个非常重要的因子,但更明确的作用机制还需要进一步深入探讨。另外,CD147在神经系统肿瘤,尤其是神经胶质瘤侵袭中的作用如何还不明确。
     本研究中,我们收集了18例神经胶质瘤样本,并采用63点胶质瘤组织芯片检测Basigin/CD147在人脑组织及神经胶质瘤组织中的表达情况。分别在组织水平及基因水平分析了Basigin/CD147的表达与临床病理学特征的关系;构建Basigin/CD147反义RNA表达载体,建立并筛选低表达CD147的重组人神经胶质瘤细胞株U251/147的克隆;并进一步采用反义RNA技术研究Basigin/CD147在胶质瘤侵袭、血管形成方面的作用及机制。
     第一部分:Basigin/CD147在人神经胶质瘤组织中的表达及临床意义。
     我们收集了18例神经胶质瘤样本,并采用63点胶质瘤组织芯片检测CD147的表达情况。结果发现,神经胶质瘤组织中Basigin/CD147表达于肿瘤细胞膜和细胞质中,但未见细胞核染色。神经胶质瘤组织中Basigin/CD147蛋白的阳性表达率为74.3%。而正常脑组织中仅血管内皮细胞浆有阳性着色,神经细胞及神经胶质细胞未见表达。表明在正常脑组织中CD147仅表达于血管内皮。此研究结果说明与正常脑组织相比,神经胶质瘤组织中Basigin/CD147存在过度表达。不同级别胶质瘤细胞着色结果分析发现,在胶质瘤细胞胞浆中有CD147着色,并且高级别星型胶质瘤(III、IV级)瘤细胞胞浆CD147着色显著强于低级别星型胶质瘤(I、II级)。说明胶质瘤细胞不仅表达CD147,并且其表达程度与胶质瘤恶性程度成正比。
     胶质瘤组织RT-PCR结果显示,Basigin/CD147mRNA的表达在神经胶质瘤组织中阳性率为83.3%,明显高于正常脑组织中的阳性率25%(P<0.05)。在阳性表达病理中,对Basigin/CD147mRNA的RT-PCR产物进行半定量测定(Basigin/β-actin),结果显示Basigin/CD147mRNA在神经胶质瘤组织中的表达量为0.274±0.087,明显高于正常组织0.081±0.043,两者具有显著性差异(P<0.05)。此结果提示Basigin/CD147的表达与神经胶质瘤的发生有关。
     第二部分:Basigin/CD147反义RNA表达载体的建立及重组人神经胶质瘤细胞株U251/147的克隆建立及筛选。
     我们构建了Basigin/CD147反义RNA质粒,用反义RNA特异封闭肿瘤细胞的mRNA,封闭胶质瘤细胞表面Basigin/CD147的表达,从而抑制其刺激肿瘤细胞分泌MMPs,进而抑制胶质瘤细胞的侵袭。我们选择表达Basigin/CD147的U251细胞系作为反义核酸的封闭靶点,进而研究其被抑制后的生物学变化。实验结果表明,当PCI-147重组质粒转染人神经胶质瘤细胞U251后,转染细胞的流式细胞检测结果证实细胞膜表面荧光强度减弱。Western Blot检测结果也证实Basigin/CD147表达降低。这些变化主要是由于反义RNA与CD147mRNA结合,阻碍了其翻译过程,封闭了Basigin/CD147分子的表达。
     第三部分:Basigin/CD147反义核酸对人神经胶质瘤细胞U251侵袭转移能力的影响。
     明胶酶谱实验发现,U251/147细胞分泌的MMP-2和MMP-9显著低于U251细胞和U251/neo细胞。说明CD147反义核酸的确影响了U251细胞明胶酶的分泌。U251/147细胞培养上清中VEGF水平显著低于U251细胞和U251/neo细胞,分别降低了37.61%和42.76%,说明CD147有促进胶质瘤细胞VEGF分泌的作用,而CD147反义核酸抑制了U251细胞VEGF的分泌。重组基底膜实验中可以看出,U251/147细胞侵袭人工重组基底膜的数目显著少于U251细胞和U251/neo细胞,U251/147细胞的穿膜数较U251细胞和U251/neo细胞分别降低了65.8%和70.1%,表现出细胞侵袭能力的降低。细胞划伤实验中,U251/147细胞的运动细胞数显著低于U251细胞,说明U251/147细胞的运动能力显著低于U251细胞,CD147反义核酸显著降低了U251细胞的运动能力。
Gliomas are the most common of brain neoplasms and exhibit a high degree of diffuse local invasion of normal nervous tissue. High invasion is the principle reason to the high mortality of Gliomas. Tumor cells often infiltrate beyond any obviously defined tumor margin and contribute to the high incidence of recurrence. In the invasive and metastatic process of malignant tumor, an important step is the degradation of extracellular matrix (ECM).Molecules existing in ECM and receptors or ligands existing on the surfaces of tumor cells play critical roles.
     CD147, also named extracelluar matrix metalloproteinase inducer (EMMPRIN). EMMPRIN expressed by cultured tumor cells stimulates fibroblasts to produce very high levels of collagenase activity, which likely facilitates tumor metastasis. Previous studies demonstrated that EMMPRIN concentrated on the surfaces of most tumor cells, promoted invasion of tumor cells by stimulating stromal cells to produce elevated levels of several matrix metalloproteinase (MMPs) which play very important roles in several aspects of tumor progression, including growth, invasion, metastasis, and angiogenesis. Moreover, supporting its key role in the processes of tumorigenesis and metastasis, EMMPRIN was reported as one of the most constantly up-regulated mRNA in metastatic cells. Our interest in gliomas let us to consider the role of CD147 in glioma invasion, metastasis, and angiogenesis.
     Here, we investigated expression of Basigin/CD147 in normal brain and gliomas of varying malignancy by using tissue array and tissue obtained from surgical removal. We constructed a vector of antisense RNA of CD147 and investigated its inhibitory effects on invasion and angiogenesis of glioblastoma cells in vitro. We also study the effects of antisense RNA of CD147 to tumor formation in nude mice and the therapy effect to tumor-bearing nude mice.
     Part 1: Expression of Basigin/CD147 in normal brain and gliomas.
     We investigated expression of Basigin/CD147 in normal brain and gliomas of varying malignancy by immunohistochemistry using tissue array and tissue obtained from surgical removal. Immunolocalization revealed quite different distribution in non-neoplastic brain and glioma: In non-neoplastic portions of the brain, EMMPRIN immunostaining was demonstrated only in vascular endothelial cells, whereas in glioma the tumor cells were stained positively, the positive immunohistochemical staining of gliomas was 74.3%. In astrocytomas, varying percentages of the tumor cells were positive, level of immunohistochemical staining of higher grade astrocytomas(grade III, IV) was higher than that of lower grade astrocytomas(grade I,II). The RT-PCR study indicated that level of Basigin/CD147 mRNA expression was higher in gliomas(0.274±0.087) than in non-neoplastic brain(0.081±0.043). Thus, the Basigin/CD147 mRNA level was up-regulated significantly in gliomas compared with non-neoplastic tissue(P<0.05 by unpaired t-test).
     Part 2: Construction of the antisense RNA expression vector of Basigin/CD147. Transfection of the antisense RNA vector to U251 and selection of the positive clone.
     Full length cDNA fragment coding for basigin/CD147 was cloned in the antisense orientation into the XbaI and XhoI site of the eukaryotic expression vector PCI-neo. The antisense vector of basigin, named as PCI-147.Empty vector PCI-neo and antisense vector PCI-147 were transfected into human glioblastoma cell line U251 via cation liposome Lipfectinamine2000 (Gibco) according to the manufacturer’s description and the two kinds of transfected cells were named as U251/neo and U251/147 respectively. Stable antisense transfectants were generated and characterized. Basigin/CD147 has been shown to play significant roles in ECM degradation. Transfection of U251 cells with the antisense vector strongly inhibited the expression of CD147 as compared to U251, U251/neo.
     Part 3: Study on the inhibitory effects of antisense RNA on proliferation of U251 in vitro.
     Gelatin zymography was used to analyze the effect of antisense RNA on MMPs secretion. The results showed that the secretions of MMP-9 and MMP-2 in the antisense transfectants were inhibited compared to parental- and empty vector-transfected cells in Gelatin zymography assay. Since CD147 has implicated in the invasiveness of tumor cells, we evaluated the migration of parental and stable transfectants. In scrape-wound-migration assay, the mobility of stable antisense transfectants was decreased as compared to parental- and empty vector-transfected cells. Matrigel-Boyden chamber method was used to study the inhibitory ability of antisense RNA on tumor cells invasion and mobility through the reconstituted basement membrane. The results showed that the number of stable transfectants infiltrated cells of U251/147 were less than those of U251/neo and intact U251. More over, ELISA was used to detect the VEGF (Vascular endothelial growth factor) production in the supernatant of selected cells. Downregulation of CD147 by antisense transfection in U251 cells resulted in a reduction of VEGF secreted into media by antisense tumor cells compared to parental- and empty vector-transfected cells.
引文
1. Guha A,Mukherjee J.Advances in the biology of astrocytomas.Curr Opin Neurol,2004;17(6):655-662.
    2. Rich JN, Guo C, McLendon RE, et al.A genetically tractable model of human glioma formation. Cancer Res, 2001;61(9):3556-3560.
    3. Abounader R, Laterra J.Scatter factor/hepatocyte growth factor in brain tumor growth and angiogenesis.Neurooncol, 2005;7(4):436-451.
    4. Okegawa T, Li YM, Pong RC, et al.Cell adhesion proteins as tumor suppressors.J-Urol, 2002;167(4):1836-1843.
    5. Gunther W,Skaftnesmo KO,Arnold H,et al.Molecular approaches to brain tumor invasion.Acta Neurochir(Wien), 2003;145(12):1029-1036.
    6. Samoylova TI,Morrison NE,Cox NR.Molecular markers of glial tumors: current targeting strategies. Current Medicinal Chemistry, 2003, 10 (10):831-843.
    7. Mueller MM,Werbowetski T,Del Maestro RF.Soluble factors involved in glioma invasion.Acta Neurochir(Wien), 2003;145(11):999-1008.
    8. Chakravarti A, Dicker A, Mehta M.The contribution of epidermal growth factor receptor(EGFR) signaling pathway to radioresistance in human gliomas: a review of preclinical and correlative clinical data . Int J Radiation Oncology Biol Phys, 2004;58(3):927-931.
    9. 李春海,李克勤.肿瘤微血管生成的机制与肿瘤侵袭和转移.中华肿瘤杂志,2000;22(3):181-183.
    10. Hanahan D, Folkman J.Patterns and emerging mechanisms of the angiogenic swith during tumorigenesis.Cell, 1996; 86(3):353-364.
    11. Deryugina EI, Soroceanu L, Strongin AY.Up-regulation of vascular endothelial growth factor by membrane-type 1 matrix metalloproteinase stimulates human glioma xenograft growth and angiogenesis.Cancer Res, 2002;62(2):580-588.
    12. Qian F, Frankfater A, Chan SJ, et al.The structure of the mouse cathepsin B gene and its putative promoter.DNA Cell Biol, 1991;10(3):159-168.
    13. Rao JS. Molecular mechanisms of glioma invasiveness:the role of proteases.Nature Reviews/Cancer, 2003; 3(7):489-501.
    14. Gladson CL, Pijuan-Thampson V,Olman MA,et al.Up-regulation of urokinase and urokinase receptor genes in malignant astrocytoma . Am J Pathol, 1995;146(5) :1150-1160.
    15. Yamamoto M, Ueno Y, Hayashi S, et al.The role of proteolysis in tumor invasiveness in glioblastoma and metastatic brain tumors . Anticancer Research , 2002; 22(6c): 4265-4268.
    16. Mohanam S, Jasti SL, Kondraganti SR, et al.Stable transfection of urokinase-type plasminogen activator antisense construct modulates invasion of human glioblastoma cells.Clin Cancer Res, 2001;7(8):2519-2526.
    17. Krishnamoorthy B,Darnay B,Aggarwal B, et al.Glioma cells deficient in urokinase plaminogen activator receptor expression are susceptible to tumor necrosis factor-α-related apoptosis-inducing ligand-induced apoptosis.Clin Cancer Res,2001; 7(12):4195-4201.
    18. Alonso DF,Tejera AM,Farias EF,et al.Inhibition of mammary tumor cell adhesion migration and invasion by the selective synthetic urokinase inhibitor B428.Anticancer Res, 1998; 18(6a):4499-4504.
    19. Kobayashi H, Ohi H, Sugimura M, et al.Inhibition of in vitro ovarian cancer cell invasion by modulation of urokinase-type plasminogen activator and eathepsin B.Cancer Res, 1992; 52(13):3610-3614.
    20. Rempel SA, Rosenblum ML, Mikkelsen T, et al.Cathepsin B expression and localization in glioma progression and invasion.Cancer Res, 1994; 54(23):6027-6031.
    21. Demchik LL, Sameni M, Nelson K, et al.Cathepsin B and glioma invasion.Int J Dev Neurosci, 1999;17(5-6):483-494.
    22. Konduri SD,Yanamandra N,Siddique K,et al.Modulation of cystatin C expression impairs the invasive and tumorigenic potential of human glioblastoma cells.Oncogene, 2002;21(57):8705-8712.
    23. Chambers AF, Matrisian LA. Changing views on the role of matrix metalloproteinases in metastasis. J Natl Cancer Inst, 1997; 89: 1260-1270.
    24. Parsons SL, Watson SA, Brown PD, Collins HM, Steele RJC. Matrix metalloproteinases. Br J Surg, 1997; 84: 160-166.
    25. Curran S, Murray GI. Matrix metalloproteinases in tumor invasion and metastasis. J Pathol, 1999; 189: 300-308.
    26. Koblinski J, Abraham A, Sloane BF. Unraveling the role of proteases in cancer. Clin Chim Acta, 2000; 291: 113-135.
    27. Nagase H, Woessner JF. Matrix metalloproteinases. J Biol Chem, 1999; 274: 21491-21492.
    28. Van Wart HE, Birkedal-Hansen H. The cysteine switch:a principle of regulation of metalloproteinase activity with potential appicability to the entire matrixmetalloproteinase gene family. Proc Natl Acad Sci, 1990; 87(14):5578-82.
    29. Steffensen B, mWallon UM, Overall CM. Extracellular matrix binding properties of recombinant fibrinectin type Ⅱ-like modules of human 72-KDa gelatinase /type Ⅳ collagenase.High affinity binding to nagative type I collagen but not native type Ⅳ collagen. J Biol Chem, 1995; 12(19): 11555-66.
    30. Ohuchi E, Imai K, Fuji Y, et al. Membrane type I matrix metalloproteinase digest interstitial collagens and other extracellular matrix macromolecules. J Biol Chem, 1997;272: 2446-2451.
    31. Pei D. Identification and characterization of the fifth membrane-type matrix metalloproteinase MT5-MMP. J Biol Chem, 1999; 274: 8925-8932.
    32. Velesco G, Cal S, Merlos-Suarez A, et al. Human MT6-matrix metalloproteinase: identification, progelatinase A activation, and expression in brain tumors. Cancer Res, 2000; 60: 877-882.
    33. Aimes RT, Quigley JP. Matrix metalloproteinase-2 is an interstitial collagenase. J Biol Chem, 1995; 270: 5872-5876.
    34. Hotary K, Allen E, Punturieri A, Yana I, Weiss SJ. Regulation of cell invasion and morphogenesis in a three-dimensional type I collagen matrix. J. Cell Biol, 2000; 149: 1309-1323.
    35. Constance E, Brinckerhoff, Joni L, et al. Interstitial collagenases as Markers of Tumor Progression1. Clinical Cancer Research, 2000; 6:4823-4830.
    36. Basset P, Okada A, Chenard M-P, et al. Matrix metalloproteinases as stromal effectors of human carcinoma progression: therapeutic implications. Matrix Biol, 1997; 15: 535-541.
    37. Nelson A. R, Fingleton B, Rothenberg ML, et al. Matrix metalloproteinases: biologic activity and clinical implications. J Clin Oncol, 2000; 18: 1135-1149.
    38. McCawley LJ, Matrisian LM. Matrix metalloproteinases: multifunctional contributors to tumor progression. Mol Med Today, 2000; 6: 149-156.
    39. Stetler-Stevenson W. G. Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention. J Clin Investig, 1999; 103: 1237-1241.
    40. Yoshimoto M, Itoh F, Yamamato H, et al. Expression of MMP-7 Mrna IN Human colorectal cancers. Int J Cancer, 1993; 54:614-618.
    41. Rao VH, Brdge JA, Neff JR, et al. expression of 72 KDa and 92 KDa type Ⅳ collagenases from human giantcell tumor of bone. Clin Exp Metastasis, 1995; 13(6):420-426.
    42. Tryggvason K, Hoyhtya M, Salo T. Proteolytic degradation of matrix in tumor invasion. Biochim Biophy Acta, 1987; 907:191-207.
    43. Yasumasa Kato, Nakayama Y, Umeda M, et al. Introduction of 103KDa Gelatinase/TypeⅣ collagenase by Acidic culture conditions in Mouse metastastic melanoma cell lines, J Biol Chem, 1992; 267(16):11424-11430.
    44. Nakajima M, Welch DR, Belloni PN, et al. degragation of basment membrane Type Ⅳ collagen and lung subendothelial metrix by rat mammary adenocarcinoma cell clones of differing metastatic potential. Cancer Res, 1987; 47:4869-4876.
    45. 李红梅,方伟岗,郑杰等。不同转移潜能的人肿瘤细胞系金属蛋白酶活性分析。中华病理学杂志.1998;27(5):341-343.
    46. 卜文,黄晓武,汤钊猷。基质金属蛋白酶2与肝细胞癌浸润转移性的关系。中华医学杂志, 1997; 27(5): 661-664.
    47. Muller, wolf C, et al. Inceased stromelysin 3 gene expression is associated with increased local invasiveness in head and squamous cell carcinoma, Cancer Res, 1993; 53: 165-169.
    48. Yoshimoto M, Itoh F, Yamamato H, et al. Expression of MMP-mRNA in human colorectal cancers. Int J cancer, 1993;54: 614-618.
    49. Davies B, Miles DW, et al. Activity of typeⅣ collagenases in benign and malignant breast disease. Br J Cancer, 1993; 67: 1126-1131.
    50. Gilles C, Poletle M, et al. High level of MT-MMP expression is associated with invasiveness of cerrical cancer cells. Int J Cancer, 1996; 65:209-213.
    51. Stearns ME, Wang M. Type IV Collagenase (Mr 72,000) expression in human prostate: benigh and malignant tissue. Cancer Res, 1993; 53(4): 878-883.
    52. Brown PD, Bloxidge RE, et al. Association between expression of activited 72-kilodalton gelatinase and tumor spread in non-small-cell lung carcinoma. J Natl Cancer Inst. 1993; 85(7): 574-578.
    53. Powell W.C, Knox JD, et al. Expression of the Metallopreinase matrilysin in Du-145 cells increases their invasive potential in severe combinded immunodeficient mice. Cancer Res.1994;53:417-422.
    54. DeClerck YA, Pere ZN, et al. Inhibition of invasion and metastasis in cells transfected with an inhibitor of metalloproteinases. Cancer Res. 1992; 52(3): 701-708.
    55. Stetler-stevenson WG, Aznavoorian S, Liotta LA. Tumor cell interraction with the extracellular matrix during invasion and metastasis. Annu Rev Cell Biol,1993; 9:541-73.
    56. Mac Dougal JR, Matrisian LM. Contributions of tumor and stromal matrix metalloproteinase to tumor progression, invasion and metastasis. Cancer Metastasis rev,1995; 14:351-362.
    57. Schnaper HW, Grant DS, et al. Type IV Collagenase(s) and TIMPs ModulateEndothelial cell Morphogenesis in Vitro. J Cell physiol,1993; 56: 235-246.
    58. Shafaat A. Rabbani, Penelope Harakidas, et al. Synthetic inhibitor of matrix metalloproteases decreases tumor growth and metastases in a syngeneic model of rat prostate cancer in vivo. J Cancer. 2000; 87:276-282.
    59. Mariani L,Beaudry C,McDonough WS,et al.Glioma cell motility is associated with reduced transcription of proapoptotic and proliferation genes: a cDNA microarray analysis.J Neuro Oncology,2001;53(2):161-176.
    60. Kaname T, Miyauchi T, Knwhno A. Mapping basigin(BSG), a member of Immunoglobulin superfamily , to 19P 13.3. Cytogenet Cell Genet, 1993; 64(3-4): 195.
    61. Miyauchi T, Masuzawa Y, Muramatsu T. The Basigin Group of the Immunoglobulin superfamily, complete conservation of a segment in and around Transmemberane Domains of Human and Mouse Basigin and Chicken HT-7 Antigen. J Biochem, 1991; 110: 770.
    62. Miyauchi T, Kanekura T, Yamaoka A . Basigin, a new , broadly distributed member of the IgSF, has strong homology with both the immunoglobulin v domain and the beta-chain of major histocompatibility complex class II antigen. J Biol Tokyo, 1990; 107(2): 316.
    63. Chitra, B, Ying Z, et al. The human tumor cell-derived collagenase stimulatory factor (Renamed EMMPRIN) is a member of the immunoglobulin superfamily. Cancer Res , 1995, 55: 434-439.
    64. Guo H, Zucker S, et al. Stimulation of matrix metallo-proteinase Production by recombinant extracellular matrix metalloproteinase inducer from transfected Chinese Hamster Ovary Cell. J Biol Chem, 1997; 272(1): 24.
    65. Watcharak, Eddafiebiger, StepanovaI. Human Leukocyte activation antigen M6, a member of the Ig superfamily, is the species Homologue of Rat OX-47, Mouse Basigin, and Chicken HT 7 molecule. J Immunology, 1992(3): 847.
    66. Seulberger. H, Vnger C.M. Risau W. HT7, Neurothelin, Basigin, Gp42 and OX-47-- many names for one developmentally regulated immunoglobulin-like surface glycoprotein on blood-brain barrier endothelium, epithelial tissue barrier and neurons. Neurosci-Lett, 1992; 140(1): 93.
    67. Schlosshauer B, Herzog K.H. Neurothelin: an inducible cell surface glycoprotein of blood-brain barrier-specific endothelial cells and distinct neurons. J Cell Biol, 1990; 110(4): 1261.
    68. 金伯泉,白细胞分化抗原. 见:金伯泉主编,细胞和分子免疫学[M],第2版,北京:科学出版社,2001;4.
    69. Fossum S, Mallett S , Barclay A.N. The MRC OX-47 antigen is a member of theimmunoglobulin superfamily with an unusual transmemberane sequence. Eur J immunol, 1991; 21: 671-679.
    70. Fadool-JM, Linser-PJ.Differential glycosylation of the 5A11/HT7 antigen by neural retina and epithelial tissues in the chicken. J Neurochem. 1993; 60(4): 1354-1364.
    71. Schlosshauer B, Herzog K.H. Neurothelin amino acid sequence, cell surface dynamics and actin colocalization . Euro J Cell Biol, 1995; 68(2): 159-66.
    72. Schlosshauer B, Herzog KH. Neurothelin: an inducible cell surface glycoprotein of blood-brain barrier-specific endothelial cells and distinct neurons. J Cell Biol. 1990; 110(4): 1261-1274.
    73. Fan QW, Kadomatsu K, Uchimura K, Muramatsu T. Embigin/basigin subgroup of the immunoglobulin superfamily: different modes of expression during mouse embryogenesis and correlated expression with carbohydrate antigenic markers. Dev Growth Differ. 1998; 40(3): 277-286.
    74. Maekawa M, Suzuki-Toyota F, Toyama Y, Kadomatsu K, Hagihara M, Kuno N, Muramatsu T, Dohmae K, Yuasa S. Stage-specific localization of basigin, a member of the immunoglobulin superfamily, during mouse spermatogenesis. Arch Histol Cytol. 1998; 61(5): 405-415.
    75. Toyama Y, Maekawa M, Kadomatsu K, Miyauchi T, Muramatsu T, Yuasa S. Histological characterization of defective spermatogenesis in mice lacking the basigin gene. Anat Histol Embryol. 1999; 28(3): 205-213.
    76. Saxena DK, Oh-Oka T, Kadomatsu K, Muramatsu T, Toshimori K. Behaviour of a sperm surface transmembrane glycoprotein basigin during epididymal maturation and its role in fertilization in mice. Reproduction. 2002; 123(3): 435-444.
    77. Huang RP, Ozawa M, Kadomatsu K, Muramatsu T. Developmentally regulated expression of embigin, a member of the immunoglobulin superfamily found in embryonal carcinoma cells. Differentiation. 1990; 45(2): 76-83.
    78. Huang RP, Ozawa M, Kadomatsu K, Muramatsu T. Embigin, a member of the immunoglobulin superfamily expressed in embryonic cells, enhances cell-substratum adhesion. Dev Biol. 1993; 155(2): 307-314.
    79. Igakura T, Kadomatsu K, Kaname T, Muramatsu H, Fan QW, Miyauchi T, Toyama Y, Kuno N, Yuasa S, Takahashi M, Senda T, Taguchi O, Yamamura K, Arimura K, Muramatsu T. A null mutation in basigin, an immunoglobulin superfamily member, indicates its important roles in peri-implantation development and spermatogenesis. Dev Biol. 1998; 194(2):152-165.
    80. Schlosshauer B. Neurothelin: molecular characteristics and developmental regulation inthe chick CNS. Development. 1991; 113(1): 129-140.
    81. Fan QW, Yuasa S, Kuno N, Senda T, Kobayashi M, Muramatsu T, Kadomatsu K. Expression of basigin, a member of the immunoglobulin superfamily, in the mouse central nervous system. Neurosci Res. 1998; 30(1): 53-63.
    82. Liebner S, Gerhardt H, Wolburg H. Maturation of the blood-retina barrier in the developing pecten oculi of the chicken. Brain Res Dev Brain Res. 1997; 100(2): 205-219.
    83. Schlosshauer B, Bauch H, Frank R. Neurothelin: amino acid sequence, cell surface dynamics and actin colocalization. Eur J Cell Biol. 1995; 68(2): 159-166.
    84. Naruhashi K, Kadomatsu K, Igakura T, Fan QW, Kuno N, Muramatsu H, Miyauchi T, Hasegawa T, Itoh A, Muramatsu T, Nabeshima T. Abnormalities of sensory and memory functions in mice lacking Bsg gene. Biochem Biophys Res Commun. 1997; 236(3): 733-737.
    85. Igakura T, Kadomatsu K, Taguchi O, Muramatsu H, Kaname T, Miyauchi T, Yamamura K, Arimura K, Muramatsu T. Roles of basigin, a member of the immunoglobulin superfamily, in behavior as to an irritating odor, lymphocyte response, and blood-brain barrier. Biochem Biophys Res Commun. 1996; 224(1): 33-36.
    86. Hori K, Katayama N, Kachi S, Kondo M, Kadomatsu K, Usukura J, Muramatsu T, Mori S, Miyake Y. Retinal dysfunction in basigin deficiency. Invest Ophthalmol Vis Sci. 2000; 41(10): 3128-3133.
    87. Poole RC, Halestrap AP. Interaction of the erythrocyte lactate transporter (monocarboxylate transporter 1) with an integral 70-kDa membrane glycoprotein of the immunoglobulin superfamily. J Biol Chem. 1997; 272(23): 14624-14628.
    88. Kirk P, Wilson MC, Heddle C, Brown MH, Barclay AN, Halestrap AP. CD147 is tightly associated with lactate transporters MCT1 and MCT4 and facilitates their cell surface expression. EMBO J. 2000; 19(15): 3896-3904.
    89. Philp NJ, Ochrietor JD, Rudoy C, Muramatsu T, Linser PJ. Loss of MCT1, MCT3, and MCT4 expression in the retinal pigment epithelium and neural retina of the 5A11/basigin-null mouse. Invest Ophthalmol Vis Sci. 2003; 44(3): 1305-1311.
    90. Howard BR, Vajdos FF, Li S, Sundquist WI, Hill CP. Structural insights into the catalytic mechanism of cyclophilin A. Nat Struct Biol. 2003; 10(6): 475-481.
    91. Castro AP, Carvalho TM, Moussatche N, Damaso CR. Redistribution of cyclophilin A to viral factories during vaccinia virus infection and its incorporation into mature particles. J Virol. 2003; 77(16): 9052-9068.
    92. Pushkarsky T, Zybarth G, Dubrovsky L, Yurchenko V, Tang H, Guo H, Toole B, SherryB, Bukrinsky M. CD147 facilitates HIV-1 infection by interacting with virus-associated cyclophilin A. Proc Natl Acad Sci U S A. 2001; 98(11): 6360-6365.
    93. Yurchenko V, Zybarth G, O'Connor M, Dai WW, Franchin G, Hao T, Guo H, Hung HC, Toole B, Gallay P, Sherry B, Bukrinsky M. Active site residues of cyclophilin A are crucial for its signaling activity via CD147. J Biol Chem. 2002; 277(25): 22959-22965.
    94. Yurchenko V, O'Connor M, Dai WW, Guo H, Toole B, Sherry B, Bukrinsky M. CD147 is a signaling receptor for cyclophilin B. Biochem Biophys Res Commun. 2001; 288(4): 786-788.
    95. Allain F, Vanpouille C, Carpentier M, Slomianny MC, Durieux S, Spik G. Interaction with glycosaminoglycans is required for cyclophilin B to trigger integrin-mediated adhesion of peripheral blood T lymphocytes to extracellular matrix. Proc Natl Acad Sci USA. 2002; 99(5): 2714-2719.
    96. Pushkarsky T, Zybarth G, Dubrovsky L, Yurchenko V, Tang H, Guo H, Toole B, Sherry B, Bukrinsky M. CD147 facilitates HIV-1 infection by interacting with virus-associated cyclophilin A. Proc Natl Acad Sci USA. 2001; 98(11): 6360-6365.
    97. Kasinrerk W, Fiebiger E, Stefanova I, Baumruker T, Knapp W, Stockinger H. Human leukocyte activation antigen M6, a member of the Ig superfamily, is the species homologue of rat OX-47, mouse basigin, and chicken HT7 molecule. J Immunol. 1992; 149(3): 847-854.
    98. Konttinen YT, Li TF, Mandelin J, Liljestrom M, Sorsa T, Santavirta S, Virtanen I. Increased expression of extracellular matrix metalloproteinase inducer in rheumatoid synovium. Arthritis Rheum. 2000; 43(2): 275-280.
    99. Igakura T, Kadomatsu K, Taguchi O, Muramatsu H, Kaname T, Miyauchi T, Yamamura K, Arimura K, Muramatsu T. Roles of basigin, a member of the immunoglobulin superfamily, in behavior as to an irritating odor, lymphocyte response, and blood-brain barrier. Biochem Biophys Res Commun. 1996; 224(1): 33-36.
    100. Tang W, Hemler ME. Caveolin-1 Regulates Matrix Metalloproteinases-1 Induction and CD147/EMMPRIN Cell Surface Clustering. J Biol Chem. 2004; 279(12): 11112-11118.
    101. Hlavcak P, Sedlakova O, Sedlak J, Hunakova L, Duraj J, Sulikova M, Bizik J, Castronovo V, Chorvath B. Cell surface immunophenotype and gelatinase activity of the human breast carcinoma cell line (MCF-7/6) with functionally defective E-cadherin. Neoplasma. 1999; 46(1): 12-16.
    102. Sun JX, Hemler ME. Regulation of MMP-1 and MMP-2 production through CD147/extracellular matrix metalloproteinase inducer interactions. Cancer Res. 2001; 61(5): 2276-2281.
    103. Sudou A, Muramatsu H, Kaname T, Kadomatsu K, Muramatsu T. Le(X) structure enhances myocardial differentiation from embryonic stem cells. Cell Struct Funct. 1997; 22(2): 247-251.
    104. Berditchevski F, Chang S, Bodorova J, Hemler ME. Generation of monoclonal antibodies to integrin-associated proteins. Evidence that alpha3beta1 complexes with EMMPRIN/basigin/OX47/M6. J Biol Chem. 1997; 272(46): 29174-29180.
    105. Cho JY, Fox DA, Horejsi V, Sagawa K, Skubitz KM, Katz DR, Chain B. The functional interactions between CD98, beta1-integrins, and CD147 in the induction of U937 homotypic aggregation. Blood. 2001; 98(2): 374-382.
    106. Sameshima T, Nabeshima K, Toole BP, Yokogami K, Okada Y, Goya T, Koono M, Wakisaka S. Expression of emmprin (CD147), a cell surface inducer of matrix metalloproteinases, in normal human brain and gliomas. Int J Cancer. 2000; 88(1): 21-27.
    107. Kanekura T, Chen X, Kanzaki T. Basigin (CD147) is expressed on melanoma cells and induces tumor cell invasion by stimulating production of matrix metalloproteinases by fibroblasts. Int J Cancer; 99(4): 520-528.
    108. Sameshima T, Nabeshima K, Toole BP, Inoue T, Yokogami K, Nakano S, Ohi T, Wakisaka S. Correlation of emmprin expression in vascular endothelial cells with blood-brain-barrier function: a study using magnetic resonance imaging enhanced by Gd-DTPA and immunohistochemistry in brain tumors. Virchows Arch. 2003; 442(6): 577-584.
    109. Kataoka H, Tanaka H, Nagaike K, Uchiyama S, Itoh H. Role of cancer cell-stroma interaction in invasive growth of cancer cells. Hum Cell. 2003; 16(1): 1-14.
    110. Suzuki S, Sato M, Senoo H, Ishikawa K. Direct cell-cell interaction enhances pro-MMP-2 production and activation in co-culture of laryngeal cancer cells and fibroblasts: involvement of EMMPRIN and MT1-MMP. Exp Cell Res. 2004; 293(2): 259-266.
    111. Rao VH, Singh RK, Bridge JA, Neff JR, Schaefer GB, Delimont DC, Dunn CM, Sanger WG, Buehler BA, Sawaya R, Nicolson GL, Rao JS. Regulation of MMP-9 (92 kDa type IV collagenase/gelatinase B) expression in stromal cells of human giant cell tumor of bone. Clin Exp Metastasis. 1997; 15(4): 400-409.
    112. Faouzi S, Le Bail B, Neaud V, Boussarie L, Saric J, Bioulac-Sage P, Balabaud C, Rosenbaum J. Myofibroblasts are responsible for collagen synthesis in the stroma of human hepatocellular carcinoma: an in vivo and in vitro study. J Hepatol. 1999; 30(2): 275-284.
    113. Zhu B, Block NL, Lokeshwar BL. Interaction between stromal cells and tumor cells induces chemoresistance and matrix metalloproteinase secretion. Ann N Y Acad Sci. 1999; 878: 642-646.
    114. Rao VH, Singh RK, Delimont DC, Schaefer GB, Bridge JA, Neff JR, Sanger WG, Sappenfield JW, Buehler BA, Finnell RH. Interleukin-1beta upregulates MMP-9 expression in stromal cells of human giant cell tumor of bone. J Interferon Cytokine Res. 1999; 19(10): 1207-1217.
    115. Dong Z, Nemeth JA, Cher ML, Palmer KC, Bright RC, Fridman R. Differential regulation of matrix metalloproteinase-9, tissue inhibitor of metalloproteinase-1 (TIMP-1) and TIMP-2 expression in co-cultures of prostate cancer and stromal cells. Int J Cancer. 2001; 93(4): 507-515.
    116. Li R, Huang L, Guo H, Toole BP. Basigin (murine EMMPRIN) stimulates matrix metalloproteinase production by fibroblasts. J Cell Physiol. 2001; 186(3): 371-379.
    117. Lim M, Martinez T, Jablons D, Cameron R, Guo H, Toole B, Li JD, Basbaum C. Tumor-derived EMMPRIN (extracellular metalloproteinase inducer) stimulates collagenase transcription through MAPK p38. FEBS Lett.1998; 441(1): 88-92.
    118. Taylor PM, Woodfield RJ, Hodgkin MN, Pettitt TR, Martin A, Kerr DJ, Wakelam MJ. Breast cancer cell-derived EMMPRIN stimulates fibroblast MMP2 release through a phospholipase A(2) and 5-lipoxygenase catalyzed pathway. Oncogene. 2002; 21(37): 5765-5772.
    119. Guo H, Li R, Zucker S, Toole BP. EMMPRIN(CD147), an iducer of matrix metalloproteinases synthesis, also binds interstitial collagenase to the tumor cell surface. Cancer Res. 2000; 60(4): 888-891.
    120. Brooks PC, Stromblad S, Sanders LC, von Schalscha TL, Aimes RT, Stetler-Stevenson WG, Quigley JP, Cheresh DA. Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrinαvβ3. Cell . 1996; 85(5): 683-693.
    121. Zucker S, Drews M, Conner C, Foda HD, DeClerck YA, Langley KE, Bahou WF, Docherty AJ, Cao J. Tissue inhibitor of metalloproteinase-2(TIMP-2)binds to the catalytic domain of the cell surface receptor, membrane type-1 matrix metalloproteinase 1(MT-MMP). J Biol Chem. 1998; 273(2): 1216-1222.
    122. Polette M, Gilles C, Marchand V, Lorenzato M, Toole B, Tournier JM, Zucker S, Birembaut P. Tumor collagenase stimulatory factor (TCSF)expression and localization in human lung and breast cancers. J Histochem Cytochem. 1997; 45(5): 703-709.
    123. Frederit KA, Mcdonell W M. Molecular medicine antisense-oligonucleotide therapy. N Eng J Med, 1996; 314:316.
    124. Schlosshauer B. The blood-brain barrier: morphology, molecules, and neurothelin. Bioessays. 1993; 15(5): 341-346.
    125. Fadool JM, Linser PJ. 5A11 antigen is a cell recognition molecule which is involved in neuronal-glial interactions in avian neural retina. Dev Dyn. 1993; 196(4): 252-262.
    126. Kasinrerk W, Fiebiger E, Stefanova I, Baumruker T, Knapp W, Stockinger H. Human leukocyte activation antigen M6, a member of the Ig superfamily, is the species homologue of rat OX-47, mouse basigin, and chicken HT7 molecule. J Immunol. 1992; 149(3): 847-854.
    127. Kasinrerk W, Tokrasinwit N, Phunpae P. CD147 monoclonal antibodies induce homotypic cell aggregation of monocytic cell line U937 via LFA-1/ICAM-1 pathway. Immunology. 1999; 96(2): 184-192.
    128. Spring FA, Holmes CH, Simpson KL, Mawby WJ, Mattes MJ, Okubo Y, Parsons SF. The Oka blood group antigen is a marker for the M6 leukocyte activation antigen, the human homolog of OX-47 antigen, basigin and neurothelin, an immunoglobulin superfamily molecule that is widely expressed in human cells and tissues. Eur J Immunol. 1997; 27(4): 891-897.
    129. Stonehouse TJ, Woodhead VE, Herridge PS, Ashrafian H, George M, Chain BM, Katz DR. Molecular characterization of U937-dependent T-cell co-stimulation. Immunology. 1999; 96(1): 35-47.
    130. Ibrahim SM, Koczan D, Thiesen HJ. Gene-expression profile of collagen-induced arthritis. J Autoimmun. 2002; 18(2): 159-167.
    131. Tomita T, Nakase T, Kaneko M, Shi K, Takahi K, Ochi T, Yoshikawa H. Expression of extracellular matrix metalloproteinase inducer and enhancement of the production of matrix metalloproteinases in rheumatoid arthritis. Arthritis Rheum. 2002; 46(2): 373-378.
    132. Major TC, Liang L, Lu X, Rosebury W, Bocan TM. Extracellular matrix metalloproteinase inducer (EMMPRIN) is induced upon monocyte differentiation and is expressed in human atheroma. Arterioscler Thromb Vasc Biol. 2002; 22(7): 1200-1207.
    133. Li YY, McTiernan CF, Feldman AM. Interplay of matrix metalloproteinases, tissue inhibitors of metalloproteinases and their regulators in cardiac matrix remodeling. Cardiovasc Res. 2000; 46(2): 214-224.
    134. Spinale FG, Coker ML, Heung LJ, Bond BR, Gunasinghe HR, Etoh T, Goldberg AT, Zellner JL, Crumbley AJ. A matrix metalloproteinase induction/activation system exists in the human left ventricular myocardium and is upregulated in heart failure. Circulation. 2000; 102(16): 1944-1949.
    135. Foda HD, Rollo EE, Drews M, Conner C, Appelt K, Shalinsky DR, Zucker S. Ventilator-induced lung injury upregulates and activates gelatinases and EMMPRIN: attenuation by the synthetic matrix metalloproteinase inhibitor, Prinomastat (AG3340). Am J Respir Cell Mol Biol. 2001; 25(6): 717-724.
    136. Pushkarsky T, Zybarth G, Dubrovsky L, Yurchenko V, Tang H, Guo H, Toole B, Sherry B, Bukrinsky M. CD147 facilitates HIV-1 infection by interacting with virus-associated cyclophilin A. Proc Natl Acad Sci U S A. 2001; 98(11): 6360-6365.
    137. Deeg HJ, Blazar BR, Bolwell BJ, Long GD, Schuening F, Cunningham J, Rifkin RM, Abhyankar S, Briggs AD, Burt R, Lipani J, Roskos LK, White JM, Havrilla N, Schwab G, Heslop HE. Treatment of steroid-refractory acute graft-versus-host disease with anti-CD147 monoclonal antibody ABX-CBL. Blood. 2001; 98(7): 2052-2058.
    138. MoxamC M,Malbon C C. Insulin action impaired by deficiency of the G-protein subunit Gia2. Nature, 1996, 379 (6548):840-844.
    139. Dorotly B. Prospects of antisense therapy are looking brighter. Lancet, 1996; 347:820.
    140. Webb A, Cunninghan D, Cotter F, et al. BcL-2 antisense therapy in patients with non-Hodghin Lymphoma. Lancet, 1997; 349:1137.
    141. Katharine AW, Camlille NA, Aizen JM, et al. Biolodgy of disease, the biology of cancer gene therapy. Lab Invest, 1995; 72:132.
    142. Jonathan WN, Metzger WJ. DNA antisense therapy for asthma in animal model. Nature, 1997; 385:721.
    143. Rahakrishnam PI, Lawrance K P, William E, et al. The automated synthesis of sulfer-containing oligoneucleotides using 3H-1-2-benzodithiol-3-one1 idioxide as a sulfer-transfer reagent. J Org Chem.1990; 55:4693.
    144. Frederit KA, Mcdonell WM. Molecularmedicine: antisense-oligonucleotide therapy. N Eng J Med, 1996; 314:316.
    145. Hnatowich DJ, Mardirossian G, Fogaraas M, et al. Comparative properties of a technetium-99m-labeled sigle-straineded nature DNA and a phosphorothioate derivative in vitro and on mice. J pharmacol Exp Ther, 1996; 276:326.
    146. Bichard WW.Gene inhibition using antisense oligonucleotides.Nature,1994; 372:133.
    147. Bennet CF, Chiang MY, Chan C, et al. Cationic lipids enhance cellar uptake and activity of phisphorothioate antisense oligoneucleotides, Mol Pharmacol,1992;41:1223.
    148. Gennaro C,Daniho P,Cavla Cu, et al. Inhibition of leukemia cell proliferation by receptor-mediated uptake of c-myb antisense oligodeoxynucleotides. PNAS,992;9:031.
    149. B rien SGO, Kirkland M A, Goldman J M. Antisense therapy for malignant disease. Eur J Cancer, 1994; 30: 1160.
    150. Guo HM, Zucker S, Gordon MK. Stimulation of matrix metelloprteinase production by recombinant extracellular matrix metalloproteinase inducer from transfected chinese hamster ovary cells. J Biol Chem, 1997; 272(1):24-27.
    151. Zhang. HF, Ong WY, Leong SK, Garey LJ. Ultrastructural characteristics of blood vessels in the infant and adult human cerebral cortex. Histol Histopathol, 1997;12:85-97.
    152. Gray F, Nordmans P. Bacterial infections in: Graham DI and Lantos PL. editors. Greenfield Neuropathology, 6th edition. 113-129. Oxford University Press, New York, 1997.
    153. Burger PC, Scheithauer BW. Tumours of the central nervous system. Armed Forces Institute of Pathology. Washington DC, 1994.
    154. Giese A, Westphal M. Glioma invasion in the central nervous system. Neurosurgery, 1996;39:235-252.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700