CXCR4在胶质瘤干细胞诱导血管生成中的作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
恶性胶质瘤是中枢神经系统最常见的原发肿瘤,其高度侵袭性导致治疗十分困难、复发率高。丰富的新生血管是此肿瘤最为突出的间质特点,这些新生血管是瘤细胞快速增殖、高度侵袭和复发的重要结构基础。因此,深入研究血管生成机制、并有效阻抑血管新生对于恶性胶质瘤的治疗非常关键。
     肿瘤血管生成由瘤细胞及间质细胞分泌的促血管生成因子和抑血管生成因子共同调控,其中血管内皮生长因子(vascular endothelial growth factor, VEGF)和白细胞介素-8 (interleukin-8, IL-8)是两种重要的促血管生成因子,它们可以促进肿瘤相关内皮细胞增殖、迁移及形成血管腔。近年研究表明,趋化因子受体CXCR4在肿瘤血管生成和侵袭中发挥重要作用。本课题组前期发现,CXCR4表达与胶质瘤微血管密度及恶性程度呈正相关,提示此受体具有促胶质瘤血管生成的作用。但是,CXCR4促胶质瘤血管生成作用的机制和治疗学意义尚需深入探讨。
     最近,肿瘤干细胞(cancer stem cells, CSCs)或称肿瘤始动细胞(tumor initiating cells)因其独特的生物学特性及在肿瘤中的重要作用已越来越受到重视。CSCs在肿瘤中含量极微,却独具自我更新、无限增殖、多向分化和重建肿瘤的能力,被认为可能是肿瘤发生、侵袭转移、治疗抵抗以及复发的根源。然而,这群CSCs在血管生成中所扮演的角色尚不清楚:它们是否始动或参与了肿瘤血管生成过程?其分子机制如何?我们前期结果和国外的报道均提示胶质瘤中的CSCs,即胶质瘤干细胞(glioma stem cells, GSCs)高分泌VEGF,IL-8等血管生成因子,其上游调控机制不明。最近,我们发现GSCs高表达CXCR4。基于此,我们推测,GSCs高表达的CXCR4可能通过促进VEGF和IL-8产生而发挥促血管生成作用。本研究中,我们首先观察了人恶性胶质瘤细胞系U87细胞中CXCR4的表达及活化后促侵袭和血管生成因子产生的作用,并观测我室自行合成的化合物诺帝对CXCR4介导的上述效应的抑制作用;然后,我们检测了GSCs标志物CD133和nestin在原代胶质瘤、胶质瘤细胞系及其移植瘤中的表达,并从中分离、鉴定出GSCs,研究了CXCR4在GSCs中的表达及其活化后促血管生成作用机制;最后,我们探讨了拮抗CXCR4活化对GSCs移植瘤的治疗作用。主要结果和结论如下:
     1.CXCR4活化促进U87细胞迁移及产生VEGF和IL-8。①CXCR4在U87细胞之间表达强弱呈现非均一性。CXCR4配体CXCL12 (25~100 ng/ml)可引起细胞内钙流增加,效应在50 ng/ml时达到最强。用CXCR4特异性拮抗剂AMD3100 (1~10μM)预处理细胞,可抑制CXCL12诱发的胞内钙流。②CXCR4活化促进U87细胞迁移。对照组U87细胞跨膜迁移细胞数为11.68±3.78个/3个高倍视野(3HPF),而采用CXCL12 (25~100 ng/ml)活化CXCR4后,跨膜迁移的细胞数明显增加,其中以50 ng/ml剂量组效应最强,迁移细胞数为156.67±13.2个/3HPF。1和10μM AMD3100均可抑制CXCR4活化诱导的细胞迁移。CXCR4促迁移效应可能与其活化后诱导F-actin增加有关。③10~100 ng/ml CXCL12处理36 h均能促进U87细胞分泌VEGF和IL-8,浓度为50 ng/ml时作用最强,50 ng/ml CXCL12处理12 h可促进IL-8分泌,对VEGF分泌无影响,处理24~48 h可同时促进IL-8和VEGF蛋白分泌和mRNA表达。1~10μM AMD3100预处理能抑制CXCR4活化引起的VEGF和IL-8增加。
     2.诺帝抑制U87细胞CXCR4表达及活化效应。①25~100μM诺帝处理12 h能使CXCR4表达减弱,以100μM作用最强。100μM诺帝处理12、24、36、48 h,平均荧光强度分别为24.13±8.53、24.52±4.41、17.36±3.91和13.45±4.23,与对照组(38.54±11.42)相比CXCR4表达显著降低(P<0.05)。27 mg/kg诺帝体内治疗能够降低U87移植瘤CXCR4蛋白的表达。但是,诺帝处理并不影响CXCR4 mRNA表达。②25~100μM诺帝预处理能够抑制CXCR4活化所引起的细胞迁移活性增加,穿膜细胞数分别为99.67±9.45、82.67±7.02和54.33±8.62个/3HPF,与对照组(156.67±13.2个/ 3HPF)相比有显著统计学差异(P<0.05)。此效应与诺帝抑制CXCR4活化后诱导的F-actin增多有关。③诺帝对U87细胞CXCR4活化后的促VEGF和IL-8 mRNA转录及蛋白分泌效应均具有抑制作用。
     3.人原代胶质瘤组织、胶质瘤细胞系及其移植瘤中均含有nestin~+/CD133~+ GSCs。①人原代星形胶质细胞瘤,胶质瘤细胞系U87、SHG-44、CHG-5及其相应移植瘤均表达GSCs标志物nestin和CD133。其中nestin的表达与肿瘤级别呈正相关,高级别胶质瘤(III、IV级)显著高于低级别胶质瘤(I、II级),而CD133表达与肿瘤级别无关。大部分CD133阳性细胞同时表达nestin。②nestin~+/CD133~+细胞具有GSCs特性。CD133~+细胞在神经干细胞培养基中成球生长;所形成的细胞球表达nestin和CD133,经诱导后能分化为表达GFAP、MBP和β-tubulin III的细胞,且能在体内连续成瘤。③创建了4种简便、易行的获取肿瘤干细胞的方法,并应用于GSCs的筛选。这些方法包括克隆分型筛选法、基于侵袭异质性的筛选法、耐药细胞筛选法和逐步添加条件培养基筛选法。
     4.GSCs优势性高表达CXCR4,此受体活化后介导GSCs诱导的胶质瘤血管生成。①胶质瘤细胞系(U87、SHG-44、CHG-5)、U87移植瘤和人胶质母细胞瘤来源的CD133~+细胞均比相应的CD133-群体高表达CXCR4。在CD133~+细胞形成GSCs球的过程中,CXCR4保持这种高表达状态。②10~100 ng/ml CXCL12刺激GSCs球均能引起胞内钙流增加,以50 ng/ml剂量组作用最强,此效应可被CXCR4特异性拮抗剂AMD3100抑制。③CXCR4活化能够增强GSCs的软琼脂克隆形成能力。对照组细胞软琼脂克隆形成率(CFE)为8.2±1.3%,而CXCL12刺激组增加至17.4±4.8%,AMD3100预处理能够抑制CXCR4的效应,CFE为8±1.15%。此外,AMD3100单独处理也能够抑制GSCs的CFE。④CXCR4活化后,从转录和翻译两个水平促进GSCs产生VEGF和IL-8。25 ~100 ng/ml CXCL12均能促进GSCs产生VEGF和IL-8,50 ng/ml剂量组效应最强。1~10μM AMD3100能抑制CXCR4活化引起的VEGF和IL-8产生增加。⑤CD133~+细胞培养上清对脐静脉内皮细胞增殖的诱导能力强于CD133-细胞。CD133~+细胞培养上清刺激组2、3、4、5、6和7 d时的OD值均较CD133-细胞培养上清刺激组显著增高。⑥无论在U87细胞移植瘤还是在人原代胶质母细胞瘤中,肿瘤微血管周围可见更多的CD133~+、nestin~+的GSCs。⑦GSCs高表达CXCR4的机制可能与其独特的miRNA表达谱有关。CD133~+细胞和CD133-细胞的miRNA表达谱不同,大部分miRNA在CD133~+细胞高表达。以CXCR4为靶点的几种miRNA表达趋势如下:miRNA-9在从U87细胞和人原代胶质母细胞瘤中分离得到的CD133~+细胞中表达上调,上调倍数分别为3.96和3.93倍;miRNA-93上调倍数分别为6.63和2.06倍;miRNA-372上调倍数分别为10.79和20.24倍;miRNA-373上调最为显著,倍数分别为77.86和12.95倍。miRNA-302在U87细胞来源的CD133~+细胞中表达上调8.68倍,而在人原代胶质母细胞瘤来源的CD133~+细胞中表达下调1.51倍。
     5.CXCR4特异性拮抗剂AMD3100抑制GSCs移植瘤生长和血管生成。①AMD3100治疗1 w时,肿瘤体积与空白对照组和PBS对照组无明显差别。而后,AMD3100治疗组移植瘤体积显著小于对照组,观察期截止时,AMD3100治疗组移植瘤体积为0.23±0.06 cm3,与空白对照组(2.21±0.32 cm3)和PBS对照组(2.16±0.37 cm3)相比有显著统计学差异(P<0.05),空白对照组与PBS对照组之间肿瘤体积无显著性统计学差异(P>0.05)。②AMD3100治疗后肿瘤微血管密度明显降低,与PBS对照组比较具有显著统计学意义(P<0.05)。AMD3100治疗组移植瘤血管生成因子VEGF和IL-8的表达显著低于对照组(P<0.05)。③AMD3100不影响GSCs移植瘤中CXCL12和CXCR4表达(P>0.05)。④AMD3100治疗组与对照组GSCs移植瘤中CD133~+细胞和nestin~+细胞比例无显著统计学差异(P>0.05)。
     综上所述,CXCR4活化可促进人恶性胶质瘤细胞系U87迁移及产生血管生成因子,诺帝能够抑制U87细胞CXCR4蛋白表达及活化后的效应;胶质瘤细胞表达的CXCR4具有非均一性,优势表达于GSCs,后者存在于人原代胶质瘤组织、胶质瘤细胞系及其移植瘤中;CXCR4活化在介导GSCs诱导胶质瘤血管生成中起重要作用,而抑制CXCR4可阻抑胶质瘤血管生成从而抑制胶质瘤生长与侵袭。结果表明,CXCR4可能是恶性胶质瘤治疗的有效靶分子,而GSCs可能是其中更为重要的靶标。
Malignant gliomas are common primary tumors within the central nervous system, which are characterized by invasive growth, aberrant neovascularizion and rapid expansion. The active neovascularization not only contributes to the rapid growth of tumor cells by providing them nutrient and oxygen, but also facilitates these cells to invade into normal brain tissues, resulting in the difficulties in malignat glioma therapies. Thus, it is of great importance to further investigate the mechanism of angiogenesis for developing new antiangiogenesis strategy to treat such kind of malignancy.
     Tumor angiogenesis is regulated by aberrant production of proangiogenic and antiangiogenic factors produced by malignant tumor cells as well as the infiltrating leukocytes. VEGF and IL-8 are two important angiogenic factors. They promote endothelial cell proliferation, migration and tubule formation, which are cruiel steps in angiogenesis. Recently, it was reported that the CXC chemokine receptor CXCR4 regulated pathological angiogenesis, tumor invasion and metastasis. Our previous studies showed that CXCR4 expression was correlated directly with the degree of malignancy and microvessel density (MVD) of human gliomas. However, the machenism of CXCR4-induced angiogenesis remains to be clarified.
     Cancer stem cells (CSCs), or tumor initiating cells, are becoming fascinating because of their special biologic behaviors and the important roles in carcinogenesis. Although these cells account for only a small fraction of cancer cell population, they exclusively exhibit capacities of self-renewal, multipotent differentiation and tumor initiation. CSCs are also resistant to chemo- and radiotherapy, thus possibly responsible for cancer recurrence after treatment and metastasis. The great progress of study on CSCs is enormously challenging traditional theory of tumor vascularization, for instance, whether and how CSCs initiate angiogenesis. Our previous results showed that glioma stem cells (GSCs) produced higher levels of VEGF and IL-8 compared to the differentiated tumor cells. However, it is unclear whether GSCs produce VEGF and IL-8 constitutively or the production is induced by factors present in tumor microenvironment. Recently, we found high level of CXCR4 expression by GSCs with unknown function.
     In this study, we hypothezed that CXCR4 activation might initiate GSCs-mediated angiogenesis by promoting the production of VEGF and IL-8. We firstly decteted the effect of CXCR4 activation on a malignant glioma cell line U87 cell invasion and the production of angiogenic factors, and explored the inhibitory effect of Nordy, a sythesized chiral compound based on the structure of natural nordihydroguaiaretic acid (NDGA), on the response of U87 cells to CXCR4 agonist CXCL12. We then detected the distribution of GSCs in primary glioma tissues, isolated and characterized GSCs from the tissues, glioma cell lines and their xenografts. We further investigated the activation of CXCR4 on GSCs-induced angiogenesis and the potential mechanisms. Finally, we explored the therapeutic significance of inhibiting CXCR4 with GSCs xenograft model. The main results and conclusions are as follows:
     1. CXCR4 activation promoted U87 cells to migrate and produce VEGF and IL-8. (1) Stimulation of U87 cells with CXCL12, the CXCR4 ligand, caused a rapid increase in intracellular calcium mobilization with optimal effect of CXCL12 at 50 ng/ml. The effect of CXCL12 was abolished by the CXCR4 antagonist AMD3100. (2) CXCL12 promoted but AMD3100 inhibited the chemotactic response of U87, which might be attributed to the actin polymerization induced by CXCL12. (3) CXCL12 increased VEGF and IL-8 in U87 cells at both protein and mRNA levels. The effect of CXCL12 was bolcked by AMD3100.
     2. Nordy inhibited functional expression of CXCR4 on malignant glioma cells. (1) Immunofluorescence staining showed the decreased expression of CXCR4 after treatment with Nordy in a time-dependent manner. However, Nordy had no significant effects on CXCR4 mRNA expression. Futhermore, CXCR4 expression in U87 xenografts with Nordy treatment decreased as compared with control xenografts. (2) CXCL12-induced migration and actin polymerization of glioma cells were inhibited after pretreatment with Nordy. (3) Nordy also inhibited production of IL-8 and VEGF at either protein or mRNA level induced by CXCL12.
     3. CD133~+/nestin~+ GSCs were found in both primary and xengrafted gliomas. (1) CD133~+ and/or nestin~+ tumor cells were observed in primary human gliomas, human glioma cell lines and their xenografts. (2) CD133~+/nestin~+glioma cells were GSCs. When the CD133~+ cells were cultured in neural stem cell medium, they could form neurosphere-like spheroids expressing CD133~+/nestin~+. When seeded in differentiation conditions (medium containing serum), the spheroids generated differentiated cells with expression of GFAP, MBP and/orβ-tubulin III. Moreover, CD133~+/nestin~+ glioma cells initiated xenografts in nude mice. (3) Such kind of GSCs could be isolated and enriched with other methods, including colony heterogeneity-based and invasive potential-based methods for enrichment, and drug resistance-based selection. Moreover, increasing the concentration of serum-free neural stem cell medium was used as a new strategy for enrichment of GSCs.
     4. GSCs expressed higher levels of functional CXCR4, which promoted angiogenesis by producing VEGF and IL-8. (1) Compared with committed tumor cells, the GSCs expressed higher levels of CXCR4. (2) Stimulation of GSCs with CXCL12 caused a rapid increase of intracellular calcium mobilization with optimal effect of CXCL12 at 50 ng/ml, which could be abolished by pretreament with AMD3100. (3) The colony forming efficacy (CFE) of GSCs was increased when CXCR4 on the GSCs was activated. In the absence of AMD3100, the CFE of GSCs was 8.2±1.3 %, and increased to 17.4±4.8% after CXCL12 stimulation. After treatment with AMD3100, CFE of GSCs with or without CXCL12 stimulation was significantly inhibited. (4) CXCL12 could induce VEGF and IL-8 at both mRNA and protein levels produced by GSCs, while AMD3100 inhibited the effects. (5) The conditioned medium of GSCs presented more prowerful capability of promoting proliferation of umbilical vein endothelial cells than the CD133- conterparter. (6) CD133~+/nestin~+ cells were detected in the tissues adjacent to capillaries, which were revealed by CD31, in human primary glioma tissues. (7) The differential expression of microRNA was found between GSCs and committed differentiated cells, which might be responsible for their differential CXCR4 expression.
     5. AMD3100 suppressed growth and angiogenesis of xenografts formed by GSCs. (1) The xenografts in the mice treated with AMD3100 were significantly smaller (0.23±0.06 cm3) than those in the mice without any treatment (2.21±0.32 cm3) or with PBS treatment group (2.16±0.37 cm3). (2) Immunofluorescent staining with anti-CD31 antibody indicated that tumor specimens from AMD3100-treated mice contained significantly reduced MVD. This was associated with lower levels of VEGF and IL-8 in tumors from AMD3100 treatment group. (3) There was no significant difference in the expression of either CXCL12 or CXCR4 between AMD3100 treatment group and the control group. (4) AMD3100 did not change the ratio of CD133~+ or nestin~+ cells in GSCs xenografts in vivo.
     In summary, these results suggest that (1) activation of CXCR4 promoted U87 cells to migrate and produce VEGF and IL-8. Nordy inhibited the expression and effect of CXCR4 in U87 cells. (2) There were GSCs in human primary gliomas, human glioma cell lines and glioma xenografts. These cells expressed higher levels of CXCR4, activation of which promoted angiogenesis by producing VEGF and IL-8. A CXCR4 inhibitor AMD3100 suppressed GSCs xenograft growth and angiogenesis. Thus, CXCR4/CXCL12 axis is crucial for neovascularization of gliomas and may represent therapeutic targets for developing novel anti-GSCs agents to improve glioma treatment.
引文
1. Benest AV, Augustin HG. Cancer: Blood vessels kept quiet. Nature, 2009, 458: 41-42.
    2. Narazaki M, Tosato G. Tumor cell populations differ in angiogenic activity: a model system for spontaneous angiogenic switch can tell us why. J Natl Cancer Inst, 2006, 98: 294-295.
    3. Norden AD, Wen PY. Glioma therapy in adults. Neurologist, 2006, 12: 279-292.
    4. Rafii S, Lyden D. A few to flip the angiogenic switch. Science, 2008, 319: 163-164.
    5. Cai J, Jiang WG, Ahmed A, et al. Vascular endothelial growth factor-induced endothelial cell proliferation is regulated by interaction between VEGFR-2, SH-PTP1 and eNOS. Microvasc Res, 2006, 71: 20-31.
    6. Brat DJ, Bellail AC, Van Meir EG. The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. J Neurooncol, 2005, 7: 122-133.
    7. Scotton CJ, Wilson JL, Scott K, et al. Multiple actions of the chemokine CXCL12 on epithelial tumor cells in human ovarian cancer. Cancer Res, 2002, 62: 5930-5938.
    8. Bian XW, Yang SX, Chen JH, et al. Preferential expression of chemokine receptor CXCR4 by highly malignant human gliomas and its association with poor patient survival. Neurosurgery, 2007, 61: 570-579.
    9.卞修武。对肿瘤研究前沿之肿瘤干细胞的几点认识。第三军医大学学报,2008,11:995-997。
    10. Clarke MF, Dick JE, Dirks PB, et al. Cancer stem cells-perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res, 2006, 66:9339-9344.
    11. Reya T, M orrison SJ, Clarke MF, et al. Stem cells, cancer, and cancer stem cells. Nature, 2001, 14: 105-111.
    12. Knoepfler P. Journal club. A cell biologist looks at the risk and promise of a new insight into stem cells and cancer. Nature, 2009, 22: 457-361.
    13. Singh SK. Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells. Nature, 2004, 432: 396-401.
    14. Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res, 2003, 63: 5821-5828.
    15. Bao S, Wu Q, Mclendon RE, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response.Nature, 2006, 444: 756-760.
    16. Liu G, Yuan X, Zeng Z, et al. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer, 2006, 5: 67-78.
    17. Yu SC, Bian XW. Enrichment of cancer stem cells based on heterogeneity of invasiveness. Stem Cell Rev, 2008 Dec 19. [Epub ahead of print], DOI: 10.1007/s12015-008-9047-8.
    18. Bao S, Wu Q, Sathornsumetee S, et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res, 2006, 66: 7843-7848.
    19. Zhou ZH, Ping YF, Yu SC, et al. A novel approach to the identification and enrichment of cancer stem cells from a cultured human glioma cell line. Cancer Lett, 2009, DOI: 10.1016/j.canlet.2009.02.033.
    20. Yu SC, Ping YF, Yi Liang, et al. Isolation and characterization of cancer stem cells from a human glioblastoma cell line U87. Cancer Lett, 2008, 265: 124-134.
    21. Yi L, Zhou ZH, Ping YF, et al. Isolation and characterization of stem cell-like precursor cells from primary human anaplastic oligoastrocytoma. Modern Pathol, 2007, 20: 1061-1068.
    22. Yao XH, Ping YF, Chen JH, et al. Glioblastoma stem cells produce vascular endothelial growth factor by activation of formylpeptide receptor (FPR). J Pathol, 2008, 215: 369-376.
    23.平轶芳,姚小红,卞修武,等。人胶质瘤干细胞趋化因子受体CXCR4活化促进血管生成的作用。中华病理学杂志,2007,36: 179-183。
    1. Bajetto A, Barbieri F, Dorcaratto A, et al. Expression of CXC chemokine receptors 1-5 and their ligands in human glioma tissues: role of CXCR4 and SDF-1 in glioma cell proliferation and migration. Neurochem Int, 2006, 49: 423-432.
    2. Bian XW, Yang SX, Chen JH, et al. Preferential expression of the chemokine receptor CXCR4 by more highly malignant human gliomas and association with poor patient survival. Neurosurgery, 2007, 61: 570-579.
    3.陈飞兰,张华蓉,卞修武,等。诺帝对大鼠C6脑胶质瘤的诱导分化治疗作用及对信号转导分子STAT3和p-STAT3蛋白表达的影响。中华神经外科杂志,2005,21:359-362。
    4. Chen JH, Bian XW, Yao XH, et al. Nordy, a synthetic lipoxygenase inhibitor, inhibits the expression of formylpeptide receptor (FPR) and induces differentiation of malignant glioma cells. Biochem Biophys Res Commun, 2006, 342: 1368-1374.
    5. Bian XW, Jiang XF, Chen JH, et al. Increased angiogenic capabilities of endothelial cells from microvessels of malignant human gliomas. Int Immunopharmacol, 2006, 6: 90-99.
    6.姚小红,平轶芳,卞修武,等。诺帝对人恶性胶质瘤细胞甲酰化肽受体表达及其活化后促增殖和血管生成因子产生的影响。中华医学杂志,2007, 87: 479-484。
    7. Chen JH, Yao XH, Gong W, et al. A novel lipoxygenase inhibitor Nordy attenuates malignant human glioma cell responses to chemotactic and growth stimulating factors. J Neurooncol, 2007, 84: 223-231.
    8.刘宏,卞修武,陈代伦,等。诺帝对人恶性胶质瘤裸鼠原位移植瘤FPR、VEGF表达的影响及意义。中国微侵袭神经外科杂志,2007,12:72-73。
    9. Burns JM, Summers BC, Wang Y, et al. A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. J Exp Med, 2006, 203: 2201-2213.
    10. Zhou Y, Larsen PH, Hao C, et al. CXCR4 is a major chemokine receptor on glioma cells and mediates their survival. J Biol Chem, 2002, 277: 49481-49487.
    11. Rubin JB, Kung AL, Klein RS, et al. A small molecule antagonist of CXCR4 inhibits intracranial growth of primary brain tumors. Proc Natl Acad Sci USA, 2003, 100: 13513-13518.
    12. Zeelenberg IS, Ruuls-Van SL, Roos E. The chemokine receptor CXCR4 is required for outgrowth of colon carcinoma micrometastases. Cancer Res, 2003, 63: 3833-3839.
    13. Wang J, Sun Y, Song W, et al. Diverse signaling pathways through the SDF-1/CXCR4 chemokine axis in prostate cancer cell lines leads to altered patterns of cytokine secretion and angiogenesis. Cell Signal, 2005, 17: 1578-1592.
    14. Scala S, Ottaiano A, Ascierto PA, et al. Expression of CXCR4 predicts poor prognosis in patients with malignant melanoma. Clin Cancer Res, 2005, 11: 1835-1841.
    15. Scotton CJ, Wilson JL, Scott K, et al. Multiple actions of the chemokine CXCL12 on epithelial tumor cells in human ovarian cancer. Cancer Res, 2002, 62: 5930-5938.
    16. Burger JA, Tsukada N, Burger M, et al. Blood-derived nurse-like cells protect chronic lymphocytic leukemia B cells from spontaneous apoptosis through stromal cell-derived factor-1. Blood, 2000, 96: 2655-2663.
    17. Damiano JS, Cress AE, Hazlehurst LA, et al. Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood, 1999, 93: 1658-1667.
    18. Wang J, Wang J, Dai J, et al. A glycolytic mechanism regulating an angiogenic switch in prostate cancer. Cancer Res, 2007, 67: 149-159.
    19. Salvucci O, Yao L, Villalba S, et al. Regulation of endothelial cell branching morphogenesis by endogenous chemokine stromal-derived factor-1. Blood, 2002, 99: 2703-2711.
    20. Orimo A, Gupta PB, Sgroi DC, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell, 2005, 121: 335-348.
    21. Jin DK, Shido K, Kopp HG, et al. Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+hemangiocytes. Nat Med, 2006, 12: 557-567.
    22. Hattori K, Heissig B, Tashiro K, et al. Plasma elevation of stromal cell-derived factor-1 induces mobilization of mature and immature hematopoietic progenitor and stem cells. Blood, 2001, 97: 3354-3360.
    23. Bachelder RE, Wendt MA, Mercurio AM. Vascular endothelial growth factor promotes breast carcinoma invasion in an autocrine manner by regulating the chemokine receptor CXCR4. Cancer Res, 2002, 62: 7203-7206.
    24. Glodek AM, Honczarenko M, Le Y, et al. Sustained activation of cell adhesion is a differentially regulated process in B lymphopoiesis. J Exp Med, 2003, 197: 461-473.
    25. Sethi T, Rintoul RC, Moore SM, et al. Extracellular matrix proteins protect small cell lung cancer cells against apoptosis: a mechanism for small cell lung cancer growth and drug resistance in vivo. Nat Med, 1999, 5: 662-668.
    26. Hartmann TN, Burger JA, Glodek A, et al. CXCR4 chemokine receptor and integrin signaling co-operate in mediating adhesion and chemoresistance in small cell lung cancer (SCLC) cells. Oncogene, 2005, 24: 4462-4471.
    27. Samara GJ, Lawrence DM, Chiarelli CJ, et al. CXCR4-mediated adhesion andMMP-9 secretion in head and neck squamous cell carcinoma, Cancer Lett, 2004, 214: 231-241.
    28. Spiegel A, Kollet O, Peled A, et al. Unique SDF-1-induced activation of human precursor-B ALL cells as a result of altered CXCR4 expression and signaling. Blood, 2004, 103: 2900-2907.
    29. Heissig B, Hattori K, Friedrich M, et al. Angiogenesis: vascular remodeling of the extracellular matrix involves metalloproteinases. Curr Opin Hematol, 2003, 10: 136-141.
    30. Petit I, Goichberg P, Spiegel A, et al. Atypical PKC-z regulates SDF-1-mediated migration and development of human CD34+progenitor cells. J Clin Invest, 2005, 115: 168-176.
    31. Tang CH, Tan TW, Fu WM, et al. Involvement of matrix metalloproteinase-9 in stromal cell-derived factor-1/CXCR4 pathway of lung cancer metastasis. Carcinogenesis, 2008, 29: 35-43.
    32. Taki M, Higashikawa K, Yoneda S, et al. Up-regulation of stromal cell-derived factor-1 alpha and its receptor CXCR4 exrpession accompanied with epithelial-mesenchymal transition in human oral squamous cell carcinoma. Oncol Rep, 2008, 19: 993-998.
    33. Muller A, Homey B, Soto H, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature, 2001, 410: 50-56.
    34. Allinen M, Beroukhim R, Cai L, et al. Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell, 2004, 6: 17-32.
    35. Schimanski CC, Bahre R, Gockel I, et al. Dissemination of hepatocellular carcinoma is mediated via chemokine receptor CXCR4. Br J Cancer, 2006, 95: 210-217.
    36. Hu J, Deng X, Bian X, et al. The expression of functional chemokine receptor CXCR4 is associated with the metastatic potential of human nasopharyngeal carcinoma. Clin Cancer Res, 2005, 11: 4658-4665.
    37. De Falco V, Guarino V, Avilla E, et al. Biological Role and Potential Therapeutic Targeting of the Chemokine Receptor CXCR4 in Undifferentiated Thyroid Cancer. Cancer Res, 2007, 67: 11821-11829.
    38. Phillips RJ, Burdick MD, Lutz M, et al. The stromal derived factor-1/CXCL12-CXC chemokine receptor 4 biological axis in non-small cell lung cancer metastases. Am J Respir Crit Care Med, 2003, 167: 1676-686.
    39. Meier R, Muhlethaler-Mottet A, Flahaut M, et al. The chemokine receptor CXCR4 strongly promotes neuroblastoma primary tumor and metastatic growth, but not invasion. PLoS ONE, 2007, 2: e1016.
    40. Sato N, Matsubayashi H, Fukushima N, et al. The chemokine receptor CXCR4 is regulated by DNA methylation in pancreatic cancer. Cancer Biol Ther, 2005, 4: 70-76.
    41. Galinska-Rakoczy A, Wawro B, Strzelecka-Golaszewska H, et al. New aspects of the spontaneous polymerization of actin in the presence of salts. J Mol Biol, 2009, 387:869-882.
    42. Pufe T, Harde V, Petersen W, et al. Vascular endothelial growth factor (VEGF) induces matrix metalloproteinase expression in immortalized chondrocytes. J Pathol, 2004, 202: 367-374.
    43. Lakka SS, Gondi CS, Yanamandra N, et al. Inhibition of cathepsin B and MMP-9 gene expression in glioblastoma cell line via RNA interference reduces tumor cell invasion, tumor growth and angiogenesis. Oncogene, 2004, 23: 4681-4689.
    44. Kondraganti S, Mohanam S, Chintala SK, et al. Selective suppression of matrix metalloproteinase-9 in human glioblastoma cells by antisense gene transfer impairs glioblastoma cell invasion. Cancer Res, 2000, 60: 6851-6855.
    45. Hong X, Jiang F, Kalkanis SN, et al. SDF-1 and CXCR4 are up-regulated by VEGF and contribute to glioma cell invasion. Cancer Lett, 2006, 236: 39-45.
    46. Cai J, Jiang WG, Ahmed A, et al. Vascular endothelial growth factor-induced endothelial cell proliferation is regulated by interaction between VEGFR-2, SH-PTP1 and eNOS. Microvasc Res, 2006, 71: 20-31.
    47. Koch AE, Polverini PJ, Kunkel SL, et al. Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science, 1992, 258: 1798-1801.
    48. Li A, Dubey S, Varney ML, et al. IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J Immunol, 2003, 170: 3369-3376.
    49. Brat DJ, Bellail AC, Van Meir EG. The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. J Neurooncol, 2005, 7: 122-133.
    50. Bancroft CC, Chen Z, Dong G, et al. Coexpression of proangiogenic factors IL-8 and VEGF by human head and neck squamous cell carcinoma involves coactivation by MEK-MAPK and IKK-NF-κB signal pathways. Clin Cancer Res, 2001, 7: 435-442.
    51. Dina CL, Claudia PM, Carmen T, et al. Different signalling pathways regulate VEGF and IL-8 expression in breast cancer: implications for therapy. Eur J Cancer,2004, 40: 2509-2518.
    52. Ganju RK, Brubaker SA, Meyer J, et al. The alpha-chemokine, stromal cell-derived factor-1alpha, binds to the transmembrane G-protein-coupled CXCR-4 receptor and activates multiple signal transduction pathways. J Biol Chem, 1998, 273: 23169-23175.
    53. Wakabayashi K, Kambe F, Cao X, et al. Inhibitory effects of cyclosporin A on calcium mobilization-dependent interleukin-8 expression and invasive potential of human glioblastoma U251MG cells. Oncogene, 2004, 23: 6924-6932.
    54. Yang SX, Chen JH, Jiang XF, et al. Activation of chemokine receptor CXCR4 in malignant glioma cells promotes the production of vascular endothelial growth factor. Biochem Biophys Res Commun, 2005, 335: 523-528.
    55. Ping YF, Yao XH, Chen JH, et al. The anti-cancer compound Nordy inhibits CXCR4-mediated production of IL-8 and VEGF by malignant human glioma cells. J Neurooncol, 2007, 84: 21-29.
    1. Christofori G. New signals from the invasive front. Nature, 2006, 441: 444-450.
    2. Norden AD, Wen PY. Glioma therapy in adults. Neurologist, 2006, 12: 279-292.
    3. Carlson MR, Pope WB, Horvath S, et al. Relationship between survival and edema in malignant gliomas:role of vascular endothelial growth factor and neuronal pentraxin 2. Clin Cancer Res, 2007, 3: 2592-2598.
    4. Bian XW, Chen JH, Jiang XF, et al. Angiogenesis as an immunopharmacologic target in inflammation and cancer. Int Immunopharmacol, 2004, 4: 1537-1547.
    5. Hennig R, Ding XZ, Tong WG, et al. 5 -Lipoxygenase and leukotriene B (4) receptor areexpressed in human pancreatic cancers but not inpancreatic ducts in normal tissue. Am J Pathol, 2002, 161: 421-428.
    6. Chen X, Wang S, Wu N, et al. Overexpression of 5-lipoxygenase in rat and human esophageal adenocarcinoma, and inhibitory effects of zileuton and celecoxib on carcinogenesis. Clin Cancer Res, 2004, 10: 6703-6709.
    7. Ohd JF, Nielsen CK, Campbell J, et al. Expression of the leukotriene D4 receptor CysLT1, COX-2, and other cell survival factors in colorectal adenocarcinomas. Gastroenterology, 2003, 124: 57-70.
    8. Romano M, Catalano A, Nutini M, et al. 5-Lipoxygenase regulates malignant mesothelial cell survival: involvement of vascular endothelial growth factor. FASEB J, 2001, 15: 2326-2336.
    9. Walker JL, Loscalzo J, Zhang YY. 5-Lipoxygenase and human pulmonary artery endothelialcell proliferation. Am J Physiol Heart Circ Physiol, 2002, 282: H585-593.
    10. Schroeder CP, Yang P, Newman RA, et al. Simultaneous inhibition of COX-2 and 5-LOX activities augments growth arrest and death of premalignant and malignant human lung cell lines. J Exp Ther Oncol, 2007, 6: 183-192.
    11. Rene H, Paul G, Sambasvia, et al. 5-Lipoxygenase,a marker for early pancreatic intraepithelial neoplastic lesions. Cancer Res, 2005, 65: 6011-6016.
    12. Ikemoto S, Sugimura K, Kuratukuri K, et al. Antitumor effects of lipoxygenase inhibitors on murine bladder cancer cell line (MBT-2). Anticancer Res, 2004, 24: 733-736.
    13. Tong WG, Ding XZ, Adrian TE. Themechanisms of lipoxygenase inhibitor -induced apoptosis in human breast cancer cells. Biochem Biophys Res Commun, 2002, 296: 942-948.
    14. Matsuyama M, Hayama T, Funao K, et al. Overexpression of cysteinyl LT1 receptor in prostate cancer and CysLT1R antagonist inhibits prostate cancer cell growth through apoptosis. Oncol Rep, 2007, 18: 99-104.
    15. Gczginci MH, Timmcrmann BN. A short synthetic route to nordihydroguaiaretic acid (NDGA) and its stereoisomer using Ti-induced carbonyl coupling reaction. Tetrahedron Lett, 2001, 42: 6083-6085.
    16. Moody TW, Leyton J, Martinez A, et al. Lipoxygenase inhibitors prevent lung arcinogenesis and inhibit non-small cell lung cancer growth. Exp Lung Res, 1998, 24: 617-628.
    17. Wilson DE, DiGianfilippo A, Ondrey FG, et al. Effects of nordihydroguaiaretic acid on cultured rat and human glioma cell proliferation. J Neurosurg, 1989, 71: 551-557.
    18.陈飞兰,张华蓉,卞修武,等。诺帝对大鼠C6脑胶质瘤的诱导分化治疗作用及对信号转导分子STAT3和p-STAT3蛋白表达的影响。中华神经外科杂志,2005,21:359-362。
    19. Chen JH, Bian XW, Yao XH, et al. Nordy, a synthetic lipoxygenase inhibitor, inhibits the expression of formylpeptide receptor (FPR) and induces differentiation of malignant glioma cells. Biochem Biophys Res Commun, 2006, 342: 1368-1374.
    20.刘斌,米粲,卞修武,等。Nordy对人腺泡型横纹肌肉瘤细胞系PLA-802的诱导分化作用。临床与实验病理学杂志,2006, 22: 336-339, 343。
    21. Bian XW, Xu JP, Ping YF, et al. Unique proteomic features induced by a potential anti-glioma agent, Nordy (dl-nordihydroguaiaretic acid), in glioma cells. Proteomics, 2008, 8: 484-494.
    22.姚小红,平轶芳,卞修武,等。诺帝对人恶性胶质瘤细胞甲酰化肽受体表达及其活化后促增殖和血管生成因子产生的影响。中华医学杂志,2007,87:479-484。
    23. Chen JH, Yao XH, Gong W, et al. A novel lipoxygenase inhibitor Nordy attenuates malignant human glioma cell responses to chemotactic and growth stimulating factors. J Neurooncol, 2007, 84: 223-231.
    24.刘宏,卞修武,陈代伦,等。诺帝对人恶性胶质瘤裸鼠原位移植瘤FPR、VEGF表达的影响及意义。中国微侵袭神经外科杂志,2007,12:72-73。
    25. Zhao J, Zhao Y, Chen W, et al. The differentiation-inducing effect of Nordy on HPV-16 subgenes-immortalized human endocervical cells H8. Anticancer Drugs, 2008, 19: 713-719.
    26. Bian XW, Jiang XF, Chen JH, et al. Increased angiogenic capabilities of endothelial cells from microvessels of malignant human gliomas. Int Immunopharmacol, 2006, 6: 90-99.
    27.宋文先,卞修武,蒋雪峰,等。诺帝抑制胃癌细胞系SGC-7901血管生成因子表达的实验观察。临床消化病杂志,2006,18:145-147。
    28.白家驷,史景泉,郑江,等。诺帝对体外内皮细胞三维成型的抑制作用。第三军医大学学报,2007,29:1190-1192。
    29.张华蓉,陈飞兰,徐承平,等。诺帝对血管内皮生长因子诱导的人脐血源性内皮祖细胞功能的影响。药学学报,2008,43:133-137。
    30. Noh DY, Ahn SJ, Lee RA, et al, Overexpression of peroxiredoxin in human breast cancer. Anti cancer Res, 2001, 21: 2085-2090.
    31. Moriyama K, Yahara I. Human CAP1 is a key factor in the recycling of cofilin and actin for rapid actin turnover. J Cell Sci, 2002, 115: 1591-1601.
    32. Thompson JE, Hopkins MT, Taylor C, et al. Regulation of senescence by eukaryotic translation initiation factor 5A: implications for plant growth and development.Trends Plant Sci, 2004, 9: 174-179.
    33. Aley PK, Wilkinson JA, Bauer CC, et al. Hypoxic remodelling of Ca(2+) signalling in proliferating human arterial smooth muscle. Mol Cell Biochem, 2008, 318: 101-108.
    1. Furth J, Kahn MC. The transmission of leukaemia of mice with a single cell. Am J Cancer, 1937, 31: 276-282.
    2. Bruce WR, Van der Gaag H. A quantitative assay for the number of murine lymphoma cellscapable of proliferation in vivo. Nature, 1963, 199: 79-80.
    3. Becker AJ, McCulloch EA, Till JE. Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature, 1963, 197: 452-454.
    4. Buick RN, Till JE, McCulloch EA. Colony assay for proliferative blast cells circulating in myeloblastic leukaemia. Lancet, 1977, 1: 862-863.
    5. Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 1994, 367: 645-648.
    6. Al-Hajj M, Wicha MS, Benito-Hernande Z, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA, 2003, 100: 3983-3988.
    7. Singh SK, Wu Q, Mclendon RE, et al. Identification of human brain tumour initiating cells. Nature, 2004, 432: 396-401.
    8. O’Brien CA, Pollett A, Gallinger S, et al. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 2007, 445: 106-110.
    9. Schatton T, Murphy GF, Frank NY, et al. Identification of cells initiating human melanomas. Nature, 2008, 451: 345-349.
    10. Kucia M, Reca R, Miekus K, et al. Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: pivotal role of the SDF-1–CXCR4 axis. Stem Cells, 2005, 23: 879-894.
    11. Bao S, Wu Q, Mclendon RE, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature, 2006, 444:756-760.
    12. Liu G, Yuan X, Zeng Z, et al. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer, 2006, 5: 67-78.
    13. Bao S, Wu Q, Sathornsumetee S, et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res, 2006, 66: 7843-7848.
    14. Yao XH, Ping YF, Chen JH, et al. Glioblastoma stem cells produce vascular endothelial growth factor by activation of formylpeptide receptor (FPR). J Pathol, 2008, 215: 369-376.
    15. Ehtesham M, Mapara KY, Stevenson CB, et al. CXCR4 mediates the proliferation of glioblastoma progenitor cells. Cancer Lett, 2009, 274: 305-312.
    16. Ow K, Delprodo W, Fisher R, et al. Relationship between expression of the KAII metastasis suppressor and other markers of advanced bladder cancer. J Pathol, 2000, 191: 39-47.
    17. Cooper R, Sarioglu S,Sokemen S, et al. Glucose transport-1(glut-1):a potential marker of prognosis in rectal carcinoma. Br J Cancer, 2003, 89: 870-876.
    18. Yang XH, Wu QL, Yu XB, et al. Nestin exrpession in different tumours and its relevance to malignant grade. J Clin Pathol, 2008, 61: 467-473.
    19. Strojnik T, Rosland GV, Sakariassen PO, et al. Neural stem cells marker, nestin andmusashi proteins, in the progression of human glioma: correlation of nestin with prognosis of patient survival. Sur Neurol, 2007, 68: 133-144.
    20. Chinnaiyan P, Wang M, Rojiani AM, et al. The prognostic value of nestin expression in newly diagnosed glioblastoma: report from the radition therapy oncolocy group. Radiat Oncol, 2008, 3: 32.
    21. Yin AH, Miraglia S, Zanjani ED, et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood, 1997, 90: 5002-5012.
    22. Dell’Albani P. Stem cell markers in glioma. Neurochem Res, 2008, 33: 2407-2415.
    23. Rebetz J, Tian D, Persson A, et al. Glial progenitor-like phenotype in low-grade glioma and enhanced CD133-exrpession and neuronal lineage differentiation potential in high-grade glioma. PLoS ONE, 2008, 3: e1936.
    24. Zeppernick F, Ahmadi R, Campos B, et al. Stem cell marker CD133 affects clinical outcome in glioma patients. Clin Cancer Res, 2008, 13: 123-129.
    25. Thon N, Damianoff K, Hegermann J, et al. Presence of pluripotent CD133(+) cells correlates with malignancy of gliomas. Mol Cell Neurosci, 2008, [Epub ahead of print] PMID:18761091.
    26. Hirschmann JC, Foster AE, Wulf GG, et al. A distinct "side population" of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA, 2004, 101: 14228-14233.
    27. Kondo T, Setoguchi T, Taga T. Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Natl Acad Sci USA, 2004, 101: 781-786.
    28. Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells. Nature, 2004, 432: 396-401.
    29. Phillips TM, McBride WH, Pajonk F. The response of CD24(-/low)/CD44+ breast cancer initiating cells to radiation. J Natl Cancer Inst, 2006, 98: 1777-1785.
    30. Yang ZF, Ho DW, Ng MN, et al. Significance of CD90+ Cancer Stem Cells in Human Liver Cancer. Cancer Cell, 2008, 13: 153-166.
    31. Pellegatta S, Poliani PL, Corno D, et al. Neurospheres enriched in cancer stem-like cells are highly effective in eliciting a dendritic cell-mediated immune response against malignant gliomas. Cancer Res, 2006, 66: 10247-10252.
    32. Zhou ZH, Ping YF, Yu SC, et al. A novel approach to the identification and enrichmentof cancer stem cells from a cultured human glioma cell line. Cancer Lett, 2009, DOI:
    10.1016/j.canlet.2009.02.033.
    33. Yu SC, Bian XW. Enrichment of cancer stem cells based on heterogeneity of invasiveness. Stem Cell Rev, 2008, DOI: 10.1007/s12015-008-9047-8.
    34.余时沧,易良,周志华,等。应用长春新碱分离与鉴定U87细胞系中的GSCs。癌症,2007,26:1388-1391。
    35. Yu F, Yao H, Zhu P, et al. Let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell, 2007, 131: 1109-1123.
    36. Yu SC, Ping YF, Yi L, et al. Isolation and characterization of cancer stem cells from a human glioblastoma cell line U87. Cancer Lett, 2008, 265: 124-134.
    37. Fomchenko EI, Holland EC. Stem cells and brain cancer. Exp Cell Res, 2005, 306: 323-329.
    38. Lee J, Son MJ, Woolard K, et al. Epigenetic-Mediated Dysfunction of the Bone Morphogenetic Protein Pathway Inhibits Differentiation of glioblastoma-initiating cells. Cancer Cell, 2008: 13, 69-80.
    39. Yi L, Zhou ZH, Ping YF, et al. Isolation and characterization of stem cell-like precursor cells from primary human anaplastic oligoastrocytoma. Modern Pathol, 2007, 20: 1061-1068.
    40. Kang SK, Park JB, Cha SH. Multipotent, dedifferentiated cancer stem-like cells from brain gliomas. Stem Cells Dev, 2006, 15: 423-435.
    41. Kondo T, Setoguchi T, Taga T. Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Natl Acad Sci USA, 2004, 101: 781-786.
    42. Norden AD, Wen PY. Glioma therapy in adults. Neurologist, 2006, 12: 279-292.
    43. Bao S, Wu Q, Li Z, et al. Targeting cancer stem cells through L1CAMsuppresses glioma growth. Cancer Res, 2008, 68: 6043-6048.
    44. Salmaggi A, Boiardi A, Gelati M, et al. Glioblastoma-derived tumorospheres identify a population of tumor stem-like cells with angiogenic potential and enhanced multidrug resistance phenotype. Glia, 2006, 54: 850-860.
    45. Eramo A, Ricci-Vitiani L, Zeuner A, et al. Chemotherapy resistance of glioblastoma stem cells. Cell Death Different, 2006, 13: 1238-1241.
    1. Folkman J. Fighting cancer by attacking its blood supply. Sci Am, 1996, 275: 150-154.
    2. Bao S, Wu Q, Sathornsumetee S, et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res, 2006, 66: 7843-7848.
    3. Oka N, Soeda A, Inagaki A, et al. VEGF promotes tumorigenesis and angiogenesis or human glioblastoma stem cells. Biochem Biophys Res Commun, 2007, 360: 553-559.
    4. Yao XH, Ping YF, Chen JH, et al. Glioblastoma stem cells produce vascular endothelial growth factor by activation of formylpeptide receptor (FPR). J Pathol, 2008, 215: 369-376.
    5.平轶芳,姚小红,卞修武,等。人胶质瘤干细胞趋化因子受体CXCR4活化促进血管生成的作用。中华病理学杂志,2007,36: 179-183。
    6. Shen R, Ye Y, Chen L, et al. Precancerous stem cells can serve as tumor vasculogenic progenitors. PLoS ONE, 2008, 3: e1652.
    7. Quintana E, Shackleton M, Sabel MS, et al. Efficient tumour formation by single human melanoma cells. Nature, 2008, 456: 593-599.
    8. Rehimi R,Khalida N, Yusuf F, et al. Stromal-derived factor-1 (SDF-1) expression during early chick development. Int J Dev Biol, 2008, 52: 87-92.
    9. Knaut H, Werz C, Geisler R, et al. A zebrafish homologue of the chemokine receptor Cxcr4 is a germ-cell guidance receptor. Nature, 2003, 421: 279-282.
    10. Guo Y, Hangoc G, Bian H, et al. SDF-1/CXCL12 enhances survival and chemotaxis of murine embryonic stem cells and production of primitive and definitive hematopoietic progenitor cells. Stem Cells, 2005, 23: 1324-1332.
    11. Kucia M, Reca R, Miekus K, et al. Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: pivotal role of the SDF-1–CXCR4 axis. Stem Cells, 2005, 23: 879-894.
    12. Tavor S, Petit I, Porozov S, et al. CXCR4 regulates migration and development of human acute myelogenous leukemia stem cells in transplanted NOD/SCID mice. Cancer Res, 2004, 64: 2817-2824.
    13. Krohn A, Song YH, Muehlberg F, et al. CXCR4 receptor positive spheroid formingcells are responsible for tumor invasion in vitro. Cancer Lett, 2009, [Epub ahead of print] PMID: 19286309.
    14. Hermann PC, Huber SL, Herrler T, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell, 2007, 1: 313-323.
    15. Salmaggi A, Bolardi A, Gelati M,et al. Glioblastoma-derived tumorospheres identify a population of tumor stem-like cells with angiogenic potential and enhanced multidrug resistance phenotype. Glia, 2006, 54: 850-860.
    16. Liu G, Yuan X, Zeng Z, et al. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer, 2006, 5: 67.
    17. Ehtesham M, Mapara KY, Stevenson CB, et al. CXCR4 mediates the proliferation of glioblastoma progenitor cells. Cancer Lett, 2009, 274: 305-312.
    18. Cheng LC, Tavazoie M, Doetsch F. Stem cells: from epigenetics to microRNAs. Neuron, 2005, 46: 363-367.
    19. Bushati N,Cohen SM. microRNA Functions. Annu Rev Cell Dev Biol, 2007, 23: 175-205.
    20. Ruvkun G. Clarifications on miRNA and cancer. Science, 2006, 311: 36-37.
    21. Yu F, Yao H, Zhu P, et al. Let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell, 2007, 131: 1109-1123.
    22. Liang Z, Wu H, Reddy S, et al. Blockade of invasion and metastasis of breast cancer cells via targeting CXCR4 with an artificial microRNA. Biochem Biophys Res Commun, 2007, 363: 542-546.
    23. Voorhoeve PM, Sage CI, Schrier M, et al. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell, 2006, 124: 1169-1181.
    24. Place RF, Li LC, Pookot D, et al. MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci USA, 2008, 105: 1608-1613.
    25. Bian XW, Wang QL, Xiao HL, et al. Tumor microvascular architecture phenotype (T-MAP) as a new concept for studies of angiogenesis and oncology. J Neurooncol, 2006, 80: 211-213.
    26. Bian XW, Chen JH, Jiang XF, et al. Angiogenesis as an immunopharmacologic target in inflammation and cancer. Int Immunopharmacol, 2004, 4: 1537-1547.
    27. Bian XW, Jiang XF, Chen JH, et al. Increased angiogenic capabilities of endothelial cells from microvessels of malignant human gliomas. Int Immunopharmacol, 2006, 6: 90-99.
    28. Greenberg JI, Shields DJ, Barillas SG, et al. A role for VEGF as a negative regulator of pericyte function and vessel maturation. Nature, 2008, 456: 809-813.
    29. Nikolova G, Strilic B, Lammert E. The vascular niche and its basement membrane. Trends Cell Biol, 2007, 17: 19-25.
    30. Calavrese C, Poppleton H, Kocak M, et al. A perivascular niche for brain tumor stem cells. Cancer cell, 2007, 11: 69-82.
    31. Gilbertson RJ, Rich JN. Making a tumor’s bed: glioblastoma stem cells and the vascular niche. Nat Rev Cancer, 2007, 7: 733-736.
    1. Norden AD, Wen PY. Glioma therapy in adults. Neurologist, 2006, 12: 279-292.
    2. Liu G, Yuan X, Zeng Z, et al. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer, 2006, 5: 67.
    3. Salmaggi A, Boiardi A, Gelati M, et al. Glioblastoma-derived tumorospheres identify a population of tumor stem-like cells with angiogenic potential and enhanced multidrug resistance phenotype. Glia, 2006, 54: 850-860.
    4. Hirschmann JC, Foster AE, Wulf GG, et al. A distinct "side population" of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA, 2004, 101: 14228-14233.
    5. Dean M, Fojo T, Bate S. Tumour stem cells and drug resistance. Nat Rev Cancer, 2005, 5: 275-284.
    6. Bao S, Wu Q, McLendon RE, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature, 2006, 444: 756-760.
    7. Ropolo M, Daga A, Griffero F, et al. Comparative Analysis of DNA Repair in Stem and Nonstem Glioma Cell Cultures. Mol Cancer Res, 2009, 7: 383-392.
    8. Fricker SP, Anastassov V, Cox J, et al. Characterization of the molecular pharmacology of AMD3100: a specific antagonist of the G-protein coupled chemokine receptor, CXCR4. Biochem Pharmacol, 2006, 72: 588-596.
    9. De Clercq E. The AMD3100 story: The path to the discovery of a stem cell mobilizer (Mozobil). Biochem Pharmacol, 2009 [in press], doi:10.1016/j.bcp.2008.12.014.
    10. Cashen A, Lopez S, Gao F, et al. A phase II study of plerixafor (AMD3100) plus G-CSF for autologous hematopoietic progenitor cell mobilization in patients with Hodgkin lymphoma. Biol Blood Marrow Transplant, 2008, 14: 1253-1261.
    11. Tavor S, Eisenbach M, Jacob-Hirsch J, et al. The CXCR4 antagonist AMD3100 impairs survival of human AML cells and induces their differentiation. Leukemia, 2008, 22: 2151-5158.
    12. Azab AK, Runnels JM, Pitsillides C, et al. The CXCR4 inhibitor AMD3100 disrupts the interaction of multiple myeloma cells with the bone marrow microenvironment and enhances their sensitivity to therapy. Blood, 2009 [Epub ahead of print] PMID: 19139079.
    13. Nervi B, Ramirez P, Rettig MP, et al. Chemosensitization of AML following mobilization by the CXCR4 antagonist AMD3100. Blood, 2008 [Epub ahead of print] PMID: 19050309.
    14. Burger JA, Stewart DJ. CXCR4 chemokine receptor antagonists: perspectives in SCLC. Expert Opin Investig Drugs, 2009, 18: 481-490.
    15. Rubin JB, Kung AL, Klein RS,et al. A small-molecule antagonist of CXCR4 inhibits intracranial growth of primary brain tumors. Proc Natl Acad Sci USA, 2003, 100: 13513-13518.
    16. Yu F, Yao H, Zhu P, et al. Let -7 regulates self renewal and tumorigenicity of breast cancer cells. Cell, 2007, 131: 1109-1123.
    17. Yu SC, Ping YF, Yi L, et al. Isolation and characterization of cancer stem cells from a human glioblastoma cell line U87. Cancer Lett, 2008, 265: 124-134.
    1. Vandrcappellen J, Van Damme J, Struyf S. The role of CXC chemokines and their receptors in cancer. Cancer Lett, 2008, 267: 226-244.
    2. Luster AD. Chemokines-chemotactic cytokines that mediate inflammation. Neng J Med, 1998, 338: 436-445.
    3. Meijer J, Ogink J, Roos E. Effect of the chemokine receptor CXCR7 on proliferation of carcinoma cells in vitro and in vivo. Br J Cancer, 2008, 99: 1493-501.
    4. Strieter RM, Belperio JA, Phillips RJ, et al. CXC chemokines in angiogenesis of cancer. Semin Cancer Biol, 2004, 14: 195-200.
    5. Eck M, Schmausser B, Scheller K, et al. Pleiotropic effects of CXC chemokines in gastric carcinoma: differences in CXCL8 and CXCL1 expression between diffuse and intestinal types of gastric carcinoma. Clin Exp Immunol, 2003, 134: 508-515.
    6. Waugh DJ, Wilson C. The interleukin-8 pathway in cancer. Clin Cancer Res, 2008, 14: 6735-6741.
    7. Shintani S, Ishikawa T, Nonaka T, et al. Growth-regulated oncogene-1 expression is associated with angiogenesis and lymph node metastasis in human oral cancer. Oncology, 2004, 66: 316-322.
    8. Dimberg J, Dienus O, L?fgren S, et al. Expression and gene polymorphisms of the chemokine CXCL5 in colorectal cancer patients. Int J Oncol, 2007, 31: 97-102.
    9. Gijsbers K, Gouwy M, Struyf S, et al. GCP-2/CXCL6 synergizes with other endothelialcell-derived chemokines in neutrophil mobilization and is associated with angiogenesis in gastrointestinal tumors. Exp Cell Res, 2005, 303: 331-342.
    10. Van Coillie E, Van Aelst I, Wuyts A, et al. Tumor angiogenesis induced by granulocyte chemotactic protein-2 as a countercurrent principle. Am J Pathol, 2001, 9: 1405-1414.
    11. Heidemann J, Ogawa H, Dwinell MB, et al. Angiogenic effects of interleukin-8 (CXCL8) in human intestinal microvascular endothelial cells are mediated by CXCR2. J Biol Chem, 2003, 278: 8508–8515.
    12. Keane MP, Belperio JA, Xue YY, et al. Depletion of CXCR2 inhibits tumor growth and angiogenesis in a murine model of lung cancer. J Immunol, 2004, 172: 2853-2860.
    13. Kryczek I, Lange A, Mottram P, et al. CXCL12 and vascular endothelial growth factor synergistically induce neoangiogenesis in human ovarian cancers. Cancer Res, 2005, 65: 465-472.
    14. Darash YM, Pikarsky E, Abramovitch R, et al. Role of high expression levels of CXCR4 in tumor growth, vascularization, and metastasis. FASEB J, 2004, 18: 1240-1242.
    15. Sung B, Jhurani S, Ahn KS, et al. Zerumbone down-regulates chemokines receptor CXCR4 expression leading to inhibition of CXCL12-induced invasion of breast and pancreatic tumor cells. Cancer Res, 2008, 68: 8938-8944.
    16. Yang SX, Chen JH, Jiang XF, et al. Activation of chemokine receptor CXCR4 in malignant glioma cells promotes the production of vascular endothelial growth factor. Biochem Bioph Res Commun, 2005, 335: 523-528.
    17. Hu J, Deng X, Bian X, et al. The expression of functional chemokine receptor CXCR4 is associated with the metastatic potential of human nasopharyngeal carcinoma. Clin Cancer Res, 2005, 11: 4658-4665.
    18. Phillips RJ, Burdick MD, Lutz M, et al. The stromal derived factor-1/CXCL12-CXC chemokine receptor 4 biological axis in non-small cell lung cancer metastases. Am J Respir Crit Care Med, 2003, 167: 1676-1686.
    19. Sharpe RJ, Byers HR, Scott CF, et al. Growth inhibition of murine melanoma and human colon carcinoma by recombinant human Platelet factor 4. J Natl Cancer Inst, 1990, 82: 848-853.
    20. Aidoudi S, Bujakowska K, Kieffer N, et al. The CXC-chemokine CXCL4 interacts withintegrins implicated in angiogenesis. PLoS ONE, 2008, 3:e2657.
    21. Arenberg DA, White ES, Burdick MD, et al. Improved survival in tumor-bearing SCID mice treated with interferon-gamma-inducible protein 10 (IP-10/CXCL10). Cancer Immunol Immunother, 2001, 50: 533-538.
    22. Yang LL, Ping C, Luo S, et al. CXCL10 gene therapy efficiently inhibited the growth of cervical carcinoma based on the antiangiogenic and antiviral activity. Biotechnol Appl Biochem, 2009, PMID: 19257858.
    23. Shellenberger TD, Wang M, Gujrati M, et al. BRAK/CXCL14 is a potent inhibitor of angiogenesis and a chemotactic factor for immature dendritic cells. Cancer Res, 2004, 64: 8262-8270.
    24. Augsten M, H?ggl?f C, Olsson E, et al. CXCL14 is an autocrine growth factor for fibroblasts and acts as a multi-modal stimulator of prostate tumor growth. Proc Natl Acad Sci USA, 2009, 106: 3414-3419.
    25. Romagnani P, Annunziato F, Lasagni L, et al. Cell cycle-dependent expression of CXC chemokine receptor 3 by endothelial cells mediates angiostatic activity. J Clin Invest, 2001, 107:53-63.
    26. Yang J, Richmond A. The angiostatic activity of interferon-inducible protein-10/CXCL10 in human melanoma depends on binding to CXCR3 but not to glycosaminoglycan. Mol Ther, 2004, 9: 846-855.
    27. Lasagni L, Francalanci M, Annunziato F, et al. An alternatively spliced variant of CXCR3 mediates the inhibition of endothelial cell growth induced by IP-10, Mig, and I-TAC, and acts as functional receptor for platelet factor 4. J Exp Med, 2003, 197:1537–1549.
    1. Yoshimura T, Matsushima K, Oppenheim JJ, et al Neutrophil chemotactic factor produced by lipopolysaccharide (LPS)-stimulated human blood mononuclear leukocytes: partial characterization and separation from interleukin 1 (IL 1) [J]. J Immunol, 1987, 139(3): 788-793.
    2. Brat DJ, Bellail AC, Van Meir EG. The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis [J]. Neuro-Oncol, 2005, 7(2): 122-133.
    3. Koch AE, Polverini PJ, Kunkel SL, et al Interleukin-8 as a macrophage-derived mediator of angiogenesis [J]. Science, 1992, 258(5089): 1798-1801.
    4. Murphy C, McGurk M, Pettigrew J, et al Nonapical and cytoplasmic expression of interleukin-8, CXCR1, and CXCR2 correlates with cell proliferation and microvessel density in prostate cancer [J]. Clin Cancer Res, 2005, 11(11): 4117-4127.
    5. Lin Y, Huang R, Chen L, et al Identification of interleukin-8 as estrogen receptor-regulated factor involved in breast cancer invasion and angiogenesis by protein arrays[J]. Int J Cancer, 2004, 109(4): 507-515.
    6. Kitadai Y, Takahashi Y, Haruma K, et al Transfection of interleukin-8 increases angiogenesis and tumorigenesis of human gastric carcinoma cells in nude mice[J]. Br J Cancer, 1999, 81(4): 647-653.
    7. Lockwood CJ, Kumar P, Krikun G, et al Effects of thrombin, hypoxia, and steroids on interleukin-8 expression in decidualized human endometrial stromal cells: implications for long-term progestin-only contraceptive-induced bleeding [J]. J Clin Endocrinol Metab, 2004, 89(3): 1467-1475.
    8. Manna SK, Ramesh GT. Interleukin-8 induces nuclear transcription factor-kappaB through a TRAF6-dependent pathway [J]. J Biol Chem, 2005, 280(8): 7010-7021.
    9. Garkavtsev I, Kozin SV, Chernova O, et al The candidate tumour suppressor protein ING4 regulates brain tumour growth and angiogenesis [J]. Nature, 2004, 428(6980): 328-332.
    10. Christiana C, Ligaya BP, Yuzhuang SS, et al Interleukin-8 Differentially Regulates Migration of Tumor-Associated and Normal Human Brain Endothelial Cells [J]. Cancer Res, 2005, 65: 10347 - 10354.
    11. Bobrovnikova EV, Marjon PL, Barbash O, et al Expression of angiogenic factors vascular endothelial growth factor and interleukin-8/CXCL8 is highly responsive to ambient glutamine availability: role of nuclear factor-kappaB and activating protein-1[J]. Cancer Res, 2004, 64(14): 4858-4869.
    12. Sua WB, Changb YH, Linb WW, et al Differential regulation of interleukin-8 gene transcription by death receptor 3 (DR3) and type I TNF receptor (TNFRI) [J] .Exp Cell Res, 2006, 312 :266– 277.
    13. Nabors LB, Suswam E, Huang Y, et al Tumor necrosis factor alpha induces angiogenic factor up-regulation in malignant glioma cells: a role for RNA stabilization and HuR[J]. Cancer Res, 2003, 63(14): 4181-4187.
    14. Wakabayashi K, Kambe F, Cao X, et al Inhibitory effects of cyclosporin A on calcium mobilization-dependent interleukin-8 expression and invasive potential of human glioblastoma U251MG cells [J]. Oncogene, 2004, 23(41): 6924-6932.
    15. Choi C, Kutsch O, Park J, et al Tumor necrosis factor-related apoptosis-inducing ligand induces caspase-dependent interleukin-8 expression and apoptosis in human astroglioma cells [J]. Mol Cell Biol, 2002, 22(3): 724-736.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700