血小板反应蛋白-1在缺氧人视网膜色素上皮细胞中的表达及VR-10合成多肽对恒河猴脉络膜视网膜内皮细胞的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章缺氧对ARPE-19细胞表达TGF-β2、VEGF、PEDF及TSP-1的影响
     目的:探讨缺氧诱导人视网膜色素上皮(retinal pigment epithelial,RPE)细胞株(ARPE-19)表达转化生长因子—β2(transforming growthfactor-β2,TGF-β2)、血管内皮生长因子(vascular endothelial growthfactor,VEGF)、色素上皮衍生因子(pigment epithelium-derived factor,PEDF)及血小板反应蛋白—1(Thrombospondin-1 TSP-1)的情况。
     方法:含10%胎牛血清的DMEM/F12培养基培养ARPE-19细胞,加入150umol/mlCoCl_2进行化学缺氧,细胞免疫荧光染色及WesternBlot技术检测ARPE-19细胞在缺氧0h、4h、8h、12h、24h、48h,TGF-β2、VEGF、PEDF及TSP-1的表达情况。
     结果:1.细胞免疫荧光染色ARPE-19细胞胞浆表达VEGF蛋白,随缺氧时间的延长表达增强,以缺氧24小时最为显著;ARPE-19细胞胞浆表达PEDF蛋白,随缺氧时间的延长表达减弱;ARPE-19细胞胞浆、胞膜、核膜及核仁均有TSP-1及TGF-β2蛋白的表达,随缺氧时间的延长表达减弱。
     2.Western Blot技术检测ARPE-19细胞缺氧组表达VEGF随时间延长表达较常氧对照组明显增加,以24小时达高峰,缺氧组为常氧组的2.6倍,此后有所下降,缺氧与常氧组除0小时外(P=0.935),其它各时间点差异均有统计学意义(P=0.000-0.002);表达PEDF、TSP-1及TGF-β2缺氧组较常氧对照组明显减少,48小时缺氧组分别为常氧组的0.30倍、0.35倍及0.28倍,缺氧与常氧组除0小时外(P=0.125)、(P=0.803)、(P=0.086),其它各时间点差异均有统计学意义(P=0.000-0.014)、(P=0.000-0.003)、(P=0.000-0.001)。
     3.缺氧不同作用时间APRE-19表达PEDF、TGF-β2与TSP-1成正相关(r=0.902,P=0.000)、(r=0.990,P=0.000);缺氧不同作用时间APRE-19表达VEGF与TSP-1成负相关(r=-0.853,P=0.000)。
     结论:1.缺氧启动血管新生可能通过ARPE-19细胞表达促血管生成因子VEGF的增加及抗血管生成因子PEDF、TSP-1及TGF-β2的减少实现。
     2.TSP-1不同于作为血管生成正向作用因子的VEGF,可能与PEDF及TGF-β2一同作为血管生成的负向作用因子参与血管新生性疾病的发生发展。
     第二章VR-10合成多肽对恒河猴脉络膜视网膜内皮(RF/6A)细胞的作用
     目的:探讨VR-10合成多肽对猴脉络膜视网膜内皮细胞株(RF/6A细胞)增生、移行的作用及对TGF-β2、VEGF、PEDF表达的影响。
     方法:MTT法检测1μg/ml外源性TSP-1及0.1μg/ml、1μg/ml及10μg/ml的VR-10合成多肽在作用6、12、24、48小时后对RF/6A细胞增殖的影响;Transwell小室实验检测作用24小时后对细胞移行的影响;细胞免疫荧光染色及RT-PCR技术检测对RF/6A细胞表达TGF-β2、VEGF、PEDF的影响。
     结果:1.MTT法检测不同浓度和时间TSP-1及VR-10合成多肽作用RF/6A细胞存活率:TSP-1及VR-10合成多肽对RF/6A细胞均有抑制作用,且随作用时间及浓度的增加,细胞存活率越低。以作用48小时VR-10合成多肽10μg/ml组细胞存活率最低为78%(P<0.001)。
     2.Transwell小室实验中TSP-1及VR-10合成多肽对RF/6A细胞迁移具有抑制作用(P<0.001);以10μg/ml的VR-10合成多肽抑制率最高,1μg/ml TSP-1全肽抑制率次之。VR-10合成多肽随浓度增加抑制率越高(P<0.001);0.1μug/ml的VR-10合成多肽与1μg/ml的VR-10合成多肽对RF/6A细胞的抑制率差异无明显统计学意义(P=0.114)。
     3.细胞免疫荧光染色RF/6A细胞胞浆表达TGF-β2蛋白,1μg/mlTSP-1处理RF/6A细胞表达TGF-β2较空白对照组强,各浓度VR-10合成多肽处理RF/6A细胞表达TGF-β2与空白对照组比较无明显差别;RF/6A细胞胞浆表达PEDF蛋白,TSP-1及VR-10合成多肽处理RF/6A细胞表达PEDF均较空白对照组表达增强,以10μg/ml浓度组VR-10合成多肽作用最强;RF/6A细胞胞浆表达VEGF蛋白,TSP-1及VR-10合成多肽处理RF/6A细胞表达VEGF均较空白对照组表达减弱,以10μug/ml浓度组VR-10合成多肽作用最强。
     4、RT-PCR检测除1μg/ml浓度TSP-1组处理RF/6A细胞表达TGF-β2 mRNA较空白对照组表达增强外(P=0.000),其余各组均与空白对照组间比较差异无统计学意义(P>0.05);PEDF mRNA均较空白对照组表达增强,以10μg/ml浓度组VR-10合成多肽作用最强(P<0.001),各组间比较差异有统计学意义(P<0.001):VEGF mRNA均较空白对照组表达减弱,以10ug/ml浓度组VR-10合成多肽作用最强(P<0.001),除1μg/ml浓度组VR-10合成多肽与1μg/mlTSP-1多肽组间比较差异无统计学意义外(P=0.615),其余各组间比较差异有统计学意义(P<0.001)。
     结论:1.VR-10合成多肽具有抑制内皮细胞增殖、移行的作用。
     2.VR-10合成多肽通过上调抗血管生成因子PEDF,下调促血管生成因子VEGF的表达,及TGF-β2非依赖机制,共同作用而抑制血管新生。
     第三章VR-10合成多肽对RF/6A细胞表达Fas/FasL、Caspase-3及Bcl-2的影响
     目的:探讨VR-10合成多肽对RF/6A细胞凋亡相关基因表达的影响。
     方法:RT-PCR技术检测10μg/ml的VR-10合成多肽及空白对照组对RF/6A细胞表达Bcl-2及FasL mRNA的影响。Western Blot技术检测10μg/ml的VR-10合成多肽及空白对照组对RF/6A细胞表达Fas及Caspase-3蛋白的影响。
     结果:1.RT-PCR检测RF/6A细胞表达Bcl-2 mRNA,10μg/mlVR-10合成多肽处理组较空白对照组表达减少(P=0.000),RF/6A细胞表达FasL mRNA,10μg/mlVR-10合成多肽处理组较空白对照组表达增强(P=0.001)。
     2.WB检测空白对照组RF/6A细胞表达Caspase-3蛋白大多为无活性酶原形式(32KD);10μg/ml VR-10合成多肽处理RF/6A细胞主要表达Caspase-3活性小分子片段(20KD);10μg/ml VR-10合成多肽处理RF/6A细胞表达Fas蛋白较空白对照组增加(P=0.000)。
     结论:VR-10合成多肽通过增加凋亡促进基因Fas/FasL而活化Caspase-3,同时伴有生存基因Bcl-2的减少,共同作用介导内皮细胞凋亡。
Part 1 Expression of cell factors by human retinal pigment epithelial(RPE) cell(APRE-19) under hypoxic condition
     Purpose:To Investigate the production and relaease of transforming growth factor-β2(TGF-β2),vascular endothelial growth factor(VEGF) pigment epithelium-derived factor(PEDF)and thrombospondin-1(TSP-1) by human retinal pigment epithe(?)(RPE) cell(APRE-19) under hypoxic condition.
     Methods:APRE-19 cells were cultured in DMEM/F12 medium with 10%fetal calf serum.Using 150μmol/ml CoCl_2 to simulate the hypoxic condition.After 0,4,8,12,24 and 48 hours of hypoxia,TSP-1, TGF-β2,VEGF and PEDF peptides were detected by immunofluorescent staining and Western Blot.
     Results:1.Immunostaining for VEGF was observed in the cytoplasm of ARPE-19 cells,and it showed a time-dependent increase by hypoxia.The most remarkable expression was at 24 hour of hypoxia. Immunostaining of PEDF was observed in the cytoplasm of the ARPE-19 cells,and it showed a time-dependent derease by hypoxia. Immunostaining of TGF-β2 and TSP-1 was observed in the cytoplasm, entoblast,epicyte,and karyotheca of the ARPE-19 cells,and they showed a time-dependent derease by hypoxia.
     2 Western Blot identified a time-dependent increase of VEGF peptides in the media of hypoxic ARPE-19 cells compared to normoxic cells.At 24 hour of hypoxia,the expression of VEGF reached the peak,it was 2.6 times more than that of normoxic condition,and then decresed. There were signifieanfly statistical differences between hypoxic group and normoxic group at each time(P=0.000-0.002) excluding at 0 hour (P=0.935).Western Blot identified a time-dependent decrease of PEDF, TSP-1 and TGF-β2 peptides in the media of hypoxic ARPE-19 cells compared to normoxic cells.At 48 hour,the expression of PEDF,TSP-1 and TGF-β2 peptides in hypoxic groups were normoxic groups' 0.30 times,0.35 times and 0.28 times respectively.There were signifieantly statistical differences between hypoxic group and normoxic group at each time(P=0.000-0.014),(P=0.000-0.003),(P=0.000-0.001) excluding at 0 hour(P=0.125)、(P=0.803)、(P=0.086)
     3.Positive correlations(r=0.902,P=0.000)、(r=0.990,P=0.000) were observed between the expression of PEDF,TGF-β2 and TSP-1.A negative correlation(r=-0.853,P=0.000) was observed between VEGF and TSP-1.
     Conelutions:1.Hypoxia boot up neovascularization by the increase of angiogenic growth factor VEGF and the decrease of anti-angiogenic facors PEDF,TGF-β2 and TSP-1.
     2.TSP-1 was different from positive role of VEGF,it might contribute to the happening and development of the disease by the negative role similar with PEDF and TGF-β2.
     Part 2 Role of synthetical peptide VR-10 on rhesus choroidal -retinal endothelial(RF/6A) cell.
     Purpose:To investigate the effects of synthetical peptide VR-10 on proliferation and migration of rhesus choroidal -retinal endothelial (RF/6A) cell and the expressions of TGF-β2,VEGF and PEDF in RF/6A cell.
     Methods:Proliferation of RF/6A cell after exposure to 1μg/ml TSP-1 and synthetical peptide VR-10(0.1μg/ml,1μg/ml and 10μg/ml) after 6h,12h,24h and 48h were detected by the tetrazolium dye-reduction assay(MTT).Transwell chamber was used to investigate the migration of RF/6A cell after exposure to 1μg/ml TSP-1 and synthetical peptide VR-10(0.1μg/ml,1μg/ml and 10μg/ml) after 24h.The expression of mRNA of TGF-β2,VEGF and PEDF in RF/6A cell after exposure to 1μg/ml TSP-1 and synthetical peptide VR-10(0.1μg/ml,1μg/ml and 10μg/ml) were detected by immunofluorescent staining and reverse transcription -polymerase chain reaction(RT-PCR) analysis.
     Results:1.TSP-1(1μg/ml) and synthetical peptide VR-10 (0.1μg/ml,1μg/ml and 10μg/ml) inhibited proliefration of RF/6A cells in a time and dose-dependent way.Survival ratio of RF/6A was decrease with the increase of time and concentration.The lowest survival ratio of RF/6A was 78%(P<0.001) by the treatment of 10μg/ml synthetical peptide VR- 10 after 48h.
     2.TSP-1 and synthetical peptide VR-10 could inhibite migration of RF/6A cells in transwell chamber(P<0.001 ).10μg/ml synthetical peptide VR-10 had the strongest effect,1μg/ml TSP-1 was the next.Migration inhibition rate was increase with the increase of the concentration of synthetical peptide VR-10(P<0.001).There was no signifieantly statistical differences between 0.1μug/ml synthetical peptide VR-10 and 1μg/ml synthetical peptide VR-10(P=0.114 ).
     3.Immunostaining for TGF-132 was observed in the cytoplasm of RF/6A cells,the expression was increase after exposure to 1μg/ml TSP-1 compared with control group.There were no impact on the expression of TGF-β2 after exposure to synthetical peptide VR-10.Immunostaining of PEDF was observed in the cytoplasm of the RF/6A cells,and the expressions were increased aider exposure to 1μg/ml TSP-1 and synthetical peptide VR-10 compared with control group.10μg/ml synthetical peptide VR-10 had the strongest effect.Immunostaining of VEGF was observed in the cytoplasm of the RF/6A cells,and it decrease after exposure to 1μg/ml TSP-1 and synthetical peptide VR-10 compared with control group.10μg/ml synthetical peptide VR-10 had the strongest effect.
     4 Expression of TGF-β2 mRNA in RF/6A cell was increased after treatment of 1μg/ml TSP-1(P=0.000).There were no signifieantly statistical differences between synthetical peptide VR-10 and control group(P>0.05).Expression of PEDF mRNA in RF/6A cell was increased after treatment of 1μg/ml TSP-1 and synthetical peptide VR-10, and 10μg/ml synthetical peptide VR-10 had the strongest effect(P<0.001). There were significantly statistical differences between groups(P<0.001). Expression of TGF-β2 mRNA in RF/6A cell was increased after treatment of 1μg/ml TSP-1(P=0.000).There were no significantly statistical differences between synthetical peptide VR-10 and control group(P>0.05).Expression of PEDF mRNA in RF/6A cell was decreased after treatment of 1μg/ml TSP-1 and synthetical peptide VR-10, and 10μg/ml synthetical peptide VR-10 had the strongest effect(P<0.001). There were significantly statistical differences between groups(P<0.001), excluding 1μg/ml synthetical peptide VR-10 and 1μg/ml synthetical peptide VR-10(P=0.615).
     Conclusions:1.Synthetical peptide VR-10 had the ability to inhibit proliferation and migration of endothelial cell.
     2.Synthetical peptide VR-10 had anti-angiogenic ability by up-regulation of anti-angiogenic factor PEDF,down-regulation of angiogenic factor VEGF and TGF-β2 independent mechanism.
     Part 3 Role of Synthetical Peptide VR-10 on the Expression of Fas/FasL、Caspase-3 and Bcl-2 by RF/6A Cell
     Purpose:To investigat the influence of synthetical peptide VR-10 on the expressions of apoptosis relative genes in RF/6A cell.
     Methods:The expression of Bcl-2 and FasL mRNA in RF/6A cell after exposure to 10μg/ml synthetical peptide VR-10 were detected by RT-PCR analysis.The expression of Fas and Caspase-3 peptides in RF/6A cell after exposure to 10μg/ml synthetical peptide VR-10 were detected by Western Blot.
     Results:1.Compared with control group,expression of FasL mRNA were significantly increased in 10μg/ml synthetical peptide VR-10 treated group,but the expression of Bcl-2 mRNA was decreased.
     2.Western bolt showed that RF/6A cell in control group mainly expressed the 32-kD procaspase-3 forms.To 10μg/ml synthetical peptide VR-10 treated group,it showed decreased expression of procaspase-3(32 KD) and concomitant increased expression of its shorter proapoptotic forms(20 KD).Compared with control group,expression of Fas peptides were significantly increase in 10μg/ml synthetical peptide VR-10 treated group.
     Conclusions:Synthetical peptide VR-10 mediated endothelial cell apoptosis and inhibited angiogenesis in association with increased expression of Fas/FasL,decreased expression of Bcl-2,and processing of caspase-3 into smaller proapoptotic forms.
引文
[1]Witmer AN,Vrensen GF,Van-Noorden CJ,et al.Vascular endothelial growth factors and angiogenesis in eye disease.Pro Retin Eye Res,2003,22:1-29
    [2]Baeniziger NL,Brodic GN,Majerus PW.A thrombin-sensitive protein of human plate membemes.Proc Natl Acad Sci,1971,68:240-243
    [3]Adams JC,Tucker RP.The thrombospondin type 1 repeat(TSR) superfamily:diverse proteins with related roles in neuronal development.Dev Dyn.,2000,218:280-99,
    [4]Chong NH,Bird AC.Alternative therapies in exudative age related macular degeneration.Br J Ophthalmol,1998,82:1441-1443
    [5]Hudson CC,Liu M,Chiang GG,et al.Regulation of hypoxia-inducible factor lalpha expression and ftmtion by the mammalian target of rapamycin.Mol Cell Biol,2002,22(20):7004-7014
    [6]Mattei MG,Borg JP,Rosnet O,et al.Assignment of vascular endothelial growth factor(VEGF) and placenta growth factor(PLGF)genes to human chromosome 6p12-p21 and 14q24-q31 regions,respectively.Genomics,1996,32(1):168-169
    [7]Treins C,Giorgetti-Peraldi S,Murdaca J,et al.Regulation of vascular endothelial growth factor expression by advanced glycation end products.J Biol Chem,2001,276(47):43836-43841
    [8]Zhao S,Overbeek PA.Regulation of choroids development by the retinal pigment epithelium.MolVis,2001,7:277-282
    [9]张奕霞,刘克宇,曾水清.缺氧诱导人视网膜色素上皮细胞整合素连接激酶的表达及其与HIF-1α、VEGF的相关性.实用医学杂志,2008,24(12):2038-2040
    [10]Tombran-Tink J,Johnson LV.Neuronal differentiation of retinoblastoma cells induced by mediumconditioned by human RPE cells.Exp Eye Res,1989,48(4):549-559
    [11]朱丽,陈超.色素上皮衍生因子在早产儿视网膜病中的研究进展.国际儿科学杂志,2006,33(1):67-69
    [12] Koenekoop R, Pina AL, Loyer M, et al. Four polymorphic variations in the PEDF gene identified during the mutation screeningofpatients with Leber congenital amaurosis. Mol Vis,1999;5:10
    [13] Hjelmeland LM., Cristofolo VJ ,Funk W, et al.Senescence of the retinal pigment epithelium.Mol Vis,999,5:33
    [14] Tombran-Tink J, Shivaram SM, Chader GJ, et al. Expression, secretion, and age-related downregulation of pigment epithelium-derived factor, a serpin with neurotrophic activity. J Neurosci,1995,15(7 Pt 1):4992-5003
    [15] Lawler J, Hynes RO. The structure of human thrombospodin, an adhensive glycoprotein with multiple calcium binding sites and homologies with several different proteins. J Cell Biol, 1986, 103: 1635-648
    [16] Miyajima-Uchida H, Hayashi H, Beppu R, et al. Production and accumulation of thrombospondin-1 in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci, 2000,41 :561-567
    [17] Frenzel EM, Neely KA, Walsb AW, et al .Vitronectin and thrombospondin promote retinal neurite outgrowth: developmental regulation and role of integrins. Neuron, 1991,6:345-358
    [18] Miyazono K,Kusanagi K,Inoue H. Divergence and convergence of TGF-beta/BMP signaling. J Cell Physiol,2001,187(3):265-276
    [19] Jakowlew SB, Dillard PJ, Sporn MB, et al. Complementary deoxyribonucleic acid cloning of a messenger ribonucleic acid encoding transforming growth factor beta 4 from chicken embryochondrocytes. Mol Endocrinol,1988,2(12):1186-1195
    [20] Hidenobu T, Munenori Y, M.Indentification of transforming growth factor-p expressed in cultured human retinal pigment epithelial cells.Invest Ophthalmol Vis Sci, 1993, 34(3)413-418
    [21] Gerard Al, Carol M, Anise BT, etal. Heterogeneity in loealization of isoforms of TGF-P in human retina, vitreous, and choroid. Invest Ophthalmol Vis Sci, 1993, 34(3):477 - 487
    [22]李筠萍,唐罗生,贾松柏.缺氧状态下牛视网膜色素上皮细胞增殖与VEGF分泌的研究.眼科学报,2003,;19(4):248-252
    [23]姚毅,关明,赵秀琴,等.缺氧和高浓度葡萄糖对体外培养人视网膜色素上皮衍生因子表达的影响.中华医学杂志,2003,83(22):1989-1992
    [24]Young TA,Wang H,Munk S,et al.Vascular endothelial growth factor expression and secretion by retinal pigment epithelial cells in high glucose and hypoxia is protein kinase C-dependent.Exp Eye Res,2005,80(5):651-62
    [25]Mousa SA,Lorelli W,Campochiaro PA.Role of hypoxia and extracellular matrix-integrin binding in the modulation of angiogenic growth factors secretion by retinal pigmented epithelial cells.J Cell Bioche,.1999,74(1):135-43
    [26]Aiello LP,Northrup JM,Keyt BA,et al.Hypoxic regulation of vascular endothelial growth factor in retinal cells.Arch Ophthalmol,1995,113(12):1538-44.
    [27]Shima DT,Adamis AP,Ferrara N,Yeo KT et al.Hypoxic induction of endothelial cell growth factors in retinal cells:identification and characterization of vascular endothelial growth factor(VEGF) as the mitogen.Mol Med,1995,1(2):182-93
    [28]Mousa SA,Lorelli W,Campochiaro PA.Role of Hypoxia and Extracellular Matrix-Integrin Binding in the Modulation of Angiogenic Growth Factors Secretion by Retinal Pigmented Epithelial Cells.J Cell Biochem,1999,74(1):135-143
    [29]张鹏,王雨生,韩者艺,等,缺氧对人视网膜色素上皮细胞表达缺氧诱导因子-1α及血管内皮生长因子的影响.中华眼底病杂志,2006,22(3):204-205
    [30]周青,陈志钧,赵丽,等.血管内皮生长因子mRNA表达及ARPE-19细胞增生与缺氧的诱导效应.中国组织工程研究与临床康复,2007,19:3712-3714
    [31]Notari L,Miller A,Mart(?)nez A,et al.Pigment epithelium-derived factor is a substrate for matrix metalloproteinase type 2 and type 9:implications for downregulation in hypoxia.Invest Ophthalmol Vis Sci,2005,46(8):2736-47
    [32]张勇,袁援生,许玲,等.色素上皮源性生长因子在低压性缺氧成年大鼠视网膜的表达.中华眼科杂志,2007,43(12):1130-4.
    [33]Sivakumar V,Zhang Y,Ling EA,et al.Insulin-like growth factors,angiopoietin-2,and pigment epithelium-derived growth factor in the hypoxic retina.J Neurosci Res,2008,86(3):702-11.
    [34]Aparicio S,Sawant S,Lara N,et al.Expression of angiogenesis factors in human umbilical vein endothelial cells and their regulation by PEDFS.Biochem Biophys Res Commun,2005,326:387-394
    [35]Wolfram E.Yousef Y.Peter W.et al.Angiogenesis-related factors derived from retinal glial(M(u|¨)ller) cells in hypoxia.Neuroreport,2004,15(10):1633-1637
    [36]Chan CK,Pham LN,Zhou J,et al.Differential expression of pro- and antiangiogenic factors in mouse strain-dependent hypoxia-induced retinal neovascularization.Lab Invest,2005,85(6):721-733
    [37]李亚萍,黎晓新,赵明威,等.老年性黄斑变性脉络膜新生血管的组织病理学特征.中华眼底病杂志 2004;20(2):71-74
    [38]张雷,王康孙,王玲,等.PEDF和VEGF mRNA在实验性脉络膜新生血管组织中的表达.眼科新进展,2004,24(2):84-87
    [39]Guan M,Pang CP,Yam HF,et al.Inhibition of glioma invasion by overexpression of pigment epithelium-derived factor.Cancer Gene Ther,2004,11:325-332
    [40]Mimura Y,Ihn H,Jinnin M,et al.Constitutive thrombospondin-1overexpression contributes to autocrine transforming growth factor-beta signaling in cultured scleroderma fibroblasts.Am J Pathol,2005,166:1451-63
    [41]Nakagawa T,Li JH,Garcia G,et al.TGF-beta induces proangiogenic and antiangiogenic factors via parallel but distinct Smad pathways.Kidney Int,2004,66:605-13
    [42]Dawson DW,Volpert OV,Gillis P,et al.Pigment epithelium derived factor:apotent inhibitor of angiogenesis.Science,1999,285(5425):245-248
    [43]Mori K,Gehlbach P,Ando A,et al.Regression of ocular neovascularization in response to increased expression of pigment epithelium derived factor.Invest Ophthalmol Vis Sci,2002,43(7):2428-2434
    [44] Volpert OV ,Zaichuk T .Zhou W , et al. Inducer-stimulated Fas targets activated endothelium for destruction by anti-angiogenic thrombospondin-1 and igment epithelium-derived factor. Nat Med. 2002,8:349-357
    [45] Yasui N, Mori T, Morito D, et al. Dual-site recognition of different extracellular matrix components by anti-angiogenic/neurotrophic serpin,PEDF. Biochemistry, 2003,42(11):3160
    [46] Boulton M. VEGF inhibition enables pigment epithelium-derived factor to target angiogenesis.J Biol Chem,2006,281(6):3604-3613
    [47] Eisenstein R, Grant BD. Growth inhibitory activities in avascular tissues are recognized by antitransforming growth factor β antibodies. Curr Eye Res, 1991, 10(2):157-162
    [48] Risua W, Flamme I. Vasculogenesis. Annu Rev Cell Dev Biol, 1995, 11:73-91
    [49] Folkman J. The role of angiogenesis in tumor growth. Semin Cancer Biol,1992,3(2):65-71.
    [50] Tolsma SS, Volpert OV, Good DJ, etal.Peptides derived from two separate domains of the matrix protein thrombospondin-1 have ati-angiogenic activity. J Cell Biol,1993,122:497-511.
    [51] Iruela-Arispe L, Liska D, Sage H, et al. Differential expression of thrombospondin 1, 2, and 3 during murine development. Dev Dyn, 1993,197:40-56
    [52] Dawson DW, Volpert OV, Pearce SFA, et al, Three distinct D-amino acid substitutions confer potent antiangiogenic activity on an inactive peptide derived from a thrombospondin-1 type 1 repeat, Molec.Pharmacol, 1999, 55: 332-338
    [53] Beckmann G, Hanke J, Bork P, 1999.Merging extracellular domains: fold prediction for laminin G-like and amino-terminal thrombospondin-like modules based on homology to pentraxins, J Mol Biol, 275: 725-30,1998
    [54] Lawler J.The functions of thrombospondin-1 and-2. Curr Opin Cell Biol,2000,12: 634-640
    [55] Misenheimer TM, Mosher DF. Calcium ion binding to thrombospondin-1. J Biol Chem, 1995,270:1729-1733
    [56] Lawler J, Simons E. Cooperative binding of calcium to thrombospondin. J Biol Chem.,1983 258: 12098-12101
    [57] LawlerJ, Derick LH, Connolly JE, et al .The structure of human platelet thrombospondin. J Biol Chem, 1985,260: 3762-3772
    [58] Gao AG, Lindberg FP, Finn MB, et al .Integrin-associated protein is a receptor for the C-terminal domain of thrombospondin. J Biol Chem., 1996, 271: 21-24
    [59] Gao AG, Lindberg FP, Dimitry JM, et al .Thrombospondin modulatesαvβ33 function through integrin-associated protein. J Biol Chem, 1996, 135: 533-544
    [60] Venter JC, Adams MD, Myers EW, et al. Inhibition of angiogenesis by thrombospondin-1 is mediated by 2 independent regions within the type 1 repeats. Cireulation,1999,100:1423-1431
    [62] Panetti TS, Kudryk BJ, Mosher DF. Interation of recombinant peocollagen and properdin modules of thrombospondin-1 with heparin and fibrin. J Biol Chem, 1999,274:430-437
    [63] Bagavandoss P, Wilks JW. Specific inhibition of endothelial cell proliferation by thrombospondin. Biochem Biophys Res Commun, 1990,170 (2):867-872
    [64] Dawson DW,Pearce SF,Zhong R,et al.CD36 mediates the in vitro inhibitory effects of thiombospondin-1 on endothelial cells.J Cell Biol.l997,138(3):707-717
    [65] Greenwalt DE, Lipsky LH, Ockenhouse CF, et al. Membrane glycoprotein CD36: a review of its roles in adherence, signal transduction, and transfusion medicine. Blood, 1992,80:1105-1115
    [66] Miao W M , Seng W L, Duquette M , et al. Thrombospondinl type 1 repeat recombinant proteins inhibit tumor growth throulgh transform ing growt h factor-beta-dependent and -in-dependent mechanisms. Cancer Res,2001,61: 7 830-9
    [67] Schultz-Cherry S, Chen H, Mosher DF, et al. Regulation of transforming growth factor-beta activation by discrete sequences of thrombospondin 1. J Biol Chem,1995,270:7304-7310
    [68]Murphy-Ullrich JE,Poczatek M.Activation of latent TGF-beta by thrombospondin-1:mechanisms and physiology.Cytokine Growth Factor Rev,2000,11:59-69
    [69]HockenberyD,NunesG,MillimanC.Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death.Nature,1990,348(6299):334-336
    [70]Oltvai ZN,Milliman CI,Korsmeyer SJ.Bcl-2 heterodimerizes in vivo with a conserved homology,Bax,that accel2 creates programmed cell death.Cell,1993,74(4):609-619
    [71]EquchiY,EwertDL,TsujimotoY.Isolation and characterization of chicken Bcl-2 gene:expression in a variety of tissue including lymphoid and neuronal organs in adult and embryo.Nucleic Acid Res,1992,20(16):4187-4192
    [72]曹智刚,袁守军.抑制Bax基因表达与细胞保护的研究进展.中国临床药理学与治疗学,2003,8(3):245-248
    [73]付永锋,樊廷俊.Bcl-2家族蛋白与细胞凋亡.生物化学与生物物理学报,2002,34(4):389-394
    [74]N(o|¨)r JE,Mitra RS,Sutorik MM,et al.Thrombospondin-1 induces endothelial cell apoptosis and inhibits angiogenesis by activacting the caspase death pathway.J Vasc Res,2000,37(3):209-218
    [75]Shimonishi T,Isse K,Shibata F,et al.Up-regulation of fas ligand at early stages and down-regulation of Fas at progressed stages of intrahepatic cholangiocarcinoma reflect evasion from immune surveillance.Hepatology,2000,32:761-769
    [76]Liang Y,Nylander KD,Yan C,et al.Role of caspase 3-dependent Bcl-2cleavage in potentiation of apoptosis by Bcl-2.Mol Pharmacol,2002,61:142-149
    [77]Zheng TS,Schlosser SF,Dao T.Caspase-3 controls both cytoplasmic and nuclear events associated with Fas-mediated apoptosis in vivo.Proc Natl Acad Sci,1998,95:13618-13622
    [78]Nunez G,Benedict MA,Hu Y.Caspase:the proteases of the apoptotic pathway.Oncogene,1998,17:3237-3232
    [79] Risau W, Mechanism of angiogenesis. Nature ,1997,386:671-674
    [80] Folkman J. The role of angiogenesis in tumor growth. Semin Cancer Biol ,1992, 3(2):65-71
    [81] Tooney PA, Sakai T, Sakai K, et al.Restricted localization of thrombospondin-2 protein during mouse embryogenesis: a comparison to thrombospondin-1. Matrix Biol, 1998,17 :131-143
    [82] Vos HL, Devarayalu S, Devries Y, et al. Thrombospondin-3 (Thbs3), a new member of the thrombospondin gene family, J Biol Chem, 1992,267: 12192-12196
    [83] Arber S, Caroni P. Thrombospondin-4, an extracellular matrix protein expressed in the developing and adult nervous system promotes neurite outgrowth. J Cell Biol, 1995,131:1083-1094
    [84] Hecht JT, Deere M, Putnam E, et al. Characterization of cartilage oligomeric matrix protein (COMP) in human normal and pseudoa-chondroplasia musculoskeletal tissues. Matrix Biol, 1998,17:269-278
    [85] Vogel T, Guo NH, Krutzsch HC, etal.Modulation of endothelial cell proliefration, adhesion, and motility by recombinant heparin-binding domain and synthetic peptides from the type 1 repeats of thrombospondin. J Cell Bioehem,1993,53:74-84
    [86] Chen H., Aeschlimann D, Nowlen J, etal. Expression and initial characterization of recombinant mouse thrombospondin-1 and thrombospondin-3, F.E.B.S. Lett.1996, 387: 36-41
    [87]. Krutzsch HC, Choe BJ, Sipes J, etal. Identification of an alpha(3)beta(1) integrin recognition sequence in thrombospondin-1. J Biol Chem , 1999,274:24080-24086
    [88] Chandrasekaran S, Guo NH, Rodrigues RG, etal.Pro-adhesive and chemotactic activities of thrombospondin-1 for breast carcinoma cells are mediated by alpha(3)beta(1) integrin and regulated by insulin-like growthfactor-1 and CD98. J Biol Chem,1999, 274: 11408-11416
    [89] Panetti TS,Kudryk BJ, Mosher DF. Interation of recombinant peocollagen and properdin modules of thrombospondin-1 with heparin and fibrin. J Biol Chem,1999,274:430-437
    [90] Misenheimer TM, Mosher DF, Calcium ion binding to thrombospondin-1. J Biol. Chem, 1995.270:1729-1733
    [91]. Sun X, Skorstengaard K, MosherDF, Disulfides modulate RGD-inhibitable cell adhesive activity of thrombospondin. J Cell Biol, 1992,118: 693-701
    [92] Chen H, Herndon ME, Lawler J. The cell biology of thrombospondin-1. Matrix Biology, 2000,19:597-614
    [93] Dawson DW, Bouck NP.Thrombospondin as aninhibitor of angiogenesis.In Antiangiogenic Agents in Caneer Therpay, 1999:185-203
    [94] Green JM., Zhelesnyak A, Chung J, etal. Role of cholesterol in formation and function of a signaling complex involving alphavbeta3, integrin-associated protein (CD47), and heterotrimeric G proteins, J.Cell. Biol., 146: 673-82,1999
    [95] Lawler J. Thrombospondin-1 as an endogenous inhibitor of angiogenesis and tumor growth. J Cell Mol Med, 2002 ,6(1): 1-12
    [96] Cursiefen C, Masli S, Ng TF, etal. Roles of Thrombospondin-1 and -2 in RegulatingCorneal and Iris Angiogenesis Investigative Ophthalmology and Visual Science, 2004,45:1117-1124
    [97] Hiscott P, Seitz B, Schlotzer-Schrehardt U, etal. Immunolocalisation of thrombospondin 1 in human,bovine and rabbit cornea.Naumann Cell Tissue Res ,1997, 289:307-310
    [98] Sheibani N, Sorenson CM,Cornelius LA, etal.Thrombospondin-1, a Natural Inhibitor of Angiogenesis,Is Present in Vitreous and Aqueous Humor andIs Modulated by Hyperglycemia Biochem Biophys Res Commun ,2000,267: 257-261
    [99] Koyama R , Nakanishi T, Ikeda T, etal. Catalogue of soluble proteins in human vitreous humor by one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis and electrospray ionization mass spectrometry including seven angiogenesis-regulating factors. J Chromatography B,2003, 792 : 5-21
    [100] Fl(?)gel-Koch C, Ohlmann A, Fuchshofer R, etal. Thrombospondin-1 in the trabecular meshwork: localization in normal and glaucomatous eyes, and induction by TGF-betal and dexamethasone in vitro Exp Eye Res, 2004, 79(5):649-63
    [101]Uno K, Bhutto IA, McLeod DS, etal. Impaired expression of thrombospondin-1 in eyes with age related macular degeneration .Br J Ophthalmol,2006,90( 1 ):48-54
    [102] Si Z, Palkama A, Gebhardt BM, etal. Distribution of thrombospondin-4 in the bovine eye. Curr. Eye Res,2003,27:65-73
    [103] Larkin G. Hiscott P. Sheridah G. etal. The production of thrombospondin and fibronectin by retinal pigment epithelial (RPE) cells.Invest Ophthalmol Vis Sci, 1994,35: S2039.
    [104] Carron JA , Hiscott P , Hagan S, etal. Cultured human retinal pigment epithelial cells differentially express thrombospondin-1, -2, -3, and -4. Int J Biochem Cell Biol ,2000,32: 1137-1142
    [105] Sage H, Pritzl P, Bornstein P. Secretory phenotypes of endothelial cells in culture: comparison of aortic, venous, capillary, and corneal endothelium. Arteriosclerosis, 1981,1:427-442
    [106] Armstrong DJ, Hiscott P, Batterbury M, etal. Corneal stromal cells(keratocytes) express thrombospondins 2 and 3 in wound repair phenotype. Int J Biochem Cell Biol ,2002, 34:588-593
    [107] Saika S, Miyamoto T, Ishida I, etal. Accumulation of thrombospondin-1 in post-operative capsular fibrosis and its down-regulation in lens cells during lens fiber formation. Exp. Eye Res,2004, 79: 147-156
    [108] Tripathi BJ, Tripathi RC, Yang C, etal. Synthesis of a thrombospondin-like cytoadhesion molecule by cells of the trabecular meshwork. Invest Ophthalmol Vis Sci,1991,32:181-188
    [109] Tripathi BJ,Li T, Li J, etal. Age-related changes in trabecular cells in vitro. Exp Eye Res, 1997, 64:57-66
    [110] Liu X, Wu Z, Sheibani N, etal. Low dose latrunculin-A inhibits dexamethasone-induced changes in the actin cytoskeleton and alters extracellular matrix protein expression in cultured human trabecular meshwork cells. Exp Eye Res,2003, 77:181-188
    [111] Eichler W, Yafai Y, Wiedemann P, etal.Angiogenesis-related factors derived from retinal glial (M(?)ller) cells in hypoxia. Neuroreport, 2004, 15(10): 1633-1637
    [112] Sherwood JA. Molecular pathology, cell attachment, and the potential role of thrombospondin in malaria. In: Lahav J, ed. Thrombospondin. Boca Raton, FL: CRC Press; 1993:227-257.
    [113] Dawson DW, Pearce SFA, Zhong R, etal. CD36 Mediates the in vitro inhibitory effects of thrombospondin-1 on endothelial cells. J Cell Biol, 1997, 138:707-717
    [114] Daviet L, Craig AG, McGregor L, etal. Characterization of two vaccinia CD36 recombinant-virus-generated monoclonal antibodies (10/5, 13/10): effects on malarial cytoadherence and platelet functions. Eur J Biochem, 1997, 243:344-349
    [115] Yesner LM, Huh HY, Pearce SF, etal. Regulation of monocyte CD36 and thrombospondin-1 expression by soluble mediatiors. Arterioscler Thromb Vase Biol, 1996, 16:1019-1025
    [116] Frazier WA, Prater CA, Jaye D, etal. Interactions of thrombospondin with cells. In: Lahav J, ed. Thrombospondin. Boca Raton, FL: CRC Press; 1993:91-109.
    [117] Loganadane LD, Berge N, Legrand C, etal. Endothelial cell proliferation regulated by cytokines modulates thrombospondin-1 secretion into the subendothelium. Cytokine, 1997, 9:740-746
    [118] Ryeom SW, Sparrow JR, Silverstein RL. CD36 participates in the phagocytosis of rod outer segments by retinal pigment epithelium. J Cell Sci, 1996,109:387-395
    [119] Mwaikambo BR, Sennlaub F, Chemtob S, etal. Age-dependent spontaneous induction of corneal neovascularization in CD36 knock-out mice. Invest Ophthalmol Vis Sci, 2004, 45 ARVO E-Abstract : 4819
    [120] Febbraio M, Hajjar DP, Silverstein RL. CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J Clin Invest , 2001, 108:785-791
    [121] Taraboletti G, Roberts D, Liotta LA, etal. Platelet thrombospondin modulates endothelial cell adhesion, motility and growth: a potential angiogenesis regulatory factor. J Cell Biol, 1990,111:765-772
    [122] Ryeom S, Silverstein RL, Scotto A, etal. Binding of an ionic phospholipids to retinal pigment epithelium may be mediated by the scavenger receptor CD36. J Biol Chem,1996, 271:20536-20539
    [123] Ryeom S, Sparrow J, Silverstein RL. CD36 participates in the phagocytosis of rod outer segments on retinal pigment epithelium. J Cell Sci, 1996, 109:387-395
    [124] Nozaki S, Kashiwagi H, Yamashita S, etal. Reduced uptake of oxidized low density lipoproteins in monocyte-derived macrophages from CD36-deficient subjects. J Clin Invest, 1995, 961859-1865
    [125] Good DJ, Polverini PJ, Rastinejad F, etal. Atumorsuppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc Natl Acad Sci,1990, 87:6624-6628
    [126] Volpert OV, Lawler JP, Bouck NP. A human fibrosarcoma inhibits systemic angiogenesis and the growth of experimental metastases via thrombospondin-1. Proc Natl Acad Sci,1998,95:6343-6348
    [127] Guo N, Krutzsch HC, Inman JK, etal. Thrombospondin 1 and type 1 repeat peptides of thrombospondin 1 specifically induce apoptosis of endothelial cells.Cancer Res, 1997, 57: 1735-1742
    [128]Jimenez B, Volpert OG, Crawford SE, etal. Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat Med,2000, 6:41-48
    [129]Roberts DD. Regulation of tumor growth and metastasis by thrombospondin-1.FASEB J,1996, 10: 1183-1191
    [130] Iruela-Arispe ML, Bornstein P, Sage H. Thrombospondin exerts an antiangiogenic effect on cord formation by endothelial cells in vitro. Proc Natl Acad Sci,1991, 88: 5026-5030
    [131] Chandrasekaran L, He CZ, Al-Barazi H, etal. Cell contact-dependent activation of α3β1 integrin modulates endothelial cell responses tothrombospondin-1. Mol Biol Cell, 2000,11(9):2885-2900
    [132] Tuszynski GP, Rothman V, Murphy A, etal. Thrombospondin promotes cell-substratum adhesion.Science, 1987,236:1570-1573
    [133] DiPietro L A. Thrombospondin as a regulator of angiogenesis. EXS. 1997;79:295-314.
    [134] Calzada MJ, Sipes JM, Krutzsch HC, etal. Recognition of the N-terminal modules of thrombospondin-1 and thrombopondin-2 by61 integrin. J Biol Chem,2003,278:40679-40687
    [135] Chong NH, Keonin J, Luthert PJ, et al. Decreased thickness and integrity of the macular elastic layer of Bruch's membrane correspond to the distribution of lesions associated with age-related macular degeneration. Am J Pathol,2005,166:241-51
    [136] Bhutto IA, McLeod DS, Hasegawa T, etal. Pigment epithelial-derived factor (PEDF) and vascular endothelial growth factor (VEGF) in aged choroid and eyes with age related macular degeneration. Exp Eye Res,2006,82(1):99-110
    [137] Pauleikhoff D, Barondes MJ, Minassian D, etal. Drusen as risk factors in age-related maculardisease.Am J Ophthalmoll,1990, 9:38-43
    [138] Pauleikhoff D, Zuels S, Sheraidah GS, etal. Correlation between biochemical composition and fluorescein binding of deposits in Bruch's membrane. Ophthalmology ,1992,99:1548-1553
    [139] Ohno-Matsui K, Ichinose S, Nakahama K, etal. The effects of amniotic membrane on retinal pigment epithelial cell differentiation. Mol Vis,2005, 11:1-10
    [140] Mosher DF, Doyle MJ, Jaffe EA.Synthesis and secretion of thrombospondin by cultured human endothelial cells. J Cell Biol, 1982,93:343-348
    [141] Chowers I, Liu D, Farkas RH, etal. Gene expression variation in the adult human retina. Hum Mol Genet,2003, 12: 2881-2893
    [142] Klintworth GK. Corneal avascularity and vascularity in corneal angiogenesis: a comprehensive critical review. Springer-Verlag, 1990:1-3
    [143] Chan CK,Pham LN,Chinn C, etal. Mouse strain-dependent heterogeneity of resting limbal vasculature.Invest Ophthalmol Vis Sci,2004,45:441-447
    [144] Choudhary A, Hiscott P, Hart CA, etal. Suppression of thrombospondin 1 and production by herpes simplex virus 1 infection in cultured keratocytes. Mol Vis,2005, 11:163-168
    [145] Hiscott P, Paraoan L, Choudhary A, etal. Thrombospondin 1, thrombospondin 2 and the eye. Prog Retin Eye Res, 2006 ,25(1):1-18
    [146]Hiscott P, Sheridan C, Magee R, etal. Matrix and the retinal pigment epithelium in proliferative retinal disease. Prog Retinal Eye Res,1999, 18:67-190
    [147] Armstrong DJ, Hiscott P, Batterbury M, etal. Keratocyte matrix interactions and thrombospondin 2.Mol Vis, 2003 ,17 (9) :74-79
    [148] Hiscott P , Paraoan L , Ordonez J L, etal. Differential expression ofangioregulatory matricellular proteins in choroidal melanoma.Invest. Ophthalmol Vis Sci, 2005, 46 ARVO E-Abstract : 4616
    [149] Bornstein P , Sage EH.Matricellular proteins: extracellular modulators of cell function. Curr Opin Cell Biol,2002,14:608-616
    [150] Ghazvini S, Char DH, Kroll S, etal.Comparative genomic hybridization analysis of archival formalin-fixed paraffin-embedded uveal melanomas. Cancer Genet Cytogenet, 1996,90:95-101
    [151] Aalto Y, Eriksson L, Seregard S, etal .Concomitant loss of chromosome 3 and whole arm losses and gain of chromosome 1, 6, or 8 in metastasizing primary uvea melanoma. Invest. Ophthalmol. Vis. Sci,2001,42: 313-317
    [152] Speicher M R, Prescher G, du Manoir S, etal.Chromosomalgains and losses in uveal melanomas detected by comparative genomic hybridization. Cancer Res,1994, 54: 3817-3823
    [153] LaBell TL, Milewicz DJ, Disteche CM, etal.Thrombospondin Ⅱ: partial cDNA sequence, chromosome location, and expression of a second member of the thrombospondin gene family in humans. Genomics,1992, 12: 421-429
    [154] Jaffe E, Bornstein P, Disteche CM. Mapping of the thrombospondin gene to human chromosome 15 and mouse chromosome 2 by in situhybridization. Genomics ,1990,7: 123-126
    [155] Swaroop A, Hogan BL, Francke U. Molecular analysis of the cDNA for human SPARC/osteonectin/BM-40: sequence,expression, and localization of the gene to chromosome 5q31-q33. Genomics, 1988,2:37-47
    [156] Sisley K , Brand C , Parsons M A, etal. Cytogenetics of iris melanomas: disparity with othe uveal tract melanomas. Cancer Genet Cytogenet,1998, 101:128-133
    [157] Prescher G, Bornfeld N, Becher R. Nonrandom chromosomal abnormalities in primary uveal melanoma. J Natl Cancer Inst,1990, 82:1765- 1769.
    [158] Lawler J, Detmar M. Tumor progression: the effects ofthrombospondin-1 and -2. Int J Biochem Cell Biol,2004, 36,1038-1045
    [159] Sisley K, Cottam DW, Rennie IG, etal. Non-random abnormalities of chromosomes 3, 6, and 8 associated with posterior uveal melanoma. Genes Chromosomes Cancer ,1992,5:197-200
    [160] Abeysinghe HR, Cao Q, Xu J, etal. N. THY1 expression is associated with tumor suppression of human ovarian cancer.Cancer Genet Cytogenet,2003, 143:125-132
    [161] Prescott SM, Fitzpatrick FA.Cyclooxygenase-2 and carcinogenesis. Biochim Biophys Acta ,2000,1470: M69-M78
    [162] Sennlaub F, Valamanesh F, Vazquez-Tello A, etal. Cyclooxygenase-2 in human and experimental ischemic proliferative retinopathy.Circulation,2003,108;198-204
    [163] Figueiredo A, Caissie AL, Callejo SA, etal. Cyclooxygenase-2 expression in uveal melanoma: novel classification of mixed-cell-type tumours. Can J Ophthalmol, 2003, 38: 352-356
    [164] Rodrigues MM, Katz SI, Foidart JM, etal. Collagen,factor Ⅷ antigen, and immunoglobulins in the human aqueous drainage channels. Ophthalmology,1980, 87: 337-345
    [165] Babizhayev MA, Brodskaya MW. Fibronectin detection in drainage outflow system of human eyes in ageing and progression of open-angle glaucoma. Mech Ageing Dev, 1989, 47:145-157
    [166] Tripathi RC,Li J,Chan WFA, etal.Aqueous humorin glaucomatous eyes contains an increased level of TGF-b2. Exp Eye Res, 1994,58:723-727
    [167] Ochiai Y, Ochiai H. Higher concentration of transforming growth factor-b in aqueous humor of glaucomatous eyes and diabetic eyes. Jpn J Ophthalmol,2002,46:249-253
    [168] Flugel-Koch C, Ohlmann A, Fuchshofer R, etal. Thrombospondin-1 in the trabecular meshwork: localization in normal and glaucomatous eyes, andinductionby TGF-betal and dexamethasone in vitro. Exp Eye Res,2004, 79:649-663
    [169] Dark AJ , Streeten BAW. Pseudoexfoliation syndrome. In:Garner A ,Klintworth G.K. (Eds.), Pathobiology Of Ocular Disease: A Dynamic Approach, second ed. Marcel Dekker Inc.New York, 1982, 591-629.
    [170] Hiscott P, Schlotzer-Schrehardt U, Naumann GO.Unexpected expression of thrombospondin 1 by corneal and irisfibroblasts in the pseudoexfoliation syndrome. Hum Pathol,1996,27:1255-1258
    [171] Conway RM, Schlotzer-Schrehardt U, Kuchle M, etal. Pseudoexfoliation syndrome: pathological manifestations of relevance to intraocular surgery. Clin. Exp Ophthalmol.2004,32: 199-210
    [172] Hiscott P, Larkin G, Robey HL, etal.Thrombospondin as a component of the extracellular matrix of epiretinal membranes: comparisons with cellular fibronectin. Eye ,1992, 6: 566-569
    [173] Sheridan CM, Hiscott P, Grierson I. The role of thrombospondin 1 in RPE migration and in human RPE induced collagen matrix contraction. [ARVO Abstract]Invest Ophthalmol Vis Sci, 2001,42: S811.ARVO abstract: 4348
    [174] Reed MJ, Puolakkainen P, Lane TF, etal. Differential expression of SPARCand thrombospondin 1 in wound repainimmunolocalization and in situ hybridisation. J Histochem Cytochem ,1993,41: 1467-1477
    [17] Zamiri P, Masli S, Kitaichi N, etal. Thrombospondin Plays a Vital Role in the Immune Privilege of the Eye. Invest Ophthalmol Vis Sci, 2005 ,46(3):908-19
    [176] Masli S, Turpie B, Hecker KH, etal. Expression of thrombospondin in TGFbeta-treated APCs and its relevance to their immune deviation-promoting properties. J Immunol, 2002,168:2264-2273
    [177] Bein K, Simons M. Thrombospondin type 1 repeats interact with matrix metalloproteinase 2. Regulation of metalloproteinase activity. J Biol Chem, 2000, 275(41):32167-32173
    [178] Rodriguez-Manzaneque JC, Lane TF, Ortega MA, etal.Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor. Proc Natl Acad Sci USA, 2001,98:12485-12490
    [179] Heissig B, Hattori K, Dias S, Friedrich M , etal. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell, 2002, 109,625-637
    [180] Qian X,Wang TN,Rothman VL, etal. Thrombospondin-1 modulates angiogenesis in vitro by upregulation of matrix metalloproteinase-9 in endothelial cells. Experimental Cell Research, 1997,235:682-689
    [181] Uchida H, Hayashi H, Kuroki M, etal. Vitamin A up-regulates the expression of thrombospondin-1 and pigment epithelium-derived factor in retinal pigment epithelial cells. Exp Eye Res, 2005, 80; 23-30
    [182] Uchida H, Kuroki M, Shitama T, etal. Activation of TGF-1 Through Up-Regulation of TSP-1 by Retinoic Acid in Retinal Pigment Epithelial Cells .Curr Eye Res, 2008, 33:199-203
    [183] Uno K, Hayashi H, Uchida H, etal. Expression of thrombospondin-1 in vitamin A deficient corneal wound healing. Invest Ophthalmol Vis Sci, 2003, 44 ARVO E-Abstract : 3828
    [184] Dardik R, Solomon A, Loscalzo J, etal. Novel proangiogenic effect of factor ⅩⅢ associated with suppression of thrombospondin 1 expression. Arterioscler Thromb Vasc Biol, 2003 , 23(8):1472-1477
    [185] Dameron KM, Volpert OV, Tainsky MA, etal .The p53 tumor suppressor gene inhibits angiogenesis by stimulating the production of thrombospondin. Cold Spring Harb Symp Quant Biol,1994, 59:483-489
    [186] Volpert OV, Pili R, Sikder HA, etal. Idl regulates angiogenesis through transcriptional repression of thrombospondin-1. Cancer Cell, 2002, 2: 473-483
    [187] Watnick RS, Cheng YN, Rangarajan A, etal .Ras modulates Myc activity to repress thrombospondin-1 expression and increase tumor angiogenesis. Cancer Cell ,2003,3:219-231
    [188] Bleuel K,Popp S.Tumor suppression in human skin carcinoma cells by chromosome 15 transfer or thrombospondin-1 overexpression through halted tumor vascularization.Proc Natl Acad Sci,1999,96(5):2065-2070
    [189] BenEzra D, Griffin BW, Maftzir G., etal . Thrombospondin and in vivo angiogenesis induced by basic fibroblast growth factor or lipopolysaccharide, Invest. Ophthalmol. Vis Sci, 1993,34: 3601-3608
    [190] Nicosia RF, Tuszynski GP. Matrix-bound thrombospondin promotes angiogenesis in vitro, J Cell Biol, 1994124: 183-193
    [191] Lawler J. The functions of thrombospondin-1 and -2. Curr Opin Cell Biol,2000, 12: 634-640

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700