细胞凋亡中Cyclin A-Cdk2底物的筛选及其功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞凋亡,又称程序性细胞死亡,在维持多细胞生物发育和自稳平衡中发挥着重要作用。细胞凋亡的过盛和缺失皆可导致大量疾病的发生。因此,阐明细胞凋亡中信号转导机制,实现细胞凋亡的有效调控,成为了现代医学、药学界的核心研究目标。
     本论文研究发现,Cdk2酶活力在紫杉醇诱导HeLa细胞凋亡的过程中快速上调,而p21CIP1或无活性的点突变Cdk2(Cdk2-dn)的过表达能够有效抑制紫杉醇诱导HeLa细胞的凋亡,线粒体膜电位的去极化,Cytochrome c的释放以及Caspase-3的激活。这些结果表明,Cdk2可以通过调控线粒体膜电位的去极化和Cytochrome c的释放调控细胞凋亡。
     为了寻找Cyclin A-Cdk2在细胞凋亡中的特异性底物,我们克隆、表达、纯化了Bcl-2家族蛋白质: Bad,Bid,Bmf,BimS,Bik。通过体外激酶实验,我们发现Cyclin A-Cdk2只对促凋亡蛋白质Bad有磷酸化作用,而另外四种蛋白质则没有被Cyclin A-Cdk2磷酸化。在细胞内,我们也发现了Cyclin A-Cdk2对Bad蛋白质的磷酸化修饰。结合生物信息学分析,通过激酶实验证明了Cyclin A-Cdk2磷酸化Bad蛋白质的91位丝氨酸。在进一步功能研究中发现,Bad蛋白质91位丝氨酸的磷酸化介导了该蛋白质本身的促凋亡功能,表明Cyclin A-Cdk2对细胞凋亡的调控可能是通过对Bad蛋白质的磷酸化实现的。
Apoptosis, or programmed cell death, plays a central role in the development and homeostasis of all multi-cellular organisms. Apoptosis defined exact process by gene regulation, and uncontrolled apoptosis will lead to a large number of difficulty miscellaneous diseases, such as cancers, autoimmune diseases, neurodegenerative diseases etc. Therefore, to investigate the signal transduction mechanism and to achieve effective control of apoptosis become the important research goal in modern Medicine and Pharmacy.
     Into the 1990s, apoptosis research has become a hot topic of the biological field. The mechanisms of apoptosis have been more understood at the present time, and there are two main apoptosis pathways summarized: First, through caspase-8 of the uptake of apoptosis surface activate pathway; the other one is the release of Cytochrome c and Samc from mitochondria. Cytochrome c and the cytoplasm Apaf-1, caspase-9 precursor, ATP / dATP formated apoptotic bodies, trigger caspases cascade, lead to cell death. Cell-surface receptor-mediated apoptosis need to be amplified through mitochondrial pathway in some cells where caspase-8 activity can not sufficiently trigger apoptisis. Therefore, mitochondrial is the control center for apoptosis. A series of results showed that the Bcl-2 family members regulating the mitochondrial Cytochrome c release directly or indirectly. However, how the complex cell apoptosis stimuli (such as DNA damage, the loss of growth factors, ROS, etc.) pass to the Bcl-2 family and mitochondria is still not entirely clear.
     Cyclin-dependent kinase (Cdks) is a serine / threonine protein kinase, play a central role in cell cycle. In the different cell cycle phases different Cdk is activated. Then phosphorylate their specific substrate to drive the cell cycle. However, recent studies show that a series of specific Cdks (Cdk2, Cdc2, and Cdk4) involved in the regulation of apoptosis. The regulation effect of Cdk2 in apoptosis has been commonly recognized. For example, etoposide-induced apoptosis in human leukemia cells, loss of growth factors caused apoptosis in HUVEC cells, UV irradiation induced apoptosis in mesangial cells, on these processes Cdk2 are specifically activated. And the enzyme activity is apoptosis required. In particular, scientists found that inhibition of Cdk2 activity specifically by small molecule inhibitors can effectively block chemotherapy-induced apoptosis of hair follicle epithelial cells in animal models.
     Even other research teams have found that the regulatory role of Cdk2 in apoptosiss. It is not yet been clarified that how activation of Cdk2 related to cell apoptosis pass the signal into the cell on the apoptosis pathway. Using different means (high-level expression of endogenous Cdk2 inhibitory protein p21CIP1, p27KIP1, a non-active point mutation Cdk2 (Cdk2-dn), or the small molecule inhibitors for Cdk2) to inhibit Cdk2 activity, the cells death were prevented. Therefore, we believe that the role of Cdk2 regulation on apoptosis may be achieved through phosphorylating certain substrate proteins; and these substrates are different from those substrates by enzyme-driven in cell cycle. There should be the Cyclin A-Cdk2 specific substrate in apoptosis. Discovery apoptotic Cdk2 substrate would be a key step for studying the mechanism of enzyme regulating apoptosis.
     In this paper we draw some conlusions as follows:
     1. We provide evidence for the first time, that Cyclin A-Cdk2 activity was upregulated and this event required for the progression of apoptosis of HeLa cells induced by treatment with Paclitaxel;
     2. Cyclin A-Cdk2 plays an important role in the mitochondrial membrane potential depolarization and leading to the release of Cytochrome c, we supposed Cyclin A-Cdk2 could affect the mitochondrial pathway to carry out regulation of apoptosis through regulation of mitochondrial membrane permeability;
     3. We found a apoptotic Cyclin A-Cdk2 substrate, Bad. And indentified its phosphorylation site, serine 91;
     4. The phosphorylation of Bad enhances its pro-apoptotic activity after phosphorylation at serine 91 by Cyclin A-Cdk2.
     In this study we demonstrate the essential role of Cdk2 activity in paclitaxel-induced HeLa cell apoptosis process, and provide evidence for the possible signal transduction mechanism of Cdk2 in the apotosis regulation pathway. In addition, we found a new Cyclin A-Cdk2 substrate, Bad, and indentified its phosphorylation site. Through further functional study we propose that in some extent the regulation of cyclin A-Cdk2 in apoptosis process may be mediated by phosphorylting. These results may provide a new target for developing novel cancer reagents.
引文
[1] Kerr JFR, Wyllie AH and Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer, 1972, 26(4): 239-257
    [2] Horvitz HR. Genetic control of programmed cell death in the nematode Caenorhabditis elegans. Cancer Res, 1999, 59(7): 1701–1706
    [3] Jacobson MD, Weil M, Raff MC. Programmed cell death in animal development.Cell, 1997, 88(3): 347-354
    [4] Brown JM, Attardi LD. The role of apoptosis in cancer development and treatment response. Nat Rev Cancer, 2005, 5(3):231-237
    [5] Koike M, Fujita F, Komori K, et al. Dependence of chemotherapy response on p53 mutation status in a panel of human cancer lines maintained in nude mice. Cancer Sci, 2004, 95(6): 541–546
    [6] Sarkar FH, Rahman KM, Li Y. Bax translocation to mitochondria is an important event in inducing apoptotic cell death by indole-3-carbinol (I3C) treatment of breast cancer cells. J Nutr, 2003, 133(7):2434-2439
    [7] Fukuda S, Pelus LM. Survivin, a cancer target with an emerging role in normal adult tissues. Mol Cancer Ther, 2006, 5(5): 1087-1098
    [8] Fangusaro JR, Caldas H, Jiang Y, et al. Survivin: an inhibitor of apoptosis in pediatric cancer. Pediatr Blood Cancer, 2006, 47(1): 4-13
    [9] Coultas L, Strasser A. The role of the Bcl-2 protein family in cancer. Semin Cancer Biol, 2003, 13(2): 115-123
    [10] Hickman ES, Helin K. The regulation of APAF1 expression during development and tumourigenesis. Apoptosis, 2002, 7(2): 167-171
    [11] H?cker G. The morphology of apoptosis. Cell Tissue Res, 2000, 301(1): 5-17
    [12] Yang J, Liu X, Bhalla K, et al. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science, 1997, 275(5303): 1129-1132
    [13] Vaux DL, Strasser A. The molecular biology of apoptosis. Proc Natl Acad Sci U S A, 1996, 93(6): 2239-2244
    [14] Alnemri ES, Livingston DJ, Nicholson DW, et al. Human ICE/ CED-3 protease nomenclature. Cell, 1996, 87(2):171
    [15] Shi Y.Mechanism of Caspase activation and inhibition during apoptosis. Molecular Cell,2002,9(3):459-470
    [16] Krammer PH. CD95's deadly mission in the immune system. Nature,2000,407(6805):789-795
    [17] Kurokawa M, Kornbluth S. Caspases and kinases in a death grip. Cell, 2009, 138(5): 838-854
    [18] Budihardjo I, Oliver H, Lutter M, Luo X., and Wang X. Biochemical pathways of Caspase activation during apoptosis. Annu. Rev. Cell Dev. Biol.,1999, 15:269–290
    [19] Earnshaw WC, Martins LM, and Kaufmann SH. Mammalian Caspases: structure, activation, substrates, and functions during apoptosis. Annu. Rev. Biochem. 1999,68:383–424
    [20] Fesik SW,and Shi, Y. Structural biology. Controlling the Caspases.. Science,2001,294(5546):1477–1478
    [21] Salvesen GS,and Dixit VM. Caspase activation:the induced- proximity model. Proc. Natl. Acad. Sci. USA. 1999,96(20): 10964–10967
    [22] Thornberry NA,and Lazebnik Y. Caspases: enemies within. Science,1998,281(5381):1312–1316
    [23] Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, and Wamg X. Cytochrome c and dATP-dependent formation of Apaf-1/Caspase-9 complex initiates an apoptotic protease cascade. Cell , 1997,91:479–489
    [24] Rodriguez J, and Lazebnik Y. Caspase-9 and Apaf-1 form an active holoenzyme. Genes Dev.,1999,13:3179–3184
    [25] Saleh A, Srinivasula SM, Acharya S, Fishel R, and Alnemri ES. Cytochrome c and dATP-mediated oligomerization of Apaf-1 is a prerequisite forproCaspase-9 activation. J Biol Chem.,1999, 74(25):17941–17945
    [26] Zou H, Li Y, Liu X, and Wang X. An APAF-1-cytochrome c multimeric complex is a functional apoptosome that activates proCaspase-9. J. Biol.Chem.,1999,274:11549–11556
    [27] Krammer PH. CD95's deadly mission in the immune system. Nature, 2000,407(6805):789-795
    [28] Aravind L, Dixit VM, Koonin EV. Apoptotic molecular machinery: vastly increased complexity in vertebrates revealed by genomic comparisons. Science, 2001,291:279-1284
    [29] Micheau O, Tschopp J. Induction of TNF Receptor I-Mediated Apoptosis via Two Sequential Signaling Complexes. Cell,2003,114: 181–190
    [30] Jacqueline Thorburn J, Bender LM, Morgan MJ, et al. Caspase- and Serine Protease-dependent Apoptosis by the Death Domain of FADD in Normal Epithelial Cells. Molecular Biology of the Cell,2003,14:67–77
    [31] Holler N, Zaru R, Micheau O, et al. Fas triggers an alternative, Caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol, 2000,1:489-495
    [32] Curtin JF, Cotter TG. Live and let die: regulatory mechanisms in Fas-mediated apoptosis. Cellular Signalling, 2003,15:983-992
    [33] Andreeff M, Goodrich DW, Pardee AB. Cell proliferation, differentiation and apoptosis. In: Cancer Medicine, 5th ed., Holland JF, et al ed. B. C. Decker, Inc., Hamilton, Ontario, Canada, 2000.17-32
    [34] Peter ME, Krammer PH. Mechanisms of CD95 (APO-1/Fas)-mediated apoptosis.Curr Opin Immunol. 1998, 10(5):545-551
    [35] Luo X, Budihardjo I, Zou H, Slaughter C, Wang X. Bid, a Bcl-2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell. 1998, 94(4):481-490
    [36] Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by Caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell. 1998, 94(4):491-501 49
    [37] Youle RJ, Karbowski M. Mitochondrial fission in apoptosis. Nat Rev Mol Cell Biol. 2005, 6(8):657-663
    [38] Parone PA, Martinou JC. Mitochondrial fission and apoptosis: an ongoing trial. Biochim Biophys Acta. 2006, 1763(5-6):522-530
    [39] Perfettini JL, Roumier T, Kroemer G. Mitochondrial fusion and fission in the control of apoptosis. Trends Cell Biol. 2005, 15(4):179-183
    [40] Shiraishi H, Okamoto H, Yoshimura A, Yoshida H. ER stress-induced apoptosis and Caspase-12 activation occurs downstream of mitochondrial apoptosis involving Apaf-1. J Cell Sci. 2006, 119(Pt19):3958-3966
    [41] Kumarswamy R, Chandna S. Putative partners in Bax mediated cytochrome-c release: ANT, CypD, VDAC or none of them. Mitochondrion. 2009, 9(1):1-8.
    [42] Kirkland RA, Franklin JL. Bax, reactive oxygen, and cytochrome c release in neuronal apoptosis. Antioxid Redox Signal. 2003, 5(5):589-596
    [43] Korsmeyer SJ, Wei MC, Saito M, Weiler S, Oh KJ, Schlesinger PH.Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ. 2000, 7(12):1166-1173
    [44] Zhang D, Armstrong JS. Bax and the mitochondrial permeability transition cooperate in the release of cytochrome c during endoplasmic reticulum-stress-induced apoptosis. Cell Death Differ. 2007, 14(4):703-715
    [45] Kuwana T, Mackey MR, Perkins G, Ellisman MH, Latterich M,Schneiter R, Green DR, Newmeyer DD. Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell. 2002, 111(3):331-342
    [46] Saito M, Korsmeyer SJ, Schlesinger PH. BAX-dependent transport of cytochrome c reconstituted in pure liposomes. Nat Cell Biol. 2000, 2(8):553-555
    [47] Leber B, Lin J, Andrews DW. Embedded together: the life and death consequences of interaction of the Bcl-2 family with membranes. Apoptosis. 2007, 12(5):897-911
    [48] Campbell AM, Chan SH. Mitochondrial membrane cholesterol, the voltage dependent anion channel (VDAC), and the Warburg effect. J Bioenerg Biomembr. 2008, 40(3):193-197
    [49] Duan X, Zhou Y, Teng X, Tang C, Qi Y. Endoplasmic reticulum stress-mediated apoptosis is activated in vascular calcification. Biochem Biophys Res Commun. 2009, 387(4):694-699
    [50] Szegezdi E, Fitzgerald U, Samali A. Caspase-12 and ER-stress-mediated apoptosis: the story so far. Ann N Y Acad Sci. 2003, 1010: 186-194
    [51] Garrido C, Galluzzi L, Brunet M, Puig PE, Didelot C, Kroemer G. Mechanisms of cytochrome c release from mitochondria. Cell Death Differ. 2006, 13(9):1423-1433.
    [52] Shoshan-Barmatz V, Israelson A, Brdiczka D, Sheu SS. The voltage-dependent anion channel (VDAC): function in intracellular signalling, cell life and cell death. Curr Pharm Des. 2006, 12(18):2249-2270
    [53] Gogvadze V, Orrenius S, Zhivotovsky B. Multiple pathways of cytochrome c release from mitochondria in apoptosis. Biochim Biophys Acta. 2006, 1757(5-6):639-647.
    [54] Morishima N, Nakanishi K, Tsuchiya K, Shibata T, Seiwa E.Translocation of Bim to the endoplasmic reticulum (ER) mediates ER stress signaling for activation of Caspase-12 during ER stress-induced apoptosis. J Biol Chem. 2004, 279(48):50375-50381
    [55] Tsujimoto Y. Bcl-2 family of proteins: life-or-death switch in mitochondria. Biosci Rep. 2002, 22(1):47-58
    [56] Susnow N, Zeng L, Margineantu D, Hockenbery DM. Bcl-2 family proteins as regulators of oxidative stress. Semin Cancer Biol. 2009,19(1):42-49
    [57] Strasser A. The role of BH3-only proteins in the immune system. Nat Rev Immunol. 2005, 5(3):189-200
    [58] Tsujimoto Y, Cossman J, Jaffe E, Croce CM. Involvement of the bcl-2 gene in human follicular lymphoma. Science, 1985, 228(4706):1440-1443
    [59] Droin NM, Green DR. Role of Bcl-2 family members in immunity and disease. 51Biochim Biophys Acta. 2004, 1644(2-3):179-188
    [60] Petros AM, Olejniczak ET, Fesik SW. Structural biology of the Bcl-2 family of proteins. Biochim Biophys Acta. 2004, 1644(2-3):83-94
    [61] Yang E, Zha J, Jockel J, Boise LH, Thompson CB, Korsmeyer SJ. Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell. 1995, 80(2):285-291
    [62] Petros AM, Nettesheim DG, Wang Y, Olejniczak ET, Meadows RP, Mack J, Swift K, Matayoshi ED, Zhang H, Thompson CB, Fesik SW. ationale for Bcl-xL/Bad peptide complex formation from structure,mutagenesis, and biophysical studies. Protein Sci. 2000, 9(12):2528-2534
    [63] Kelekar A, Chang BS, Harlan JE, Fesik SW, Thompson CB. Bad is a BH3 domain-containing protein that forms an inactivating dimer with Bcl-XL. Mol Cell Biol. 1997, 17(12):7040-7046
    [64] Hong JR, Wu JL. Induction of apoptotic death in cells via Bad gene expression by infectious pancreatic necrosis virus infection. Cell Death Differ. 2002, 9(2):113-124
    [65] Rickman DW, Nacke RE, Bowes Rickman C. Characterization of the cell death promoter, Bad, in the developing rat retina and forebrain. Brain Res Dev Brain Res. 1999, 115(1):41-47
    [66] K?hler T, Schill C, Deininger MW, Krahl R, Borchert S, Hasenclever D,Leiblein S, Wagner O, Niederwieser D. High Bad and Bax mRNA xpression correlate with negative outcome in acute myeloid leukemia (AML). Leukemia. 2002, 16(1):22-29
    [67] Ichinose M, Liu XH, Hagihara N, Youle RJ. Extracellular Bad fused to toxin transport domains induces apoptosis. Cancer Res. 2002, 62(5):1433-1438
    [68] D?uzniewska J, Beresewicz M, Wojewódzka U, Gajkowska B, Zab?ocka B. Transient cerebral ischemia induces delayed proapoptotic Bad translocation to mitochondria in CA1 sector of hippocampus. Brain Res Mol Brain Res. 2005 Feb 18;133(2):274-80
    [69] Harada H, Becknell B, Wilm M, Mann M, Huang LJ, Taylor SS, Scott JD,Korsmeyer SJ. Phosphorylation and inactivation of BAD by mitochondria-anchored protein kinase A. Mol Cell. 1999 Apr;3(4):413-22
    [70] Blume-Jensen P, Janknecht R, Hunter T. The kit receptor promotes cell survival via activation of PI 3-kinase and subsequent Akt-mediated phosphorylation of Bad on Ser136. Curr Biol. 1998, 8(13):779-782
    [71] Harada H, Becknell B, Wilm M, Mann M, Huang LJ, Taylor SS, Scott JD, Korsmeyer SJ. Phosphorylation and inactivation of BAD by mitochondria-anchored protein kinase A. Mol Cell. 1999, 3(4):413-422
    [72] Zha J, Harada H, Osipov K, Jockel J, Waksman G, Korsmeyer SJ. BH3 domain of BAD is required for heterodimerization with BCL-XL and pro-apoptotic activity. J Biol Chem. 1997, 272(39):24101-24104
    [73] Tan Y, Demeter MR, Ruan H, Comb MJ. BAD Ser-155 phosphorylation regulates BAD/Bcl-XL interaction and cell survival. J Biol Chem. 2000, 275(33):25865-25869
    [74] Uchino H, Minamikawa-Tachino R, Kristián T, Perkins G, Narazaki M, Siesj? BK, Shibasaki F. Differential neuroprotection by cyclosporin A and K506 following ischemia corresponds with differing abilities to inhibit calcineurin and the mitochondrial permeability transition. Neurobiol Dis. 2002, 10(3):219-233
    [75] Saito A, Hayashi T, Okuno S, Ferrand-Drake M, Chan PH. Overexpression of copper/zinc superoxide dismutase in transgenic mice protects against neuronal cell death after transient focal ischemia by blocking activation of the Bad cell death signaling pathway. J Neurosci. 2003, 23(5):1710-1718
    [76] Bonni A, Brunet A, West AE, Datta SR, Takasu MA, Greenberg ME. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science. 1999, 286(5443):1358-1362
    [77] Schürmann A, Mooney AF, Sanders LC, Sells MA, Wang HG, Reed JC, Bokoch GM. p21-activated kinase 1 phosphorylates the death agonist and protects cells from apoptosis. Mol Cell Biol. 2000, 20(2):453-461 53
    [78] Claerhout S, Decraene D, Van Laethem A, Van Kelst S, Agostinis P, Garmyn M. AKT delays the early-activated apoptotic pathway in VB-irradiated keratinocytes via BAD translocation. J Invest Dermatol. 2007 Feb;127(2):429-438
    [79] Dramsi S, Scheid MP, Maiti A, Hojabrpour P, Chen X, Schubert K, Goodlett DR, Aebersold R, Duronio V. Identification of a novel hosphorylation site, Ser-170, as a regulator of bad pro-apoptotic activity. J Biol Chem. 2002 Feb 22;277(8):6399-405
    [80] Swenson K. I., Farrell K. M. and Ruderman J. V. The clam embryo protein cyclin A induces entry into M phase and the resumption of meiosis in Xenopus oocytes. Cell, 1986, 47(6): 861–870
    [81] Jeffrey P. D., Russo A. A., Polyak K., Gibbs E., Hurwitz J.,Massague J. et al. Mechanism of CDK activation revealedby the structure of a cyclinA-CDK2 complex. Nature, 1995, 376(6538): 313–320
    [82] Pines J. and Hunter T. Human cyclin A is adenovirus E1A-associated protein p60 and behaves differently from cyclinB. Nature. 1990, 346(6286): 760–763
    [83] Poon R. Y. C., Yamashita K., Howell M., Ershler M. A.,Belyavsky A. and Hunt T. Cell cycle regulation of the p34cdc2/p33cdk2-activating kinase p40MO15. J. Cell Sci.1994, 107(Pt10): 2789–2799
    [84] Schulman B. A., Lindstrom D. L. and Harlow E. Substrate recruitment to cyclin-dependent kinase 2 by a multipurpose docking site on cyclin A. Proc. Natl. Acad. Sci. USA,1998, 95(18): 10453–10458
    [85] Hinds PW. Cdk2 dethroned as master of S phase entry. Cancer Cell. 2003, 3(4):305-307
    [86] Prehoda KE, Lim WA. How signaling proteins integrate multiple inputs: a comparison of N-WASP and Cdk2. Curr Opin Cell Biol. 2002, 14(2):149-154
    [87] Edgar BA, Orr-Weaver TL. Endoreplication cell cycles: more for less. Cell. 2001, 105(3):297-306
    [88] Petersen BO, Lukas J, S?rensen CS, Bartek J, Helin K. Phosphorylation ofmammalian CDC6 by cyclin A/CDK2 regulates its subcellular localization. EMBO J. 1999, 18(2):396-410
    [89] Luciani MG, Hutchins JR, Zheleva D, Hupp TR. The C-terminal regulatory domain of p53 contains a functional docking site for cyclin A. J Mol Biol. 2000 , 300(3):503-518
    [90] Santaguida M, Ding Q, BérubéG, Truscott M, Whyte P, Nepveu A. Phosphorylation of the CCAAT displacement protein (CDP)/Cux transcription factor by cyclin A-Cdk1 modulates its DNA binding activity in G(2). J Biol Chem. 200, 276(49):45780-45790.
    [91] Hengstschl?ger M, Braun K, Soucek T, Miloloza A, Hengstschl?ger-Ottnad E. Cyclin-dependent kinases at the G1-S transition of the mammalian cell cycle Mutat Res. 1999, 436(1):1-9
    [92] Woo RA, Poon RY. Cyclin-dependent kinases and S phase control in mammalian cells. Cell Cycle. 2003, 2(4):316-324.
    [93] Mazumder S, DuPree EL, Almasan A. A dual role of cyclin E in cell proliferation and apoptosis may provide a target for cancer therapy. Curr Cancer Drug Targets. 2004, 4(1):65-75
    [94] Gartel AL, Tyner AL. The role of the cyclin-dependent kinase inhibitor p21 in apoptosis. Mol Cancer Ther. 2002, 1(8):639-649
    [95] Hakem A, Sasaki T, Kozieradzki I, Penninger JM. The cyclin-dependent kinase Cdk2 regulates thymocyte apoptosis. J Exp Med. 1999, 189(6):957-968
    [96] Levkau B, Koyama H, Raines EW, Clurman BE, Herren B, Orth K, Roberts JM, Ross R. Cleavage of p21Cip1/Waf1 and p27Kip1 mediates apoptosis in endothelial cells through activation of Cdk2: role of a Caspase cascade. Mol Cell. 1998, 1(4):553-563
    [97] Hiromura K, Pippin JW, Blonski MJ, Roberts JM, Shankland SJ. The subcellular localization of cyclin dependent kinase 2 determines the fate of mesangial cells: role in apoptosis and proliferation. Oncogene. 2002, 21(11):1750-1758
    [98] Harvey KJ, Lukovic D, Ucker DS. Caspase-dependent Cdk activity is a 55requisite effector of apoptotic death events. J Cell Biol. 2000, 148(1):59-72
    [99] Van den Heuvel S, Harlow E. Distinct roles for cyclin-dependent kinases in cell cycle control. Science. 1993, 262(5142):2050-2054
    [100] Davis ST, Benson BG, Bramson HN, et al. Prevention of chemotherapy-indu ced alopecia in rats by CDK inhibitors. Science. 2001, 291(5501):134-137
    [101] Jin YH, Yoo KJ, Lee YH, Lee SK. Caspase 3-mediated cleavage of p21WAF1/CIP1 associated with the cyclin A-cyclin-dependent kinase 2 complex is a prerequisite for apoptosis in SK-HEP-1 cells. J Biol Chem. 2000, 275(39):30256-30263
    [102] Jin YH, Yim H, Park JH, Lee SK. Cdk2 activity is associated with depolarization of mitochondrial membrane potential during apoptosis. Biochem Biophys Res Commun. 2003, 305(4):974-980
    [103] Ham YM, Choi KJ, Song SY, Jin YH, Chun MW, Lee SK. Xylocydine, a novel inhibitor of cyclin-dependent kinases, prevents the tumor necrosis factor-related apoptosis-inducing ligand-induced apoptotic cell death of SK-HEP-1 cells. J Pharmacol Exp Ther. 2004, 308(3):814-819
    [104] Choi JS, Shin S, Jin YH, Yim H, Koo KT, Chun KH, Oh YT, Lee WH, Lee SK. Cyclin-dependent protein kinase 2 activity is required for mitochondrial translocation of Bax and disruption of mitochondrial transmembrane potential during etoposide-induced apoptosis. Apoptosis. 2007, 12(7):1229-1241
    [105] Hsu SL, Yin SC, Liu MC, Reichert U, Ho WL. Involvement of cyclin-dependent kinase activities in CD437-induced apoptosis. Exp Cell Res. 1999, 252(2):332-341
    [106] Park DS, Stefanis L, Yan CY, Farinelli SE, Greene LA. Ordering the cell death pathway. Differential effects of BCL2, an interleukin-1-converting enzyme family protease inhibitor, and other survival agents on JNK activation in serum/nerve growth factor-deprived PC12 cells. J Biol Chem. 1996, 271(36): 21898-21905
    [107] Malumbres M, Barbacid M. Mammalian cyclin-dependent kinases TrendsBiochem Sci. 2005, 30(11):630-641
    [108] Gervais JL, Seth P, Zhang H. Cleavage of CDK inhibitor p21(Cip1/Waf1) by Caspases is an early event during DNA damage-induced apoptosis. J Biol Chem. 1998, 273(30):19207-19212
    [109] Eymin B, Sordet O, Droin N, Munsch B, Haugg M, Van de Craen M, Vandenabeele P, Solary E. Caspase-induced proteolysis of the cyclin-dependent kinase inhibitor p27Kip1 mediates its anti-apoptotic activity. Oncogene. 1999, 18(34):4839-4847
    [110] Zhou BB, Li H, Yuan J, Kirschner MW. Caspase-dependent activation of cyclin-dependent kinases during Fas-induced apoptosis in Jurkat cells. Proc Natl Acad Sci U S A. 1998, 95(12):6785-6790
    [111] Mazars A, Fernandez-Vidal A, Mondesert O, Lorenzo C, Prévost G, Ducommun B, Payrastre B, Racaud-Sultan C, Manenti S. A Caspase-dependent cleavage of CDC25A generates an active fragment activating cyclin-dependent kinase 2 during apoptosis. Cell Death Differ. 2009, 16(2):208-218
    [112] Wani MC, Taylor HL, Wall ME, Coggan P, McPhail AT. Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc. 1971, 93(9): 2325-2327.
    [113] Rowinsky EK, Cazenave LA, Donehower RC. Taxol: a novel investigational antimicrotubule agent. J Natl Cancer Inst.1990, 82(15):1247-1259.
    [114] Wilson L. Microtubules as drug receptors: pharmacological properties of microtubule protein. Ann N Y Acad Sci. 1975, 253:213-231.
    [115] Crossin KL, Carney DH. Microtubule stabilization to taxol inhibits initiation of DNA synthesis by thrombin and by epidermal growth factor. Cell, 1981, 27(2pt1):341-350.
    [116] Symmans WF, Volm MD, Shapiro RL, et al. Paclitaxel-induced apoptosis and mitotic arrest assessed by serial fine-needle aspiration: implication for early prediction of breast cancer response to neoadjuvant treatment. ClinCancer Res, 2000, 6 (12): 4610-4617.
    [117] Srivastava RK, Sasaki CY, Hardwick JM, et al.Bcl-2 mediated drug resistance: Inhibition of apotosis by blockingmuclear factor of activated T lymphocytes(NFAT) -NDUCED Fas ligand transcription. J Exp Med, 1999, 190 (2): 253-265.
    [118] Pucci B, Bellincamp i L, TafaniM, et al. Paclitaxel induces apoptosis in Saos-2 cells with CD95L up regulation and bcl-2 phosphorylation. Exp Cell Res, 1999, 252 (1): 134-143.
    [119] Essmann F, Wieder T, Otto A, et al1GDP dissociation inhibitor D4GD I(Rbo-GDI2) , but not the homologous rho-GD I1, is cleaved by Caspase-3 during drug-induced apoptosis. Biochem J, 2000, 346(pt3): 777-783.
    [120] Scatena CD, Stewart ZA,Mays D, et al. Mitotic phosphorylation of Bcl-2 during normal cell cycle progression and Taxol-induced growth arrest. J Biol Chem, 1998, 273 (46): 30777-30784.
    [121] Blagosklonny MV, Schulte T, Nguyen P, et al.Taxol-induced apoptosis and phosphorylation of Bcl-2 p rotein involves c-Raf-1 and represents a novel c-Raf-1 signal transduction pathway. Cancer Res, 1996, 56 (8): 1851-1854.
    [122] Condorelli F, Salomoni P, Cotteret S, et al. Caspase cleavage enhances the apoptosis-inducing effects of BAD. Mol Cell Biol. 2001, 21(9):3025-3036
    [123] Kim HT, Kim BC, Kim IY, et al. Raloxifene, a mixed estrogen agonist/antagonist, induces apoptosis through cleavage of BAD in TSU-PR1 human cancer cells. J Biol Chem. 2002, 277(36):32510-32515

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700