关于内源性类阿片肽对于ACTH分泌影响的临床研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以血清N-POMC水平作为ACTH分泌的指标,观察了静脉注射大剂量(16mg)和小剂量(0.4mg)纳络酮对于正常人和柯兴氏病等垂体—肾上腺疾病患者ACTH和皮质醇基础分泌的影响;观察了纳络酮(25mg)对于正常人和柯兴氏病患者羊CRH1-41(100μg)兴奋后或胰岛素低血糖兴奋后ACTH和皮质醇分泌的影响。结果(1):在8名正常人注射大剂量纳络酮后30、60和90分钟时,血清N-POMC和血浆皮质醇水平较生理盐水对照试验显著升高(P<0.02~0.001),但小剂量无效。5例阿迪森氏病和4例先天性肾上腺皮质增生症患者注射大剂量纳络酮后,血清N-POMC的反应与正常人相似,而血皮质醇水平无上升;小剂量纳络酮无效。但是,大、小剂量纳络酮均不能改变8例柯兴氏病或纳尔逊氏综合征患者血N-POMC和皮质醇水平。此结果提示:纳络酮对于ACTH分泌的作用是通过了对其不敏感的δ或κ阿片肽受体起效的。一般认为,纳络酮刺激ACTH和皮质醇分泌是通过解除类阿片肽对于下丘脑CRH神经元的抑制作用使内源性CRH释放增加起作用的。为什么柯兴氏病和纳尔逊氏综合征患者血ACTH对于纳络酮不起反应?是纳络酮未引起内源性CRH释放增加,抑或是垂体ACTH瘤对于增加的CRH不起反应,需要进一步研究来回答。(2)7例柯兴氏病患者对于羊CRH1—41的反应与6名正常人相似。血清N-POMC峰值在患者和正常人分别是基础值的2.0±0.3和2.0±0.2倍(P>0.9);血浆皮质醇峰值分别是基础的1.6±0.2和2.2±0.4倍(P>0.9)。加用纳络酮后,柯兴氏病患者没有象正常人一样出现血N-POMC和皮质醇水平的进一步增高反应。结果说明外源性CRH不仅能够兴奋正常人的垂体ACTH细胞分泌,也能兴奋柯兴氏病患者垂体ACTH瘤细胞分泌ACTH。这就回答了上面的问题,不是柯兴氏病患者对于增加的内源性CRH不起反应,而是纳络酮未能引起内源性CRH的释放增加。这可能是因为在柯兴氏病患者高皮质醇血症和高ACTH血症更强烈地抑制着下丘脑CRH神经元的功能。(3)在5名正常人的研究发现胰岛素低血糖试验(RI0.15u/kg体重)中血N-POMC和皮质醇水平明显增高,最大增值分别是777±127pg/ml(P<0.01)和17.6±1.5μg/d1(P<0.001)。纳络酮和胰岛素低血糖联合应用时无相加作用。结果提示:纳络酮和胰岛素低血糖应激刺激ACTH分泌可能通过,至少是部分地通过相同的机制起效的,即通过解除内源性类阿片肽对于下丘脑—垂体—肾上腺轴的张力性抑制起效。但在柯兴氏病患者,无论是单纯胰岛素低血糖(RI0.30u/kg体重)还是胰岛素低血糖加纳络酮均不能改变其血N-POMC和皮质醇水平,可能此两(?)刺激均未能刺激内源性CRH释放增加。
     从我们的研究结果,可以得出以下几点推论 (1) 纳络酮刺激正常人,阿迪森氏病和先天性肾上腺皮质增生症患者ACTH分泌的作用是经由对其相对不敏感的δ或κ受体实现的;(2) 胰岛素低血糖应激兴奋ACTH分泌可能涉及类阿片肽机制;(3) 柯兴氏病患者血N-POMC对于纳络酮、胰岛素低血糖刺激均无反应,间接说明其内源性CRH神经元功能处于受抑制状态,提示病人的垂体ACTH瘤不受内源性CRH的调控.是自主或相对自主的腺瘤。
We have used the serum N-POMC level as indication of ACTH secretion to test the effects of a low (0.4mg) and a high (16mg) dose of naloxone on the basal secretion oi ACTH and cortisol in normal subjects and patients with pituitary-adrenal disorders; to test the effect of naloxone on the responses of ACTH and cortisol to oCRH in seven patients with Cushing's disease and six normal subjects as controls; and to test the effect of naloxone on the release of ACTH stimulated by insulin—induced hypoglycemia in five normal subjects and five patients with Cushing's disease.
    Results:(1) In eight normal subjects the high dose of naloxone caused obvious increases in serum N-POMC and cortisol concentrations at 30, 60 and 90 minute (p < 0.02-0.001) compared with that after injection of 0.9% saline, whereas the low dose of naloxone was ineffective. Similar response of blood N-POMC, not cortisol, to high dose of naloxone was found in five patients with Addison's disease and four patients with conjenital adrenal hyperplasia. But both doses of naloxone failed to influence blood N-POMC and cortisol levels in eight patients with ACTH-dependent Cushing's disease or Nelson's syndrome. These results suggest that inhibitory δ- or κ-opiate receptors (insensitive to naloxone) are involved in the regulation of ACTH secretion. In patients with Cusing's disease or Nelson's syndrome ACTH is not altered by naloxone.
    (2). The peak values of serum N-POMC after intravenous injection of oCRH1-41(100ug) in controls and patients with Cushing's disease rose 2.0 ± 0.2 and2.0± 0.3 folds respectively which were not different from each other (p > 0.9), and the peak levels of plasma cortisol increased to the same extent as serum N-POMC which were 2.2 ± 0.4 and 1.6 ± 0.2 folds of their basal levels respectively. These results reflect that exogenous CRH can stimulate N-POMC and cortisol secretion both in normal subjects and patients with Cushing's disease. However, the additional injection of naloxone (25 mg) could cause further increases of blood N—POMC and cortisol only in normal subjects, but not in patients with Cushing's disease. Naloxone, by blooking the inhibitory effect of opioid peptides on CRH secretion, might cause an increase of N-POMC and cortisol in normal subjects.
    (3). In normal subjects, insulin-induced hypoglycemia (0.15 u / kg) caused prompt increases in blood N-POMC and cortisol levels. The peak changes (peak values minus basal values) of N—POMC and cortisol during insulin— induced hypoglycemia were 777 ± 127 pg/ ml and 17.6± 1.5 ug/ dl respectively, which were unchanged by the additional injection of naloxone (25 mg). The effects of naloxone and insulin were not addictive. Thse results indicate that naloxone and the hypoglycemia—stress stimulated release of ACTH may act, at least in part, through common mechanisms, that is, through disinhibition of opiate inhibition on pituitary—adrenal axis. But in patients with Cushing's disease, both insulin—induced hypoglycemia (0.30 u/ kg) and naloxone could not alter the blood
引文
1. Hughes J, et al. Identification of two related pentapeptides from the bra in with potent opiate agonist activity. Nature 1975; 258: 577
    2. Stubbs WA, et al. Hormonal and metabolic responses to an enkephalin anal ogue in normal man. Lancet 1978; ⅱ:1225
    3. Del pozo E, et al. Inhibitory action of a met-enkephalin on ACTH release in man. J Clin Invest 1980; 65: 1531
    4. Volavka J, et al. Naloxone increases ACTH and cortisol levels in man. N Engl J Med 1979; 300
    5. Morley JE, et al. Endocrine effects of naloxone-induced opiate receptor blockade. J Clin Endocrinol Metab 1980; 50: 251
    6. Grossman A, et al. Opiate modulation of the pituitary-adrenal axis: effe cts of stress and circadian rhythm. Clin Endocrinol 1980; 17:279
    7. Gaillard RC, et al. The effects of met-enkephalin analogue on ACTH, β-LPHβ-endorphin and met-enkephalin in patients with adrcnocortical disea-se. Clin Endocrinol 1981; 14: 471
    8. Chan JSD, et al. Corticotropin releasing factor (CRF): effects on the rel ease of pro-opiomelanocortin (POMC)-related peptides by human anterior pituitary cells in vitro. Endocrinology 1982; 111: 1388
    9. LU CL, et al. Metabolic clearance rate and half-time disappearance rate of humanN-terminal and adrenocorticotropin of pro-opiomelanocortin in the rat: A comparative study. Life sci 1983; 33: 2599
    10. Chan JSD, et al. Measurement of N-terminal(1-76) of human pro-opiomelanocortin in human plasma correlation with adrenocorticotropin. J Clin Endocrinol metab 1983; 56: 791
    11.吴从愿等:血浆总皮质醇的快速竞争放射分析法及其临床应用.北京医学 1982;4: 96
    12.陆召麟等:正常人和垂体-肾上腺疾病患者血清N-POMC水平及其临床意义. 中华内分泌代谢杂志 1985;1:73
    13. Wakabayashi I, et al. Failure of naloxonc to influence plasma growth hormonc, prolactin, and cortisol secretion induced by insulin hypo-glycemia. J Clin Endocinol Metab 1980; 50: 597
    14. Spiler IJ and Molitch ME. Lack of modulation of pituitary hormone stress response by neural pathways involving opiate receptors. J Clin Endocrinol Metab 1980; 50: 516
    15. Deuss U, et al. Effects of high-dose and low-dose naloxone on plasma ACTH in patients with ACTH hypersecretion. Clin Endocrinol 1985; 22: 273
    16. Chrousos GP, al. Clinical application of corticotropinreleasing factor. Ann Inter??Med 1985; 102:344
    
    17.Martin JB, et al. Corticotropin-releasing hormone (CRH) test, in Martin JB and Reichlins (eds):"Clinical Neuroendocrinology",ed2, Davis FA Company, 1987; pp 491. Philadelphia.
    
    18.Conaglen JV, et al. Effect of naloxone on the hormone response to CRF in man. Endocrine Res 1985; 11(1-2):39
    
    19.Gillies G, et al. Corticotropin releasing activity of the new CRF is po tentiated several times by vasopressin. Nature 1982; 299:355
    
    20.Millan MA, et al.Receptor and actions of corticotropin-releasing hormone in the primate pituitary gland. J Clin Endocrinol Metab 1987; 64:1036
    
    21.Suda T. Radioimmunoassay of CRH:methodology and clinical application.In: "Corticotropin Releasing Hormone ", International wockshop, 1987;p47.George Thieme Verlag Stuttgart,New York.
    
    22.Ngai SH, et al. Pharmacokinetics of naloxone in rate and in man. Anesthesiolgy 1976; 44:398
    
    23.Decherney GS, et al. Effect of ovine corticotroin-releasing hormone admi- nistrat- ed during insulin—induced hypoglycemia on plasma adrenocortico— tropin and cortisol. J Clin Endocrinol Metab 1987; 64:1211
    
    24,Baylis PH and Robertson GL. Rat vasopressin response to insulin induced hypoglycemia. Endocrinology 1980; 107:175
    1. Vale W, et al. Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and β-cndorphin. Science 1981; 213:1394
    2. Martin JB and Reichlin S. Regulation of adrenocorticotropic hormone (ACTH) secretion and its disorders. In Martin JB and Reichlin S (eds): Clinical Neurocndocrinology, ed2, 1987, pp159, Davis FA Company, Philadelphia.
    3. Mains RE, et al. Common precursor to corticotropin and endorphins. Proc Natl Acad Sci USA 1977; 74: 3014.
    4. Roberts JL and Herbert E. Characterization of a common precursor to corticotropin and β-lipotropin: Identification of β-lipotropin peptides and their arrangement relative to corticotropin in the precursor synthesized in a cell-free system. Proc. Natl Acad Sci USA 1977; 74: 5300
    5. Takahashi H, et al. Isolation and structural Organization of the human corticotropin-β-lipotropin precursor gene. FEBS letters 1981; 135: 97
    6. Seidah NG, et al. Complete primary structure with disulfide bridges of a major pituitary glycopeptide representing the N-terminal 76 residues of human pro-opiomelanocortin: Evidence for a possible function as an aldosterone stimulating substance in vitro. J Biol Chem 1980; 256: 7977
    7. Scidah NG and Chretien M. Complete amino acid sequence of a human pituitary glycopeptide: an important maturation product of pro-opiomelanocortin. Proc. Natl Acad Sci USA 1981; 78: 4286
    8. Imura H. ACTH and related peptides: molecular biology, biochemistry and regulation of secretion. Clinics in Endocrinol and Metab 1985; 14: 845
    9. Chan JSD, et al. Measurement of N-terminal (1-76) of human pro-opimelanocortin in human plasma: Correlation with adrenocorticotropin. J Clin Endocrinol Metab 1983; 56: 791
    10. Eipper BA and Mains RE. Structure and biosynthesis of proadrenocorticotropin/endorphin and related pcptides. Endocrine Rev 1980; 1:1
    11. Ian Smith A and Funder JW. Proopiomelanocortin processing in the pituitary, central nervous system, and peripheral tissues. Endocrine Rev 1988; 9: 159
    12. Krieger DT. The multiple faces of POMC: A prototype precursor molecule. Clin Res 1983; 31: 342
    13. Bondy PK. Disorders of the adrenal cortex. In Wilson JD and Foster DW (eds): Williams Textbook of Endocrinology, ed 7, 1985, pp816, WB saunders, philadephia.
    14.邝安,陈家伦主编:临床内分泌学(上),上海科学技术出版社。1979年10月第一版,pp45
    15. Guillemin R and Rosenberg B. Humoral hypothalamic control of anterior pituitary: Study with combined tissue cultures. Endocrinology 1955; 57: 599
    16. Saffran M and Schally AV. Release of corticotropin by anterior pituitary tissure in??vitro. Can J Biochem Physio 1955; 33:408
    
    17. Vale W, et al. Chemical and biological characterization of corticotropin releasing factor. Rec Prog Horm Res 1983; 39:245
    
    18. Fururanti Y, et al. Cloning and sequence analysis of cDNA for ovine corticotropin releasing factor precursor. Nature 1983; 2: 775
    
    19. Shibihara S, et al. Isolation and sequence analysis of the human corticotropin—releasing factor precursor gene. Embo J 1983; 2:775
    
    20. Rivier J, et al. Characterization of rat hypothalamic corticotropin— releasing hormone factor. Proc Natl Acad Sci USA 1983; 80:4851
    
    21. Gillies G and Grossman A. The CRFs and their control: chemistry, physiology and clinical implications. Clinics in Endocrinol and Metab 1985; 14:821
    
    22. Aguiler G, et al. Receptor mediated actions of corticotropin—releasing factor in pituitary gland and nervous system. Neurocndocrinology 1986; 43:79
    
    23 Antoni FA, et al. Immunoreactive corticotropin—releasing hormone (CRF) in the hypothalamo-infundibular tract. Neuroendocrinology 1983; 36:415
    
    24.Bruhn TO, et al. Effect of paraventricular lesions on corticotropin—releasing factor-like immunoreacting into the stalk-median eminence: Studies on the adrenocorticotropin response to ether stress and exogenous CRF. Endocrinology 1984; 114:57
    
    25. Swanson LW, et al. Organization of ovine corticotropin—releasing factor immunoreactive cells and fibres in the rat brain. Neuroendocrinology 1983; 36:165
    
    26. Sasaki A, et al. Immunoreactive corticotropin—releasing hormone in human plasma during pregnancy, labor, and delivery. J Clin Endocrinol Metab 1987; 64:224
    
    27. Schulte HM, et al. The effects of corticotropin releasing factor on the anterior pituitary function of stalk—sectioned cynomolgus macaques: dose response of cortisol secretion. J Clin Endocrinol Metab 1982; 55:810
    
    28 .Grossman A, et al. New hypothalamic hormone, corticotropin—releasing factor specifically stimulates the release of adrenocorticotropic hormone and cortisol in man Lancet 1982; 1:921
    
    29. Orth DN, et al. Effect of synthetic ovine corticotropin and cortisol. J Clin Invest 1983; 71:587
    
    30. Schulte HE, et al. Corticotropin-relcasing factor: pharmacokinetics in man. J Clin Endocrinol Metab 1984; 58:192
    
    31. Martin JB and Reichlin S. Corticotropin releasing hormone (CRH) test. In Martin JB and Reichlin S (eds): Clinical Neuroencocrinology, ed 2, 1987, pp491, Davis FA Company, Philadelphia.
    
    32. Chrousos GP, et al. Clinical applications of corticotropin-releasing factor. Ann Intern Med 1985; 102:344
    
    33. Rivier CL and Plotsky PM. Mediation by corticotropin-relcasing factor (CRF) ofadenohypophyseal hormone secretion. Annu Rev Physiol 1986; 48:475
    
    34. Grossman A, et al. New hypothalamic hormone, corticotropin-releasing factor, specifically stimulates the releas of adrenocorticotropic hormoneand cortisol in man. Lancet 1982; 2:921
    
    35.Bruhn TO, et al. Corticotropin—releasing factor regulates proopiomelanocortin messneger ribonucleic acid levels in vivo. Neuroendocrinology 1984; 39:170
    
    36. Dallman MF, et al. Corticotrope response to removal of releasing factors and corticosteroids in vivo. Endocrinology 1985; 117:2190
    
    37. Bilezik jian LM and Vale W. Glucocorticoids inhibit corticotropin-releasing factor induced production of adenosine 3', 5'-raonophosphate in cultured anterior pituitary cells. Endocrinology 1983; 113:657
    
    38. Murakami K, et al. Calmodulin inhibitors decrease the CRF- and AVP-induced ACTH release in vitro: interaction of calcium—calmodulin and the cyclic AMP system. Neuroendocrinology 1985; 41:7
    
    39. Gillies G, et al. Corticotropin releasing activity of the new CRF is potentiated several times by vasopressin. Nature 1982; 299:355
    
    40. Liu JH, et al. Augmentation of ACTH—releasing activity of synthetic corticotropin releasing factor (CRF) by vasopressin. J Clin Endocrinol Metab 1983; 57:1087
    
    41. Antoni FA, et al. Oxytocin as well as vasopressin potentiate ovine CRF in heterozygous and homozygous Brattlebora rats. Peptidesl983; 4:411
    
    42. Debold CR, et al. Argininc vasopressin potentiates adrenocorticotropin release induced by ovine corticotropin-releasing factor. J Clin Invest 1984; 73:533
    
    43. Tramu G, et al. Ability of the CRF immunoreactive neurons of the paraventricular nucleus to produce a vasopressin—like material. Neuroendocrinology 1983; 37:467
    
    44. Kiss JZ, et al. Corticotropin—releasing factor—immunoreactive neurons of the paraventricular nucleus become vasopressin positive after adrenolectomy. Proc Natl Acad Sci USA 1984; 81:1854
    
    45 Wolfsen B, et al. Co—localization of corticotropin releasing factor and vasopressin mRNA in neurons after adrenolectomy. Nature 1985; 315:59
    
    46. Hedge GA, et al. Site of action of vasopressin in causing corticotropin release. Endocrinology 1966; 79:328
    
    47. Vale W, et al. Corticotropin releasing factor. In Krieger DT, et al (eds): Brain peptides 1983, pp963, John Wiley and sons, New York.
    
    48. Gillies G, et al. Comparative chromatography of hypothalamic corticotropin releasing factors. Neuroendocrinology 1984; 38:17
    
    49. Suda T. Radioimmunoassay of CRH: Methodology and clinical applicaton. In Corticotropin Releasing Hormone, 1987, pp47. International Workshop, George Thime Verlag Stuttgart, New York.
    
    50. Gaillard RC, et al. The effects of a met-enkephalin analogue on ACTH, β-LPH,β—endorphin and met-enkephalin in patients with adrenocortical disease. Clin Endocrinol 1981; 14:471
    51. Deuss U, et al. Effects of high-dose and low-dose naloxone on plasma ACTH in patients with ACTH hypersecretion. Clin Endocrinol 1985; 22:273
    52、陆召麟等:正常人和垂体-肾上腺疾病患者血清促肾上腺激素原氨基端肽(N-POMC)水平及其临床意义.中华内分泌代谢杂志1985:1:73
    53 Keller-Wood ME and Dallman MF. Corticosteroid inhibition of ACTH secretion. Endocrine Rev 1984; 5:1
    54. Moldow RL and Fichman AJ. Physiological changes in rat hypothalamic CRF circadian, stress and steroid suppression. Peptides 1982; 3: 837
    55. Lundblad JR and Roberts JL. Regulation of proopiomelanocortin gene expression in pituitary. Endocrine Rev 1988; 9:135
    56. Fuxe K, et al. Mapping of glucocorticoid receptor immunoreactive neurons in the rat tel-and diencephalon using a monoclonal antibody against rat liver glucocorticoid receptor. Endocrinology 1985; 117: 1803
    57. McEwen BS, et al. Steroid hormones: Humoral signals which alter brain cell properties and functions. Rec Prog Horm Res 1982; 38: 41
    58. Sapolsky RM, et al. Glueocorticoid-sensitive hippocampal neurons are involved in terminating the adrenocortical stress response. Proc Natl Acad Sci USA 1984; 81: 6174
    59. Motta M, et al. A short feedback loop in the control of ACTH secretion. Endocrinology 1965; 77: 392
    60. Suda T, et al. A short negative feedback mechanism regulating corticotropin-releasing hormone release. J Clin Endocrinol Metab 1987; 64:909
    61. Popova NK, et al. Serotonin in different kinds of stress. In Parvez H, et al (eds): Progress in Neuroendocrinology Vol.1 Neuroendocrinology of hormone-transmitter interations, 1985, pp235, VNU Science Press, Ulrecht, the Netherlands.
    62.Gibbs DA and Vale W. Effects of the serotonin renptake inhibitor fluoxetine on corticotropin-releasing factor and vasopressin secretion into hypophysiol portal blood. Brain Res 1983; 280: 176
    63. Nakagami Y, et al. Effects of serotonin, cyproheptadine and reserpine on corticotropin-releasing factor release from the rat hypothalamus in vitro. Brain Res 1986; 386: 232
    64. Suda T, et al. Effects of cyproheptadine,reserpine and synthetic corticotropin-releasing factor on pituitay glands from patients with Cushing's disease. J Clin Endocrinol Metab 1983; 56:1094
    65. Krieger DT. Physiopathology of Cushing's disease. Endocrine Rev 1983; 4:22
    66. Krieger DT and Glick SM. Sleep EEG stages and plasma growth hormone concentration in states of endogenous and exogenous Hypercortisolemia or ACTH elevation. J Clin Endocrinol Metab 1974; 39: 98667. Ganong WF. Neurotransmitters and pituitary function: regulation of ACTH secretion. Fed Proc 1980; 39:2923
    
    68.Giguera V, et al. Characteristics of the alpha-adrencrgic stimulation of adrenocorticotropin secretion in rat anterior pituitary cells. Endocrinology 1981; 109:757
    
    69. Antoni F. Hypothalamic control of adrenacorticotropin secretion: Advances since the discovery of 41-residue corticotropin-releasing factor. Endocrine Rev 1986; 7:351
    
    70. Suda T. Inhibitory effect of norepinephrine on immunoreactive corticotropin-releasing factor release from the rat hypothalamus in vitro. Life Sci 1987; 40(17): 1645
    
    71. Al-Damjuli S, et al. Alpha adrcnergic stimulation of ACTH secretion by a specific mechanism in man. J Endocrinol 1985; 104(Suppl):40
    
    72. Al-Damjuli S, et al. Circulating adrenaline does not enhance basal or CRF-stimulated ACTH secretion in man. J Endocrinol 1986; 108(Suppl):139
    
    73. Nakai Y, et al. Adrenergic control mechanism for ACTH secretion in man Acta Endocrinologica (Copenh) 1973; 74:263
    
    74. Jones MT, et al. Role of neurotransmitters in the control of ACTH secretion. In Parvez H, et al (eds): Progress in Neuroendocrinology Vol. 1 Neuroendocrinology of Hormone-Transmitter Interactions, 1985, VNU Science Press, Utrecht, the Netherlands.
    
    75. Al-Damjuli S, et al. Beta adrenergic agonists and corticotropin secretion. Lancet 1985; 1:1111
    
    76. Burden JL, et al. The inhibitory effect of GABA and melatonin on the release of corticotropin-releasing hormone from the rat hypothalamus in vitro. J Physiol 1974; 239:116
    
    77. McCam SM and Rettori V. GABA controls anterior pituitary hormone secretion. In Racagni G and Donoso AO (eds): GABA and Endocrine Function, 1986, pp173, Raven Press, New York.
    
    78. Makara GB and Stark E. Effect of gamma-aminobutyric acid (GABA) and GABA-agonist drugs on ACTH release. Neuroendocrinology 1974; 16:178
    
    79. Jones MT, et al. The effect of various putative neurotransmitters on the release of corticotropin—releasing hormone from the rat hypothalamus in vitro: A mode of the neurotransmitters involved. J Endocrinol 1976; 69:1
    
    80.Suda T, et al. Stimulatory effect of acetylcholine on immunoreactive corticotropin-releasing-factor release from the rat hypothalamus in vitro. Life Sci 1987; 40:673
    
    81. Kritzler RK, et al. Sodium valproate and corticotropin suppression in the child treated for seizures. J Pediat 1983; 102:142
    
    82. Dornhorst A, et al. The evaluation of sodium valproate in the treatment of Nelson's syndrome. J Clin Endocrinol Metab 1983; 56:985
    
    83. Gwinup G and Elias AN. Failure of valproic acid to inhibit the growth of an ACTH-secreting pituitary adenoma. Acta Endocrinologica 1984; 405:449
    84. Allolio B, et al. Valproate in Cushing's syndrome. Lancet 1982; 1:171
    
    85. Koppeschaar HPF, et al. Sodium valproadte and cyproheptadine may independently induce remission in the same patient with Cushing's disease. Acta Endocrinologica 1983; 104:160
    
    86. Larmberts SWJ, et al. Adrenocorticotropin—secreting pituitary adenomas originate from the anterior on the intermediate lobe in Cushing's disease: differences in the regulation of hormone secretion. J Clin Endocrinol Metab 1982; 54:286
    
    87. Elians AN and Gwinup G. Cortisol, valproic acid and ACTH. Ann Intern Med 1982; 96:786
    
    88. Stubbs WA, et al. Hormonal and metabolic responses to an enkephalin analogue in normal man. Lancet 1978; 2: 1225
    
    89. Del Pozo E, et al. Inhibitory action of a met—enkephalin on ACTH release in man. J Clin Invest 1980; 65:1531
    
    90. Volavka J, et al. Naloxone increases ACTH and cortisol levels in man. N Engl J Med 1979; 300:1056
    
    91. Morley JE, et al. Endocrine effects of naloxone-induced opiate-receptor blockade. J Clin Endocrinol Metab 1980; 50:251
    
    92. Grossman A, et al. Opiate modulation of the pituitary—adrenal axis: effects of stress and circadian rhythm. Clin Endocrinol 1980; 17:279
    
    93. Gaillard RC, et al. The effects of a met-enkephalin analogue on ACTH, β-LPH. β-endorphin and met—enkephalin in patients with adrenocortical disease. Clin Endocrinol 1981; 14:471
    
    94. Wcitzman ED, et al. Twenty—four hour pattern of the episodic secretion of cortisol in normal subjects. J Clin Endocrinol Metab 1971; 33:14
    
    95. Watabe T, et al. Diurnal rhythm of plasma immunoreactive corticotropin— releasing factor in normal subjects. Life Sci 1987; 40:1651
    
    96. Kreiger DT. Pathophysiology of central nervous system regulation of anterior pituitary function. In Biology of Brain Dysfunction, Vol. 2. 1973, pp351, Plenum Press, New York.
    
    97. Howlett TA, et al. Cushing's syndrome. Clinics in Endocrinol Metab 1985; 14:911
    
    98. Redgate ES. ACTH release evoked by electrical stimulation of brain stem and limbic system sites in the cat: the absence of ACTH release upon infundibular area stimulation. Endocrinology 1970; 86:806
    
    99. Raczkowska M, et al. Circadian rhythm of adrenergic regulation of adrenocorticotropin and cortisol secretion in man. J Clin Endocrinol Metab 1988; 67:404
    
    100. Plotaky PM, et al. Evidence for multifactor regulation of the adrenocorticotropin secretory response to hemodynamic stimuli. Endocrinology 1985; 116:633
    
    101. Plotsky PM. Hypophyseotropic regulation of adenohyphyseal adrenocorticotropin secretion. Fed Proc 1985; 44:207
    102. Aizawa T and Greer MA. The importance of the hypothalamic lateral retrochiasmatic area in the control of adrenocorticotropin and thyrotropin secretion. Endocrinology 1982; 110:1693
    103. Karteszi M, et al. Regulation of the adrenocortical response to insulin-induced hypoglycemia. Endocrinology 1982; 111: 535
    104. Plotsky PM, et al. Hypophyseotropic regulation of ACTH secretion in response to insulin-induced hypoglycemia. Endocrinology 1985; 117:323
    105. Decherney GS, et al. Effect of ovine corticotropin-releasing hormone administrated during insulin-induced hypoglycemia on plasma adrenocorticotropin and cortisol. J Clin Endocrinol Metab 1987; 64: 1211
    106. Howltt TA, et al. The effect of ovine corticotropin-releasing factor on the hormonal response to insulin-induced hypoglycemia. Clin Endocrinol 1989; 30:185
    107. Bay]is PH and Robertson GL. Rat Vasopressin response to insulin induced1.Hughes J, et al. Identification of two related pentapeptides from the brain prain with potent opiate agonist activity. Nature 1975; 258:577
    
    2.Holadny JH, et al. Unique behavioural effects ofβ-cndorphin and their relationship to thermoregulation and hypothalaraic function. Life Sci 1978; 22:1525
    
    3.Brands B, et al. Suppression fo food intake and body weght gain by naloxone in trts. Life Sci 1979; 24:1773
    
    4.Morley JE. The neuroendocrine control of appetite:The role of endogenous opiates, cholecystokinin, TRH, gamma-aminobutyric acid and the diazepam receptor. Life Sci 1980; 27:355
    
    5.Lemaire I, et al. Systemic administration ofβ-endorphin:Potent hypotensive effect involving a serotonergic Pathway. Proc Natl Acad Sci USA 1978; 75:6240
    
    6.Clement-Jones V and Besser GM.Clinical perspectives in Opioid Peptides. Bri Med Bull 1983; 38:95
    
    7.Rossier J. Opioid peptides have found their roots. Nature 1982; 298:221
    
    8.Noda M, et al. Cloning and sequence analysis of cDNA for bovine adrenal preproenkephalin. Nature 1982; 295:202
    
    9.Rossicr J, et al. Met-enkephan-Arg6-Phe7, present in high Amounts in brain of cat, cattle and man, is an opioid gaonist. Nature 1980; 288:88
    
    10.Li CH. Lipotropin, a new active peptide from pituitary glands. Nature 1964; 201:924
    
    11.Li CH, et al. Isolation and structure of β-LPH from sheep pituitary glands. Excerpta Medica Int Congr 1965; 112:349
    
    12.Li CH and Chung D:Isolation and structure of an untriakontapeptide with opiate activity from camel pituitary glangs. Proc Natl Acad Sci USA 1976; 73:1145
    
    13.Ling N, et al. Isolation, primary structure and synthesis of γ—endorphin and α-cndorphin, two peptides of hypothalamic hypophysial origin with morphinometic actibity. Proc Natl AcaD Sci USA 1976; 73:3942
    
    14.Krieger DT. The multiple faces of proopiomelanocortin: A prototype precursor molecule. Clin Res 1983; 31:342
    
    15.Nakanishi S, et al Nucleotide sequence of cloned cDNA for bovine Corticotropin-β-Lipotropin precursor. Nature 1979; 278:423
    
    16.Imura H. ACTH and related pepeides: MOlecular biology, biochemistry and regulation of secretion. Clinics in Endocrinol and Metab 1985; 14:845
    
    17.Smith I and Funder JW. Proopiomelanocortin processing in the pituitary, central nervous system, and peripheral tissues Endocrine Rev 1988; 9:159
    
    18.Goldstein A, et al. Porcine pituitary dynorphinxomplete amino acid sequence of the biologically active heptapeptide. Proc Natl Acad Sci USA 1981; 78:7219
    
    19.Tachibana S, et al. Isloation and structure of dynorphin, and opioid peptide, frompoecine duodenum. Nature 1982; 295:339
    
    20.Goldstein A, et al. Dynorphin-(1-13),an extraordinarily potent opioid peptide. Proc Natl Acad Sci USA 1979; 76:6666
    
    21.kangawa K, et al. The complete amino acid aequence of α-neoendorphin. Biochem biophys Res Commun 1981; 99:871
    
    22.Minamino N, et al.β-neoendorphin, a new hypothalamic "Big" leu- enkephalin of porcine origin: its pruification and the complete amino zcid sequence. Biochem biophys Res Commun 1981; 99:864
    
    23.Kakidani H, et al. Cloning and sequence analysis of cDNA for porcineβ— neo—endorphin dynorphin precursor. Nature 1982; 298:245
    
    24.Martin WR, et al.The effects of morphine— and nalorphine—like drugs in the nondependent and morphine—dependent chronic spinal dog. J Pharmacol Exp Ther 1976; 197:517
    
    25.Gilbert PE and martin WR. The effects of morphine and nalorphine—like drugs in the nondependent, morphine—dependent and cyclazocine—dependent chronic spinal dog. J Pharmacol Exp Ther 1976; 198:66
    
    26.Paterson SJ, et al. Classification of opioid receptors: Bri Med Bull 1983; 39:31
    27.Grossman A. Brain opiates and neuroendocrine function. Clinics in Endocrinol and Metab 1983; 12:725
    
    28.Ngai SH, etal. Pharmacokinetics of naloxone in rats and in man. Anesthesiology 1976; 44:398
    
    29.Roemer D,et al. Asynthetic enkephalin analogue with prolonged parenteral and oral analgesic activity. Nature 1977; 268:547
    
    30. James CW, et al. The Immunocytochemical localization of enkephalin in the central nervous sys tem of the rat. J Comparartive Neurology 1981; 198:541
    
    31.Smyth DG. β—endorphin and related peptides in pituitary, brain, pancreas and antrum. Bri Med Bull 1983; 39:25
    
    32.North RA and Egan Tm. Actions and distributions of opioid peptides in peripheral tissues. Bri Med Bull 1983; 39:71
    
    33.Clement—Jones V, et al. Met—enkephalin circulates in human plasma. Nature 1980; 283:295
    
    34.Smith R, et al. studies on circulating met-enkephalin and β-endorphin: normal subjects and patients wirh renal and adrnal disease. Clin Endocrinol 1981; 15:291
    
    35 Clement—Jones V, et al. Development of spe cific extracted radiommunoassayfor methionine enkephalin in human plasma and cerebrsopinal fluid. J Endocrinol 1980; 86:231
    36.Clement-Jones V, et al. Acupuncture in heroin addicts:-endorphin Changes in met-encaphalin and -endorphin in blood and cerebrospinal fluid. Lancet 1979; 2:380
    
    37.Nakao K, et al. PResenceof immunoreactivcβ-endorphin in normal plasma. J Clin Invest 1978; 62:1395 38.Wardlaw SL and Frantz AG. Measurement of β-endorphin in human plasma. J Clin Endocrinol Metab 1979; 48:176
    
    39.Nakai Y, et al. Presence of immunoreactive β-endorphin in plasma of patients with nelson's syndrome and Addison's disease. Life Sci 1978; 23:2293
    
    40. Julliard JH, et al. High-molecular weight immunoreactiveβ-endorphin in extracts of human placenta is a fragment of immunoglobulin G. Science 1980; 208:183
    
    41.Stubbs WA, et al. Hormonal and metabolic responses to an enkephalin analogue in normal man. Lancet 1978; 2:1225
    
    42.Del Pozo E, et al. Inhibitory action or a met—enkephalin on AC TH release in man. J Clin Invest 1980; 65:1531
    
    43.Volavka J, et al. Naloxone increases ACTH and cortisol levels in mam. NEngl J Med 1979; 300:1056
    
    44.Morley JE, et al. Endocrine effects of naloxone—inducced opiate—receptor blockade. J Clin Endocrinol Metab 1980; 50:251
    
    45.Wakabayashi I, et al. Failure of naloxone to influencce plasma graowth hormone, prolactin, and cortisol secretion induced by insulin hypoglycemia. J Clin Endocrinol Metab 1980; 50:597
    
    46.Bouloux PMG, et al.naloxone provokes catecholamine release in paaeochro—mocytomas and paragangliomas. Clin Endocrinol 1986; 24:319
    
    47.Grossman A, et Al. Opiate modulation of the pituitary—adrenal axis: effects of stress and circadian rhythm. Coin Endocrinol 1980; 17:279
    
    48.Gaillard RC, et al. The effects of a met-enkephalin analogue of ACTH.β-LPH, β-endorphin and met—enkephlin in patients with adrenocortical disease. Clin endocrinol 1981;14:4471-478
    
    49.Kokka N and George R. Effects of narcotic analgesics,anesthetics and hypothalamic lesions on growth hormone and adrenocorticotropic secreionin ratst.- in zimmerman E, George R(eds):narcotics and the hypothalamus, New york, Raven Press, 1974, pp137
    
    50.Buckingham JC and Hodges JR. Opioids and hypothalamo—pituitary—adrenocorticotrophic activity in the rat. J Phy siol 1976; 295:70
    
    51.Grossman A and Besser GM. opiates control ACTH through a noradrenergic mechanism Clin Endocrinol 1982; 17:287
    
    52.Allolio B, et al. Effects of a met-enkephalin analogue on adrenocorticotropin- (ACTH), growth hormone, and prolatin in patients with ACTH hypersecretion. J Clin Endocrinol Metab 1982; 55:1
    
    53.Dcuss OU, et al. Effects of High-dose and low-dose naloxone on plasme ACTH in patients with ACTH hypersecretion. Clin Endocrinol 1985; 22:273
    
    54.Baranowska B, et al. The effect of naloxone of ACTH and β-endorphin in patients with Cushing's disease. Acta Endocrinol 1985; 110:170
    55.Tolis G, et al. Effect of naloxone on pituitary hypersecretory syndromes. J Clin Endocrinol Metab 1982; 54:780
    
    56.Elias AN, et al. Effects of valproic acid,naloxone and hydrocortisonc in Nelson's syndrome and Cushing's disease. Clin Endocrinol 1981; 15:151
    
    57.Fallo F, et al .Effects of naloxone on the pituitary—adrenal axis in patients with dexamethasone—suppressible hyper—aldosteronism. Clin Endocrinol 1987; 26:163
    
    58.Mendelson JH, et al. Plasma testosterone levelsin heroin addiction and during methadone maintenance. J Pharmacol Exp Ther 1975; 142:211
    
    59.Morley JE. The endocrinology of the opiates and opioid peptides. Metabolism, 1981; 30:195
    
    60.Grossman A, et al. The opioid control of LH and FSH release:effects of a met-enkephalin analogue and naloxone. Clin Endocrinol 1981; 14:41
    
    61.Baranowska B, et al. The role of endogenous opiates in the mechanism of inhibited luteinizing hormone (LH)sedretion in women eith anorexia nervwsa:The effect of naloxone on LH, follicle-stimulating hornone, prolatin, and β-endorphin secretion. J Clin Endocrinol Metab 1984; 59:412
    
    62.Blank MS and Roberts DL.Antagonist of gonadotropin—releasing hormone blocks naloxone—induced elevations in serum luteinizing hormone. Neuroendocrinology 1982; 35:309
    
    63.Rasmussen DD, et al. Endogenous opioid regulation of gonado—tropin— releasing hormone release from th human fatal hypothalamus in vitro. J Clin Endocrinol Metab 1983; 57:881
    
    64.Rotsztejn WK, et al. Met—enkephalin inhinits in vitro dopamine—induced LHRH release from mediobasdalj hypothalamus of male rats.Nature 1978; 274:281
    
    65.Bland MS and Bohnet HG. Alpha-adrenergic but not beta-adrenergic or serotonergic antagonists block naloxone-induced LH release. Neuroendocrinology Letters 1983; 5:3
    
    66.Kalra SP and Crowley WR. Epinephrine synthesis inhibitors block naloxone —induced LH release. Endocrinology 1982; 111:1403
    
    67.Sirinathisinghji DJS, et al. Opeate-dopamine-LHRH neuronal systems regulating adenohypophyseal hormones and sex behavioural responses in the female:evidence in the rat and human. In Endroczi et al (eds):Neuropeptides, Neurotransitters Neurotransmitters and Regulation of Endocrine Processes(ed)Endroczi et al 1983, pp199, Budapest; Akademiai kiado
    
    68.Delitala G, et al. Changes in pituitary hormone levels induced by met- enkephalin in man—the role of dopamine. Life Sci 1981; 29:1537
    
    69.Delitala G, et al. On the role of dopamine receptors in the naloxone- induced hormonal changes in man. J Clin Endocrinol Metab 1983; 56:181
    
    70.Moult PJA, et al. The effect of naloxone on pulsatile gonadotropin release in nor-mal asubjects. Clin Endocrinol 1981: 14:321
    
    71.Grossman A, Et al. Opiate mediation of amenorrhoea in hyperprolactinaemia and in weght-loss-related amenorrhoea, Clin Endocrinol 1982; 17:379
    
    72.Quiglcy Me and Yen SSC. The role of endogenous opiates on LH secretion during th emenstrual cycle. J Clin Endocrinol Metab 1980; 52:179
    
    73.Rossmanith WG and Yen SSC. Sleep-associated decrease in luteiniizing hormone pulse frequency during the early follicular phase of the menstrual cycle: Evidence for an opioidergic mechanism. J clin Endoceinol Metab 1987; 65:715
    
    74.Reid RL, et al. The disappearance of opioidergic regulation of gonadotropin secretion in postmenopausal woman. J Clin Endocrinol MEtab 1983; 57:1107
    
    75.Shoupe D, et al. The effects of estrogen and progestin on endogenous opiod activity in ooophorectomized women. J Clin Endocrinol Metab 1985; 30:178
    
    76.Casper RF and Alapin-Rubillovitz S. Progestins increase endogenous opioid peptide activity in postmenopausal women. J Clin Endocrinol Metab 1985; 60:34
    
    77.Petragia F, et al. Naloxone—induced luteinizing hormone secretion in normal, precocious and delayed puberty. J Clin Endocrinol Metab 1986; 63:1112
    
    78.Mauras N, et al. Role of endogenous opioid on puber al maturationropposing actions of naltrexone in pripubertal and late pubertal boys. J Clin Endocrinol Metab 1986; 62:1256
    
    79.Fraioli F, et al. Lck of endogenous opioid inhibitory tone on LH secretion im early puberty. Clin Endocrinol 1984; 20:299
    
    80.Bhanot R and Wilkinson M. Opiatergic control of gonadotropin secretion during puberty in the rat: A neurochemical basis for the hypothalamic " Gonadostat" . Endocrinology 1983; 113:596
    
    81.Reid RL, et al. Effects of exogenous β—endorphin on pituitary hormone secretion andits disappearance rate in normal human subjects. J Clin Endocrinol Metab 1981; 52:1179
    
    82.Grossman A,et al. Studies of th opiate control of prolactin, GH and TSH. Clin Endocrinol 1981; 14:381
    
    83.Martin JB, et al. Failure of naloxone to ingluence physiological growth hormone and prolactin secretion. Brain Res 1979; 168:210
    
    84.Mager G, et al. Failure of naloxone to alter exercise-induced growth hormone and prolactin secretion. Clin Endocrinol 1980; 13:143
    
    85.Moretti C, et al. Naloxone inhibits exercise—induced release of PRL and GH in athlets. Clin Endocrinol 1983; 18:135
    
    86.Delitala G,et al.The modulationof opiate—induced changes in anterior pituitary funetion by a dopamine agonist and antagonist. Neuroendocrinology Letters 1981; 3:147
    
    87.Blankstein J,et al.Failure of maloxone to alter growth hormone and prolactin levels in acromesalin and in hyperprolactinemic patients. Clin Endocrinol 1979; 11:475
    88.Demura R, et al. Plasma pituitary hormone responses to the synthetic enkephalin analogue (FK 33—824) in normal subjects and patients with pituitary diseases. J Clin Endocrinol Metab 1981; 52:263
    
    89.Grossman A, et al. The role of opiate peptides in the control of prolactin in the puerperium, and TSH in primary hypothyroidism. Coln Endocrinol 1982; 16:317
    
    90.Reid RL, et al. Effects of synthetic βendorphin on release of neurohypophyseal hormones. Lancet 1981; ii: 1169
    
    91.Grossman a, et al. INhibition of Vasopressin release in men by opiat peptide. Lancet 1980; ii: 1108
    
    92.Lightman SL, et al. Naloxone increases the nicotine—stimulated rise of vasopressin in man. Clin Endocrinol 1982; 16:353
    
    93.Brownell J. et al. Inhibition of vasopressin secretion by a met—enkephalin (FK 33-824) in humans. Acta Endocrinologica 1980; 94:304
    
    94.LIghtman SL, et al. Effects of the opiate antagonist naloxone and the enkephalin analogue DAMME on the vasopressin response to a hypertonic stimulus in man. J Clin Endocrinol Metab 1980; 51:1447
    
    95.Haldar J, et al. Morphine, β-endorphin,and (D-ala )-met-enkephalin inhibit oxytocin release by acetylcholin and suckling. Peptides 1982; 3:663

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700