siRNA干扰FPR后U87细胞裸鼠脑原位移植瘤生物学行为及血管生成特点改变及机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,趋化因子及其受体在恶性肿瘤的生长、侵袭以及转移中的作用越来越受重视。研究显示,一些表达在正常细胞的与特定生理或病理过程相关的趋化因子受体也可能表达于肿瘤细胞,而且在肿瘤演进中发挥作用。肿瘤演进是复杂的过程,涉及瘤细胞和宿主多方面、多阶段的相互作用。其中,瘤细胞的增殖和运动能力增强、释放蛋白水解酶增多、产生过多的促血管生成因子等重要改变,以及在瘤细胞与宿主相互作用过程中其调节紊乱是重要的研究内容,有关的受体也可能作为新的治疗措施的靶点。
     FPR是吞噬细胞表达的一种G蛋白偶联受体,受内源性(如线粒体蛋白来源)或外源性(如细菌蛋白来源)配体N-甲酰化肽fMLF激活后使细胞趋化能力增强,并释放炎症介质,从而发挥免疫功能。最近研究发现,此受体也表达于恶性胶质瘤细胞,而且,体外激活可使瘤细胞运动能力增强,VEGF产生增多。恶性胶质瘤的特点是侵袭能力强,血管内皮增生活跃,容易出现坏死,而坏死物中的fMLF正好是FPR的激动剂,所以二者的存在和相互作用可能是恶性胶质瘤细胞增殖、侵袭和促血管生成的重要机制之一。
     为研究恶性胶质瘤中FPR受体表达和激活在促进瘤细胞生长、侵袭与促血管生成中的作用和机制,本研究将已经成功地利用siRNA干扰了FPR的GBM细胞株U87应用于实验中,从以下三个方面进行了研究:(1)检测siRNA干扰FPR后的U87细胞(FPR-siRNA U87)的VEGF、MMP-2和-9蛋白表达以及相应配体fMLF激活后表达的改变;(2)观察siRNA干扰FPR后的U87细胞裸鼠脑原位移植瘤的生长、分化、侵袭和血管生成相关的形态学改变;(3)进一步检测siRNA干扰FPR后的U87细胞裸鼠脑原位移植瘤组织中VEGF、MMP-2和-9蛋白表达改变,同时检测胶质瘤分化标志物vimentin。主要结果和结论如下:
     1.用转染了针对FPR构建的siRNA的U87细胞(FPR-siRNA U87),以野生型U87细胞和Mock转染细胞(Mock)为对照进行体外培养,并用其已知最佳浓度(100 nmol/L)的特异性配体fMLF刺激,采用ELISA方法检测培养6小时后细胞上清液中VEGF、MMP-2和-9蛋白含量,发现FPR-siRNA U87细胞VEGF表达显著低于对照细胞,且表达不象对照细胞一样受fMLF刺激影响。FPR-siRNA U87细胞MMP-9表达低于对照细胞,但与对照细胞一样,fMLF刺激后分泌改变不明显。而FPR-siRNA U87细胞的MMP-2表达却比未受fMLF刺激的对照细胞高,但Mock细胞受刺激后表达明显升高。这些结果说明VEGF表达与受体激活关系最为密切,而MMP-2和-9表达与受体表达有某种关系,但可能还受其它因素影响和调节,需要结合体内研究说明。
     2.用免疫细胞化学方法检测FPR-siRNA U87细胞中VEGF蛋白和细胞膜上FPR受体表达,发现二者染色强度都比对照细胞者低。用RT-PCR检测上述条件下培养细胞的VEGF、MMP-2和-9的mRNA表达,发现FPR-siRNA U87细胞VEGF的mRNA表达出现与上清液中蛋白表达相似的改变趋势,而MMP-2和-9的mRNA表达在6小时未显示表达差异。这些结果同样说明VEGF表达与受体表达和激活关系密切,而MMP-2和-9表达可能还受其它因素影响和调节,包括转录后调节。
     3.以野生型U87细胞和Mock细胞为对照,将FPR-siRNA U87细胞原位接种到裸鼠脑内,比较观察不同时间点(1w、2w、4w、5w及6w)移植瘤大小,光镜和电镜下观察其生长、分化、侵袭和促血管生成相关的形态学特点,发现FPR沉默后移植瘤生长明显较缓慢,没有对照细胞移植瘤在5w至6w出现的加速生长;细胞分化较高、核分裂像少、侵袭能力较弱,移植瘤中血管数明显较少,其形态和结构较接近正常。这些结果说明该受体体内表达和激活与恶性胶质瘤生长、分化、侵袭和促血管生成能力有关。
     4.用Western blotting方法检测发现FPR-siRNA U87细胞裸鼠脑原位移植瘤组织中VEGF、MMP-2和-9蛋白表达下降,用免疫组化方法检测瘤组织中上述蛋白,发现VEGF和MMP -9蛋白表达明显降低。另外,vimentin染色明显减弱。这些结果进一步说明该受体表达和激活可通过介导或影响VEGF、MMP-2和-9表达,促进移植瘤侵袭和血管生成,还说明受体表达与裸鼠脑原位移植瘤细胞分化有关。
     本研究说明,用siRNA沉默U87细胞的FPR可使细胞分化提高、增殖减慢,并通过下调MMP-2及-9和VEGF而削弱其侵袭和促血管生成能力,反过来说明该受体在恶性胶质瘤中的生长、侵袭和促血管生成中的作用,因而可作为抗胶质瘤治疗的很好靶点。
In recent years, the roles of chemoattractants and their receptors in the processes of cancer growth, invasion and metastasis are getting more and more recognition. It is demonstrated that some chemoattractant receptors that are expressed on normal cells and related to certain physiological or pathophysiological courses are also expressed in cancer cells and take roles in the progression of the cancer, which is a complicated process involes multiple faces and stages of interplays between cancer cells and host tissues, among which the increased capacity of cell proliferation and motility, overexpressed protease and proangiogenic factors, and their dysregulation during the cancer -host interplay are the most important part of the research, and the related receptors may be potential therapeutic targets.
     FPR (formylpeptide receptor) is a G-protein coupled receptor that was originally discovered in phagocytes, which can be mobilized through the activation of the receptor by endogenic (motochondria protein derived) or exogenic (bacterial protein derived) ligand, N-formyl peptide fMLF (N-formylmethionyl-leucyl-phenylalanine), and can initiate chemotaxis and mediator release, which are among the important host immune responses. Most recently, this receptor was also found to be expressed in malignant glioma cells, and its activation in vitro increased the motility and VEGF production. Malignant gliomas are characterized by robust invasion, active entothelium proliferation and easily discerned necrosis. fMLF, which exists in necrotic substances, is actually FPR agonist with high affinity. The coexistence and interaction between them may be one important mechanism for the proliferation, invasion and proangiogenic action of malignant glioma cells.
     To investigate the significance and mechanisms of FPR in the growth, invasion and proangiogenic activity of malignant gliomas, this study, with the implication of GBM cell line U87 which was successfully interferenced by FPR-targeted siRNA and its control counterparts, involes three parts: (1)detection of the expression of VEGF, MMP-2 and -9 in FPR-siRNA interferenced U87 cells with or without the stimulation of the agonist fMLF; (2) observation on the morphological changes of the orthotopical xenografts of FPR-siRNA interferenced U87 cells in nude mice, which includes the tumour growth, differentiation, invasion and angiogenesis; (3) further detection of VEGF, MMP-2 and -9 expressed in xenografts of FPR-siRNA interferenced U87 cells, as well as the detection of glioma differentiation marker vimentin. The main results and conclusions are as follows:
     1. FPR-siRNA interferenced U87 cells (FPR-siRNA U87) and the control counterparts, wild type U87 cell line and mock transfected cell line (Mock) were cultured, with or without the stimulation of specific ligand at known optimal concentratioin (100 nmol/L) for 6 hours. The VEGF, MMP-2 and -9 proteins in supernatants were detected by ELISA. It was found that the secretion of VEGF in FPR-siRNA U87cells was significantly lower than that of the control cells, and unlike that of the control cells, it did not change significantly with the stimulation of fMLF. MMP-9 production in FPR-siRNA U87cell supernatant was lower than that of control cells, but like that of the control cells, it did not change with the stimulation of fMLF. MMP-2 production in FPR-siRNA U87 cell supernatant was higher than that of control cells without stimulation of fMLF, but that of stimulated Mock cells increased significantly. These results indicate that VEGF expression is closely related to FPR activation, and that MMP-2 and -9 are somehow FPR expression related, but may involve other factors.
     2. The VEGF and FPR expressions in FPR-siRNA U87 cells were immunocytochemically found to be much lower than those in control cells. The VEGF, MMP-2 and -9 mRNA in cells treated the way mentioned above were assessed by RT-PCR. The VEGF mRNA in FPR-siRNA U87 cells changed the way VEGF protein in supernatants did. But MMP-2 and -9 mRNA did not show differences between the cell lines. These results also indicate that VEGF activation is closely related to FPR activation, and that MMP-2 and -9 are somehow FPR related, but may involve other factors.
     3. Using wild type U87 and Mock cells as control, the FPR-siRNA U87 cells were orthotopically injected into the brains of nude mice, the sizes of the xenografts at various timepoints (1, 2, 4, 5, and 6 weeks) were compared, the morpological changes of the xenografts with respect to tumour growth, differentiation, invasion and angiogenesis were also compared. The xenografts of FPR-siRNA U87 cells grew much slowly, without the acceleration which was noticed in controls at 5 to 6 weeks. FPR-siRNA U87 xenografts showed higher differentiation, fewer mitotic figures and less invasiveness of tumour cells than controls, and showed apparently fewer microvessels, with normalized appearance and architecture. These results demonstrate that the expression and activation of FPR in vivo are closely related to the growth, differentiation, invasion and angiogenesis of malignant gliomas.
     4. The expressions of VEGF, MMP-2 and -9 proteins in xenografts were further detected by Western blotting and found to be down-regulated. IHC staining showed less VEGF and MMP-9 expression. Vimentin expression was also found to be significantly or apparently down-regulated. These results further indicate that the expression and activation of FPR mediates or influences VEGF, MMP-2 and -9 productions and therefore promote angiogenesis, and that FPR expression is related to the differentiation of malignant gliomas.
     This study demonstrate that silencing of FPR by siRNA in U87 cells may cause the improved cell differentiation, inhibited proliferation, and down-regulated VEGF, MMP-2 and -9 expressions and attenuated invasiveness and angiogenesis. This in reverse confirm the significance of FPR in the growth, invasion and angiogenesis of malignant gliomas, hence a promising therapeutic target.
引文
1. Le Y, Hu J, Gong W, et al. Expression of functional formyl peptide receptors by human astrocytoma cell lines. J Neuroimmunol, 2000, 111(1-2): 102-8.
    2. Zhou Y, Bian X, Le Y, et al. Formylpeptide receptor FPR and the rapid growth of malignant human gliomas. J Natl Cancer Inst, 2005, 97(11): 823-35.
    3. Le Y, Iribarren P, Zhou Y, et al. Silencing the formylpeptide receptor FPR by short-interfering RNA. Mol Pharmacol, 2004, 66(4): 1022-8.
    4. Rogers J. Inflammation as a pathogenic mechanism in Alzheimer’s disease. Arzneimittelforschung 1995; 45(3A):439-42.
    5. Neuroinflammatory Working Group. Inflammation and Alzheimer’s disease. Neurobiol Aging 2000; 21(3):383-421.
    6. Le Y, Yazawa H, Gong W, et al. The neurotoxic prion peptide fragment PrP (106-126) is a chemotactic agonist for the G protein-coupled receptor formyl peptide receptor-like
    1. J Immunol 2001; 166(3):1448-51.
    7. Ying G, Iribarren P, Zhou Y, et al. Humanin, a newly identified neuroprotective factor, uses the G protein-coupled formylpeptide receptor-like-1 as a functional receptor. J Immunol 2004; 172(11): 7078-85.
    8. Sun R. Iribarren P, Zhang N, et al. Identification of neutrophil granule protein cathepsin G as a novel chemotactic agonist for the G protein-coupled formyl peptide receptor. J Immunol 2004; 173(1): 428-36.
    9.李忠东,李毅,甄永苏。趋化肽fMLP增强博安霉素的抗肿瘤作用。癌症2002; 21(8): 828-32。
    10. Shen W, Li B, Wetzel MA, et al. Down-regulation of the chemokine receptor CCR5 by activation of chemotactic formyl peptide receptor in human monocytes. Blood 2000; 96(8): 2887-94.
    11. Le Y, Li B, Gong W, et al. Novel pathophysiological role of classical chemotactic peptide receptors and their communications with chemokine receptors. Immunol Rev 2000; 177: 185-94.
    12. Kuhns DB, Nelson EL, Alvord WG, et al. Fibrinogen induces IL-8 synthesis in human neutrophils stimulated with formyl-methionyl-leucyl-phenylalanine or leukotriene B(4).J Immunol 2001; 167(5): 2869-78.
    13. Harris AL. Hypoxia-a key regulatory factor in tumor growth. Nat Rev Cancer, 2002, 2:38-47.
    14. Chen J, Bian X, Yao X, et al. Nordy, a synthetic lipoxygenase inhibitor, inhibits the expression of formylpeptide receptor and induces differentiation of malignant glioma cells. Biochem Biophys Res Commun, 2006; 342(4): 1368-74.
    15.陈剑鸿,卞修武,姚小红等。诺帝对人恶性胶质瘤细胞U87甲酰化肽受体功能的影响。药学学报,2007; 42(3):2-7。
    16. Cioca DP, Aoki Y, Kiyosawa K. RNA interference is a functional pathway with therapeutic potential in human myeloid leukemia cell lines. Cancer Gene Ther 2003, 10(2):125-33.
    17. Mulkeen AL, Silva T, Yoo PS, et al. Short interfering RNA-mediated gene silencing of vascular endothelial growth factor: effects on cellular proliferation in colon cancer cells. ArchSurg 2006; 141(4): 367-74; discussion 374.
    18. Lampert K, Machein U, Machein MR, et al. Expression of matrix metalloproteinases and their tissue inhibitors in human brain tumors. Am J Pathol 1998; 153(2): 429-37.
    19. Forsyth PA, Wong H, Laing TD et al. Gelatinase-A (MMP-2), gelatinase-B (MMP-9) and membrane type matrix metalloproteinase-1 (MT1-MMP) are involved in different aspects of the pathophysiology of malignant gliomas. Br J Cancer 1999; 79(11-12): 1828-35.
    20. Uhm JH, Dooley NP, Villemure JG, et al. Glioma invasion in vitro: regulation by matrix metalloprotease-2 and protein kinase C. Clin Exp Metastasis 1996; 14(5):421-33.
    21. Kondraganti S, Mohanam S, Chintala SK, et al. Selective suppression of matrix metalloproteinase-9 in human glioblastoma cells by antisense gene transfer impairs glioblastoma cell invasion. Cancer Res 2000; 60(24):6851-5.
    22. Belotti D, Paganoni P, Manenti L, et al. Matrix metalloproteinases (MMP-9 and MMP-2)induce the release of vascular endothelial growth factor (VEGF) by ovarian carcinoma cells: implications for ascites formation. Cancer Res 2003, 63(17):5224-29.
    23.周宏旭,于士柱。基质金属蛋白酶-2、9与胶质瘤间质血管形成关系的研究进展。中国现代神经疾病杂志,2005,5(2):112-15。
    24. Chandrasekar N, Jasti S, Alfred-Yung WK, et al. Modulation of endothelial cell morphogenesis in vitro by MMP-9 during glial-endothelial cell interactions. Clin Exp Metastasis 2000, 18(4):337-42.
    25. Jadhav U, Chigurupati S, Lakka SS, et al. Inhibition of matrix metalloproteinase-9 reduces in vitro invasion and angiogenesis in human microvascular endothelial cells. Int J Oncol 2004, 25(5):1407-14.
    26. Bergers G, Brekken R, McMahon G, et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2000, 2(10):737-44.
    27. Chintala SK, Sawaya R, Aggarwal BB, et al. Induction of matrix metalloproteinases-9 requires a polymerized actin cytoskeleton in human malignant glioma cells. J Biol Chem 1998; 273(22):13545–51.
    28. Lakka SS, Gondi CS, Rao JS. Proteases and glioma angiogenesis.Brain Pathol 2005; 15:327-41.
    29. Holash J, Maisonpierre PC, Compton D, et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 1999; 284(5422):1994-8.
    30. Zagzag D, Amirnovin R, Greco MA, et al. Vascular apoptosis and involution in gliomas precede neovascularization: A novel concept for glioma growth and angiogenesis. Lab Invest 2000;80(6):837-49
    31.徐承平,卞修武。人CHG-5胶质瘤细胞裸鼠原位移植模型的建立及其生物学特性分析。第三军医大学学报, 2003, 25(4): 287-90。
    32.陈飞兰,张华蓉,卞修武等。诺帝对大鼠C6胶质瘤的诱导分化治疗作用及对信号转导分子STAT3和p-STAT3蛋白表达的影响。中华神经外科杂志,2005, 21(6):359-62。
    33. Ferrara N. Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 2004; 25(4):581-611.
    34. Roberts WG, Palade GE. Neovasculature induced by vascular endothelial growth factor is fenestrated. Cancer Res 1997; 57(4):765-72.
    35. Dvorak HF. Angiogenesis: update 2005. J Thromb Haemost 2005; 3 (8):1835-42.
    36. Plate KH, Breier G, Weich HA, et al. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 1992; 359 (6398):845–8.
    37. Shweiki D, Itin A, Soffer D, et al. Vascular endothelial growth factor induced byhypoxia may mediate hypoxia-initiated angiogenesis. Nature (1992) 359(6398):843-5.
    38. Fischer S, Clauss M, Wiesnet M, et al. Hypoxia induces permeability in brain microvessel endothelial cells via VEGF and NO. Am J Physiol 1999; 276 (4 Pt 1):C812-20.
    39. Guan M, Jin J, Su B, et al. Tissue factor expression and angiogenesis in human glioma. Clin Biochem 2002; 35(4):321-5.
    40. Duerr EM, Rollbroker B, Hayashi Y, et al. PTEN mutations in gliomas and glioneuronal tumors. Oncogene 1998; 16(17):2259-64.
    41. Wang SI, Puc J, Li J, et al. Somatic mutations of PTEN in glioblastoma multiforme. Cancer Res 1997; 57(19):4183-6.
    42. Rasheed BK, Stenzel TT, McLendon RE, et al. PTEN gene mutations are seen in high-grade but not in low-grade gliomas. Cancer Res 1997; 57(19):4187-90.
    1. Gao JL, Lee EJ, Murphy PM. Impaired antibacterial host defense in mice lacking the N-formylpeptide receptor. J Exp Med 1999; 189(4):657-62.
    2. Le Y, Iribarren P, Zhou Y, et al. Silencing the formylpeptide receptor FPR by short-interfering RNA. Mol Pharmacol 2004; 66(4): 1022-8.
    3. Le Y, Oppenheim JJ, Wang JM. Pleiotropic roles of formyl-peptide receptors. Cytokine Growth Factor Rev. 2001; 12(1), 91-105.
    4. Le Y, Hu J, Gong W, et al. Expression of functional formyl peptide receptors by human astrocytoma cell lines. J Neuroimmunol, 2000, 111(1-2): 102-8.
    5. Zhou Y, Bian X, Le Y, et al. Formylpeptide receptor FPR and the rapid growth of malignant human gliomas. J Natl Cancer Inst, 2005, 97(11): 823-35.
    6. Le Y, Ye RD, Gong,-W, et al. Identification of functional domains in the formyl peptide receptor-like 1 for agonist-induced cell chemotaxis. FEBS J 2005; 272(3): 769-78.
    7. Sun R, Iribarren P, Zhang N, et al. Identification of neutrophil granule protein cathepsin G as a novel chemotactic agonist for the G protein-coupled formyl peptide receptor. J Immunol 2004; 173(1): 428-36.
    8. Wenzel-Seifert K, Hurt CM, Seifert R. High constitutive activity of the human formyl peptide receptor. J Biol Chem 1998; 273(37):24181-9.
    9. Vines CM, Revankar CM, Maestas DC, et al. N-formyl peptide receptors internalize but do not recycle in the absence of arrestins. J Biol Chem. 2003; 278(43): 41581-4.
    10. Revankar CM, Vines CM, Cimino DF, et al. Arrestins block G protein-coupled receptor-mediated apoptosis. J Biol Chem. 2004; 279(23): 24578-84.
    11. Yang D, Chen Q, Schmidt AP, et al. LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1(FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med 2000; 192(7):1069-74.
    12. Shen W, Li B, Wetzel MA, et al. Down-regulation of the chemokine receptor CCR5 by activation of chemotactic formyl peptide receptor in human monocytes. Blood 2000; 96(8): 2887-94.
    13. Le Y, Li B, Gong W, et al. Novel pathophysiological role of classical chemotacticpeptide receptors and their communications with chemokine receptors. Immunol Rev 2000; 177:185-94.
    14. Le Y, Gong W, Tiffany HL, et al. Amyloid 42 activates a G-protein-coupled chemoattractant receptor, FPR-like-1. J Neurosci 2001; 21(2): RC123.
    15. Su SB, Gong WH, Gao JL, et al. T20/DP178, an ectodomain peptide of human immunodeficiency virus type 1 gp41, is an activator of human phagocyte N-formyl peptide receptor. Blood 1999; 93(11):3885-92.
    16. Rogers J. Inflammation as a pathogenic mechanism in Alzheimer’s disease. Arzneimittelforschung 1995; 45(3A):439-42.
    17. Neuroinflammatory Working Group. Inflammation and Alzheimer’s disease. Neurobiol Aging 2000; 21(3):383-421.
    18. Ying G, Iribarren P, Zhou Y, et al. Humanin, a newly identified neuroprotective factor, uses the G protein-coupled formylpeptide receptor-like-1 as a functional receptor. J Immunol 2004; 172(11): 7078-85.
    19. Le Y, Yazawa H, Gong W, et al. The neurotoxic prion peptide fragment PrP(106-126) is a chemotactic agonist for the G protein-coupled receptor formyl peptide receptor-like 1. J Immunol 2001; 166(3):1448-51.
    20.李忠东,李毅,甄永苏。趋化肽fMLP增强博安霉素的抗肿瘤作用。癌症2002; 21(8): 828-32。
    21. Hu J, Li G, Tong Y, et al. Transduction of the gene coding for a human G-protein coupled receptor FPRL1 in mouse tumor cells increases host anti-tumor immunity. Int Immunopharmacol 2005; 5(6): 971-80.
    22. Kuhns DB, Nelson EL, Alvord WG, et al. Fibrinogen induces IL-8 synthesis in human neutrophils stimulated with formyl-methionyl-leucyl-phenylalanine or leukotriene B(4). J Immunol 2001; 167(5): 2869-78.
    23. Harris AL. Hypoxia-a key regulatory factor in tumor growth. Nat Rev Cancer, 2002, 2(1):38-47.
    24. Vivanco I and Sawyers CL.The phosphatidylinositol 3-kinase-AKT pathway in human cancer. Nat Rev Cancer, 2002, 2(7):489-501.
    25. Chen J, Bian X, Yao X, et al. Nordy, a synthetic lipoxygenase inhibitor, inhibits the expression of formylpeptide receptor and induces differentiation of malignant gliomacells. Biochem Biophys Res Commun, 2006, 342(4): 1368-74.
    26.陈剑鸿,卞修武,姚小红等。诺帝对人恶性胶质瘤细胞U87甲酰化肽受体功能的影响。药学学报,2007,42(3):2-7。
    1. Kleihues P, Burger PC, Collins VP, et al. Pathology and Genetics of Tumours of the Nervous Systems. Lyon, France: International Agency for Research on Cancer, 2000; 29-39.
    2. Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005; 352(10):987-96.
    3. Taveras JM, Thompson HG, Pool JL. Should we treat glioblastoma multiforme? A study of survival in 425 cases. Am J Pathol 1962; 87:473-9.
    4. Shapiro WR, Young DF. Treatment of malignant glioma. A controlled study of chemotherapy and irradiation. Arch Neurol 1976; 33(7):494-500.
    5. Henson JW, Gaviani P, Gonzalez RG. MRI in treatment of adult gliomas. Lancet Oncol 2005; 6(3):167-75.
    6. Zhu XP, Li KL, Kamaly-Asl ID, et al. Quantification of endothelial permeability, leakage space, and blood volume in brain tumors using combined T1 and T2 contrast-enhanced dynamic MR imaging. J Magn Reson Imaging 2000; 11(6):575-85.
    7. Mandonnet E, Delattre JY, Tanguy ML, et al. Continuous growth of mean tumor diameter in a subset of grade II gliomas. Ann Neurol 2003; 53(4):524-28.
    8. Swanson KR, Bridge C, Murray JD, et al. Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion. J Neurol Sci 2003; 216(1):1-10.
    9. Brat DJ, Castellano-Sanchez A, Kaur B, et al. Genetic and biologic progression in astrocytomas and their relation to angiogenic dysregulation. Adv Anat Pathol 2002; 9(1):24-36.
    10. Brat DJ, Van Meir EG. Glomeruloid microvascular proliferation orchestrated by VPF/VEGF: A new world of angiogenesis research. Am J Pathol 2001; 158(3):789-96.
    11. Burger PC, Green SB. Patient age, histologic features, and length of survival in patients with glioblastoma multiforme. Cancer 1987; 59(9): 1617-25.
    12. Daumas-Duport C, Scheithauer B, O'Fallon J, et al. Grading of astrocytomas. A simple and reproducible method. Cancer 1988; 62(10):2152-65.
    13. Nelson JS, Tsukada Y, Schoenfeld D, et al. Necrosis as a prognostic criterion inmalignant supratentorial, astrocytic gliomas. Cancer 1983;52(3):550-4
    14. Raza SM, Lang FF, Aggarwal BB, et al. Necrosis and glioblastoma: A friend or a foe? A review and a hypothesis. Neurosurgery 2002; 51(1):2-12; discussion 12-13.
    15. Rickles FR, Falanga A. Molecular basis for the relationship between thrombosis and cancer. Thromb Res 2001; 102(6):V215-24.
    16. Walsh DC, Kakkar AK. Thromboembolism in brain tumors. Curr Opin Pulm Med 2001; 7(5):326-31.
    17. Brat DJ, Castellano-Sanchez A, Hunter SB, et al. Pseudopalisading cells in glioblastoma are hypoxic, express extracellular matrix proteases, and are formed by a rapidly migrating population. Cancer Res 2004; 64(3):920-7.
    18. Rodas RA, Fenstermaker RA, McKeever PE, et al. Correlation of intraluminal thrombosis in brain tumor vessels with postoperative thrombotic complications: a preliminary report. J Neurosurg 1998; 89(2):200-5.
    19. Holash J, Maisonpierre PC, Compton D, et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 1999;284(5422):1994-8
    20. Zagzag D, Amirnovin R, Greco MA, et al. Vascular apoptosis and involution in gliomas precede neovascularization: A novel concept for glioma growth and angiogenesis. Lab Invest 2000;80(6):837-49
    21. Zagzag D, Hooper A, Friedlander DR, et al. In situ expression of angiopoietins in astrocytomas identifies angiopoietin-2 as an early marker of tumor angiogenesis. Exp Neurol 1999; 159(2):391-400.
    22. Stratmann A, Risau W, Plate KH. Cell type-specific expression of angiopoietin-1 and angiopoietin-2 suggests a role in glioblastoma angiogenesis. Am J Pathol 1998; 153(5):1459-66.
    23. Vajkoczy P, Farhadi M, Gaumann A, et al. Microtumor growth initiates angiogenic sprouting with simultaneous expression of VEGF, VEGF receptor-2, and angiopoietin-2. Clin Invest 2002; 109(6):777-85.
    24. Zhang L, Yang N, Park JW, et al. Tumor-derived vascular endothelial growth factor up-regulates angiopoietin-2 in host endothelium and destabilizes host vasculature, supporting angiogenesis in ovarian cancer. Cancer Res 2003; 63(12):3403-12.
    25. Yu Q, Stamenkovic I. Angiopoietin-2 is implicated in the regulation of tumorangiogenesis. Am J Pathol 2001; 158(2):563-70.
    26. Maisonpierre PC, Suri C, Jones PF, et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 1997; 277(5322):55–60.
    27. Sugahara T, Korogi Y, Kochi M, et al. Correlation of MR imaging-determined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas. AJR Am J Roentgenol 1998; 171(6):1479-86.
    28. Rascher G, Fischmann A, Kroger S, et al. Extracellular matrix and the blood–brain barrier in glioblastoma multiforme: spatial segregation of tenascin and agrin. Acta Neuropathol (Berl) 2002; 104(1):85-91.
    29. Senger DR, Galli SJ, Dvorak AM, et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 1983; 219(4587):983-85.
    30. Fischer S, Clauss M, Wiesnet M, et al. Hypoxia induces permeability in brain microvessel endothelial cells via VEGF and NO. Am J Physiol 1999; 276 (4 Pt 1):C812-20.
    31. Hamada K, Kuratsu J, Saitoh Y, et al. Expression of tissue factor correlates with grade of malignancy in human glioma. Cancer 1996; 77(9):1877–83.
    32. Contrino J, Hair G, Kreutzer DL, et al. In situ detection of tissue factor in vascular endothelial cells: correlation with the malignant phenotype of human breast disease. Nat Med 1996; 2(2):209–15.
    33. Seto S, Onodera H, Kaido T, et al. Tissue factor expression in human colorectal carcinoma: correlation with hepatic metastasis and impact on prognosis. Cancer 2000; 88(2):295–301.
    34. Vrana JA, Stang MT, Grande JP, et al. Expression of tissue factor in tumor stroma correlates with progression to invasive human breast cancer: paracrine regulation by carcinoma cell-derived members of the transforming growth factor beta family. Cancer Res 1996; 56(21):5063-5070.
    35. Amirkhosravi A, Meyer T, Warnes G, et al. Pentoxifylline inhibits hypoxia-induced upregulation of tumor cell tissue factor and vascular endothelial growth factor. Thromb Haemost 1998; 80(4):598-602.
    36. Guan M, Jin J, Su B, et al. Tissue factor expression and angiogenesis in human glioma. Clin Biochem 2002; 35(4):321-5.
    37. Duerr EM, Rollbroker B, Hayashi Y, et al. PTEN mutations in gliomas and glioneuronal tumors. Oncogene 1998; 16(17):2259-64.
    38. Wang SI, Puc J, Li J, et al. Somatic mutations of PTEN in glioblastoma multiforme. Cancer Res 1997; 57(19):4183-6.
    39. Rasheed BK, Stenzel TT, McLendon RE, et al. PTEN gene mutations are seen in high-grade but not in low-grade gliomas. Cancer Res 1997; 57(19):4187-90.
    40. Rong Y, Post DE, Pieper RO, et al. PTEN and hypoxia regulate tissue factor expression and plasma coagulation by glioblastoma. Cancer Res 2005; 65(4):1406-3.
    41.卞修武。对肿瘤血管生成研究之肿瘤微血管构筑表型异质性的思考。中华病理学杂志2006;35(3):129-31。
    42. Plate KH, Breier G, Weich HA, et al. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 1992; 359 (6398):845–8.
    43. Desbaillets I, Diserens AC, Tribolet N, et al. Upregulation of interleukin 8 by oxygen-deprived cells in glioblastoma suggests a role in leukocyte activation, chemotaxis, and angiogenesis. J Exp Med 1997; 186(8): 1201-12.
    44. Migheli A, Cavalla P, Marino S, et al. A study of apoptosis in normal and pathologic nervous tissue after in situ end-labeling of DNA strand breaks. J Neuropathol Exp Neurol 1994; 53(6):606-16.
    45. Schiffer D, Cavalla P, Migheli A, et al. Apoptosis and cell proliferation in human neuroepithelial tumors. Neurosci Lett 1995; 195(2):81-4.
    46. Tachibana O, Lampe J, Kleihues P, et al. Preferential expression of Fas/APO1 (CD95) and apoptotic cell death in perinecrotic cells of glioblastoma multiforme. Acta Neuropathol (Berl) 1996; 92(5):431-4.
    47. Takekawa Y, Sawada T, Sakurai I. Expression of apoptosis and its related protein in astrocytic tumors. Brain Tumor Pathol 1999; 16(1):11-6.
    48. Lacroix M, Abi-Said D, Fourney DR, et al. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 2001; 95(2):190-8.
    49. Sawaya R, Yamamoto M, Ramo OJ, et al. Plasminogen activator inhibitor-1 in brain tumors: relation to malignancy and necrosis. Neurosurgery 1995; 36(2):375-80; discussion 380-1.
    50. Sawaya R, Ramo OJ, Shi ML, et al. Biological significance of tissue plasminogen activator content in brain tumors. J Neurosurg 1991; 74(3):480-6.
    51. Bernsen HJ, Rijken PF, Oostendorp T, et al. Vascularity and perfusion of human gliomas xenografted in the athymic nude mouse. Br J Cancer 1995; 71(4):721-6.
    52. Vajkoczy P, Menger MD. Vascular microenvironment in gliomas. J Neurooncol 2000; 50(1-2):99-108.
    53. Vajkoczy P, Schilling L, Ullrich A, et al. Characterization of angiogenesis and microcirculation of high-grade glioma: An intravital multifluorescence microscopic approach in the athymic nude mouse. J Cereb Blood Flow Metab 1998; 18(5):510-20.
    54. Zagzag D, Zhong H, Scalzitti JM, et al. Expression of hypoxia-inducible factor 1alpha in brain tumors: association with angiogenesis, invasion, and progression. Cancer 2000; 88(11):2606-18.
    55. Krishnamachary B, Berg-Dixon S, Kelly B, et al. Regulation of colon carcinoma cell invasion by hypoxia-inducible factor 1. Cancer Res 2003; 63(5):1138-43.
    56. Pennacchietti S, Michieli P, Galluzzo M, et al. Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 2003; 3(4):347-61.
    57. Ben-Yosef Y, Lahat N, Shapiro S, et al. Regulation of endothelial matrix metalloproteinase-2 by hypoxia/reoxygenation. Circ Res 2002; 90(7):784-91.
    58. Graham CH, Forsdike J, Fitzgerald CJ, et al. Hypoxia-mediated stimulation of carcinoma cell invasiveness via upregulation of urokinase receptor expression. Int J Cancer 1999; 80(4):617-23.
    59. Yamamoto M, Mohanam S, Sawaya R, et al. Differential expression of membrane-type matrix metalloproteinase and its correlation with gelatinase A activation in human malignant brain tumors in vivo and in vitro. Cancer Res 1996; 56(2):384-92.
    60. Rempel SA, Dudas S, Ge S, et al.Identification and localization of the cytokine SDF1 and its receptor, CXC chemokine receptor 4, to regions of necrosis and angiogenesis in human glioblastoma. Clin Cancer Res 2000; 6(1): 102-11.
    61. Bajetto A, Barbieri F, Dorcaratto A, et al. Expression of CXC chemokine receptors 1-5 and their ligands in human glioma tissues: role of CXCR4 and SDF1 in glioma cell proliferation and migration. Neurochem Int 2006; 49(5): 423-32.
    62. Yang S, Chen J, Jiang X, et al. Activation of chemokine receptor CXCR4 in malignantglioma cells promotes the production of vascular endothelial growth factor. Biochem Biophys Res Commun 2005; 335(2):523-8.
    63. Hong X, Jiang F, Kalkanis SN, et al. SDF-1 and CXCR4 are up-regulated by VEGF and contribute to glioma cell invasion. Cancer Lett 2006; 236(1): 39-45.
    64. Ping Y, Yao X, Chen J, et al. Nordy inhibits CXCR4-mediated production of angiogenic factors by malignant human glioma cells. J Neurooncol (accepted).
    65. Zhou Y, Bian X, Le Y, et al. Formylpeptide receptor FPR and the rapid growth of malignant human gliomas. J Natl Cancer Inst 2005; 97(11): 823-35.
    66. Jain R K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005; 307(5706): 58-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700