转铁蛋白靶向脂质体跨血脑屏障转导VEGF基因治疗大鼠缺血性脑卒中
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脑卒中是世界上除缺血性心脏病之外的第二大死亡原因。脑卒中在不同国家之间的发病率有所不同,并且随着年龄的增长,脑卒中的发生率也不断增加。在脑缺血发生时,动脉供应的中心区域会产生低灌注,随后在其周围区域逐渐出现由于代谢和离子紊乱所引起的功能丧失但脑组织结构仍然保持完整的缺血半暗带。只要能够及时地恢复缺血半暗带的血流再灌注,可以大大减少脑缺血所导致的功能损伤。大量的动物实验和临床病人的研究资料均表明,急性脑缺血发生后能诱导缺血区及其周围区血管保护性增生,新生血管能够增加缺血半暗区氧气和营养物质的供应,从而促进神经功能的恢复;然而,脑缺血后自体内源性促血管增殖因子表达量往往不足以诱导有效的代偿性微循环重建。因此,应用外源性促血管生成因子促进微血管增生治疗脑缺血的实验研究在近年来逐渐成为了研究热点之一。
     血管内皮生长因子(VEGF)是目前发现的最强的,也是在脑缺血实验中应用最多的促血管生成因子。在急性脑缺血发生后,VEGF在脑内呈现出上调表达,其不但具有促进血管内皮细胞增殖和促进新生血管形成的作用,而且还具有直接的神经营养、神经保护以及抗神经细胞和神经前体细胞凋亡等多种作用,是治疗脑缺血等缺血性疾病颇具前景的细胞因子。但是由于血脑屏障(BBB)的存在,其可以阻挡大分子非脂质物质进入脑内,目前的研究还只是局限于通过病毒载体携带VEGF基因,通过颅内侧脑室或者脑实质注射的方式使外源基因在脑内有所表达。这样不仅是一种有创的治疗方式,而且由于使用病毒作为载体,很容易出现病毒基因与宿主基因整合从而导致一系列的副作用。因此探索一种非病毒的基因载体,能够通过静脉注射的方式实现外源基因跨BBB在脑内的广泛性表达,成为一个新的研究方向。
     目的
     第一部分
     构建一种高效的可以携带外源基因通过静脉注射的方式,透过血脑屏障进入脑内特异性表达目的蛋白的非病毒载体。
     第二部分
     比较不同剂量的脂质体(PEGylated liposomes, PLs),脑靶向脂质体(Transferrin targeted PLs, Tf-pCMV-PLs)和脑内GFAP启动子启动的特异性表达的脑靶向脂质体Tf-pGFAP-PLs经尾静脉注射后,在脑内及周围组织的表达情况。
     第三部分
     比较有Tf靶向和无Tf靶向的脂质体在包裹VEGF治疗基因后,治疗大鼠脑缺血的疗效。
     方法
     第一部分
     通过不同比例的配比,对脂质体合成过程中油相种类和油水比例、磷脂和胆固醇比例、旋转蒸发温度、超声温度和时间进行筛选化,并且通过试剂盒检测脂质体的包封率和Tf偶联率。将合成好的包裹LacZ基因的脑靶向脂质体(Tf-pCMV-PLs)经尾静脉注射至大鼠体内,通过组织化学染色检测LacZ基因在大鼠体内的表达情况,验证合成的Tf-pCMV-PLs是否可以转运外源基因跨过血脑屏障进入脑内表达。第二部分
     将PLs低剂量组(共包含80μg pCMV-LacZ质粒)、PLs高剂量组(共包含300μg pCMV-LacZ质粒)、Tf-pCMV-PLs组(共包含80μg pCMV-LacZ质粒)、Tf-pGFAP-PLs组(共包含80μg pGFAP-LacZ质粒)和空白脂质体组分别通过尾静脉注射到大鼠体内,24 h后行RT-PCR检测脑及周围组织LacZ基因mRNA的表达情况,48 h后通过β-半乳糖苷酶检测试剂盒检测脑及周围组织β-半乳糖苷酶活性,通过组织化学染色的方法检测β-半乳糖苷酶在脑及周围组织的分布情况,并且对脑及周围组织进行HE染色评估脂质体的毒性作用。
     第三部分
     制作pMCAO模型后2 d,将108只大鼠随机分为3组,每组36只分别注射Tf-VEGF-PLs, VEGF-PLs和生理盐水。Tf-LacZ-PLs同时被注射到大鼠模型体内作为VEGF成功转入脑内的提示。注射脂质体24 h后,行RT-PCR检测不同组脑内VEGF基因mRNA的情况,48h后通过Western Blot检测不同组脑内VEGF蛋白的表达情况,并分别在大鼠脑缺血后1、7、14和21 d根据mNSS量表进行神经功能评分。大鼠脑缺血后第21d,取脑组织进行TTC染色计算不同组间的脑梗死面积;注射5%FITC-葡聚糖溶液,脑组织冰冻切片后荧光显微镜下行微血管密度计数,比较不同治疗组间血管再生情况;21d时多普勒超声检测不同组间脑血流的情况,与脑缺血前脑血流量相比后,根据百分比的高低来评估不同治疗组微血管再生后,是否对脑血流的改变产生影响。
     结果
     第一部分
     脂质体合成的最佳比例为磷脂:胆固醇为1:1;脂药比为100:1;油相种类为二氯甲烷;油水比例为4:1;旋蒸温度为30℃;超声温度为10℃;超声时间为5min,10%的海藻糖可以增加脂质体的稳定性。测得的脂质体的包封率为87.24%,Tf偶联率为69%。将Tf-pCMV-PLs通过尾静脉注射到大鼠体内后可以观察到LacZ基因在脑内及周围器官的表达。
     第二部分
     药物注射24 h后,在大鼠脑中,PLs高剂量组、Tf-pCMV-PLs组和Tf-pGFAP-PLs组均可检测到不同水平的LacZ mRNA。但是在周围组织中,包括心肝脾肾肺,只有Tf-pGFAP-PLs组未检测到LacZ mRNA。组织化学染色结果表明Tf-pGFAP-PLs可以实现外源性LacZ基因脑内的弥漫性表达,而HE染色结果说明Tf-pGFAP-PLs对大鼠脑及周围组织无明显毒性作用。
     第三部分
     24 h后VEGF基因mRNA和48h后VEGF蛋白的表达量,Tf-VEGF-PLs组显著高于VEGF-PLs组和生理盐水对照组。随着时间的推移,在脑缺血21d后,Tf-VEGF-PLs组脑缺血大鼠的mNSS评分有显著性提高,TTC染色脑梗死面积明显小于对照组,微血管密度计数显著高于对照组,同时局部脑血流量显著高于对照组。
     结论
     第一部分
     通过工艺优化可以合成携带外源基因的转铁蛋白靶向脂质体(Tf-pCMV-PLs),其可以通过静脉系统跨过血脑屏障进入脑内进行表达,为实现颅内疾病的基因治疗奠定了基础。但是外源基因的启动子仍然需要进一步地改进,减少外源基因在周围器官的非特异性表达。
     第二部分
     Tf-pGFAP-PLs组可以实现外源性LacZ跨血脑屏障的脑内特异性弥漫性表达,避免了外周组织的非特异性表达,是一种较好的外源基因脑靶向的载体,为实现颅内疾病的基因治疗奠定了实验基础。
     第三部分
     Tf-VEGF-PLs可以增加脑缺血大鼠脑内VEGF的表达量,明显的改善神经功能活动,促进新生血管再生,增加局部脑血流量,减少脑缺血面积,是一种有效地治疗大鼠脑缺血的方法。
Stroke ranks second after ischemic heart disease as a cause of death worldwide. The incidence of stroke varies among countries and increases exponentially with age. Initially after arterial occlusion, a central core of very low perfusion is surrounded by an area of dysfunction caused by metabolic and ionic disturbances but in which structural integrity is preserved (the ischemic penumbra). Depending on the rate of residual blood flow and the duration of ischemia, the penumbra will eventually be incorporated into the infarct if reperfusion is not achieved. Although thrombolysis and controlled hypothermia are an effective treatment in the acute stage, an effective treatment has not yet been established to enhance both neuroprotection and angiogenesis for the ischemic brain. Vascular endothelial growth factor (VEGF), an angiogenic growth factor, is considered a potentially useful therapeutic agent to attenuate ischemic brain injury. Previous studies have confirmed that VEGF may confer neuroprotection, promote neurogenesis and cerebral angiogenesis, accordingly improve histological and functional outcome from stroke through multiple mechanisms.
     The Blood-Brain Barrier (BBB) protects the central nervous system (CNS) from potentially harmful exogenous and endogenous molecules. Due to the poor permeability of the BBB, gene therapy drugs are difficult to cross it. In addition, most current gene vectors do not cross the BBB after an intra-venous(i.v.) administration and must be given via craniotomy or intracerebral injection, which are considered to be highly invasive and unable to deliver exogenous genes to global area of brain. Given the evident side effects of viral vectors, the goal of brain gene targeting technology pays more attention to the efficient, noninvasive and non-viral gene therapy of the brain.
     Subject
     PartⅠ
     Preparing a kind of effective non-viral transduction vector, which can deliver exogenous gene into the brain by trans-blood brain barrier.
     PartⅡ
     Comparison the expression in brains and peripheral tissues of different dosage PLs, Tf-pCNV-PLs and Tf-pGFAP-PLs, which are injected from the tail vein.
     PartⅢ
     Comparison the therapeutic effects of Tf-VEGF-PLs and VEGF-PLs to the cerebral ischemic rats.
     Material and method
     PartⅠ
     Bettering the synthetic process of liposomes by adjusting different proportion of materials, temperature of rotary evaporation and ultrasonic sound. We detected the encapsulation rate and Tf coupling rate by kit. Tf-pCMV-PLs were injected into rats via tail vein, and detected the expression of LacZ gene by histochmical staining to identify whether Tf-pCMV-PLs had delivered exogene into brain by crossing the BBB.
     PartⅡ
     PLs low-dosage group (80μg pCMV-LacZ encapsuled), PLs high-dosage group (300μg pCMV-LacZ encapsuled), Tf-pCMV-PLs group (80μg pCMV-LacZ encapsuled), Tf-pGFAP-PLs group (80μg pGFAP-LacZ encapsuled) and blank liposomes were injected into rats via tail vein. Twenty-four hours after injection, RT-PCR was proceeded to detect the transcription of LacZ gene in the brain and peripheral tissues. Forty-eight hours after injection, the activity ofβ-galactosidase was detected in the brain and peripheral tissues by theβ-galactosidase detection kit. The distribution of the expression of LacZ gene was observed by histochemical staining and the toxic effect of liposomes was evaluated by HE staining.
     PartⅢ
     Two days after pMCAO,152 rats were distributed into 3 groups randomly, and Tf-VEGF-PLs, VEGF-PLs and saline were injected. Tf-LacZ-PLs was also injected into pMCAO rats as a marker to verify VEGF had been delivered into brain. Twenty-four hours after injection, RT-PCR was proceeded to detect the transcription of VEGF gene in the brain. Forty-eight hours after injection, Western blotting was proceeded to detect the expression of VEGF protein. On the day 1,7,14 and 21, neurological function of pMCAO rats was evaluated according to the scale of mNSS. On the day 21 after cerebral ischemia, brain ischemia area was calculated by the staining of TTC. MVD was counted by injection of 5% FITC-dextran under the fluorescence microscope to compare the number of angiogenesis. On the day 21 after cerebral ischemia, LCD was used to detect the blood flow of brain among groups.
     Result
     PartⅠ
     The best proportion of synthesizing liposomes was following: phosphatides/cholesterol was 1:1, lipid/drug was 100:1, oil phrase was dichlormethane, oil/water was 4:1, temperature of rotary evaporation was 30℃, ultrasonic temperature was 10℃and duration was 5 min,10% trehalose was added to improve the stability of liposomes. The encapsulation of liposomes was 87.24%, Tf coupling rate was 69%. After the injection of Tf-pCMV-PLs into rats, an extensive expression of LacZ could be observed in the brain and peripheral tissues.
     PartⅡ
     In rat brains,24 h after injection, LacZ mRNA could be detected among PLs high-dosage group, Tf-pCMV-PLs group and Tf-pGFAP-PLs group. However, in peripheral tissues, including heart, liver, spleen, kidney and lung, only Tf-pGFAP-PLs could avoid the expression of LacZ gene. The result of histochemical staining demonstrated, Tf-pGFAP-PLs could achieve an extensive expression of LacZ gene in the brain, and the result of HE staining verified Tf-pGFAP-PLs did no harm to the brain and peripheral tissues.
     PartⅢ
     The results of RT-PCR and Western blotting demonstrated, VEGF mRNA and VEGF protein in Tf-VEGF-PLs group were significantly higher than that in VEGF-PLs group and saline control group. After 21 days of cerebral ischemia, mNSS in Tf-VEGF-PLs group was significantly increased and the ischemic area was significantly reduced. In Tf-VEGF-PLs group, the number of MVD was significantly higher than that in control group, and increased micro vessels also improve the local brain blood flow.
     Conclusion
     PartⅠ
     Tf-pCMV-PLs could be successfully prepared by the work of bettering producing technology and could trans-over the BBB to deliver exogene into the brain. This achievement made a strong foundation to realize the gene therapy of intracranial disease. Meanwhile the promoter of exogene was needed to be further refined in order to reduce the non-specific expression in peripheral tissues.
     PartⅡ
     Tf-pGFAP-PLs could realize the extensive brain-specific expression of exogene in the brain by trans-over the BBB, avoiding the non-specific expression in peripheral tissues. Tf-pGFAP-PLs was an excellent type of carrier for exogene entering into the brain.
     PartⅢ
     Tf-VEGF-PLs could increase the expression of VEGF in cerebral ischemic rat, significantly improve the neurological function, accelerate angiogenesis, increase local brain blood flow and reduce the area of cerebral ischemia. Tf-VEGF-PLs was a effective way to cure brain ischemia.
引文
1. Storkebaum E, Lambrechts D, Carmeliet P. VEGF:once regarded as a specific angiogenic factor, now implicated in neuroprotection. Bioessays.2004,26(9):943-54.
    2. Namiecinska M, Marciniak K, Nowak JZ, et al. VEGF as an angiogenic, neurotrophic, and neuroprotective factor.Postepy Hig Med Dosw.2005,59:573-83.
    3. Zhang ZG, Zhang L, Tsang W, et al. Correlation of VEGF and angiopoietin expression with disruption of blood-brain barrier and angiogenesis after focal cerebral ischemia. J Cereb Blood Flow Metab.2002,22(4):379-92.
    4. Lennmyr F, Ata KA, Funa K, et al. Expression of vascular endothelial growth factor (VEGF) and its receptors (Flt-1 and Flk-1) following permanent and transient occlusion of the middle cerebral artery in the rat. J Neuropathol Exp Neurol.1998,57(9):874-82.
    5. Beck H, Acker T, Puschel AW, et al. Cell type-specific expression of neuropilins in an MCA-occlusion model in mice suggests a potential role in post-ischemic brain remodeling. J Neuropathol Exp Neurol.2002,61(4):339-50.
    6. Bao WL, Lu SD, Wang H, et al. Intraventricular vascular endothelial growth factor antibody increases infarct volume following transient cerebral ischemia. Zhongguo Yao Li Xue Bao. 1999,20(4):313-8.
    7. Harrigan MR, Ennis SR, Masada T, et al. Intraventricular infusion of vascular endothelial growth factor promotes cerebral angiogenesis with minimal brain edema. Neurosurgery.2002, 50(3):589-98.
    8. Sun Y, Jin K, Xie L, et al. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia.J Clin Invest.2003,111(12):1843-51.
    9. Kaya D, Gursoy-Ozdemir Y, Yemisci M, et al. VEGF protects brain against focal ischemia without increasing blood-brain permeability when administered intracerebroventricularly. J Cereb Blood Flow Metab.2005,25(9):1111-8.
    10. Yan Q, Matheson C, Sun J, et al. Distribution of intracerebral ventricularly administered neurotrophins in rat brain and its correlation with Trk receptor expression. Exp Neurol. 1994,127(1):23-26
    11. Pardridge WM. Targeting neurotherapeutic agents through the blood-brain barrier. Arch Neurol.2002,59(1):35-40.
    12.栗世芳,王任直,李桂林,等.重组1、2型腺相关病毒转导增强绿色荧光蛋白在大鼠脑的表达.《中华医学杂志》.2005,85(8):542-6.
    13. Pardridge, WM. Drug and gene delivery to the brain:the vascular route. Neuron.2002,36(4): 555-8.
    14. Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nature Reviews. Genetics.2003,4(5),
    15. Bostanci, A. Blood test flags agent in death of penn subject. Science,2002(295),604-5.
    16. Visser CC, Stevanovic S, Voorwinden LH, et al. Targeting liposomes with protein drugs to the blood-brain barrier in vitro. Eur J Pharm Sci.2005,25(2-3):299-305.
    17. Omori N, Maruyama K, Jin G, et al. Targeting of post-ischemic cerebral endothelium in rat by liposomes bearing polyethylene glycol-coupled transferrin. Neurol Res.2003,25(3): 275-9.
    18. Da Cruz MT, Cardoso AL, de Almeida LP, et al. Tf-lipoplex-mediated NGF gene transfer to the CNS:neuronal protection and recovery in an excitotoxic model of brain injury. Gene Ther.2005,12(16):1242-52.
    19. Doi A, Kawabata S, Iida K, et al. Tumor-specific targeting of sodium borocaptate (BSH) to malignant glioma by transferrin-PEG liposomes:a modality for boron neutron capture therapy. J Neurooncol.2008,87(3):287-94.
    1. Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet.2003,4(5):346-58.
    2. Jooss, K. and N. Chirmule. Immunity to adenovirus and adeno-associated viral vectors: implications for gene therapy. Gene Ther,2003,10(11):955-63.
    3. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science,2003,302(5644): 415-9.
    4. Zhang Y, Calon F, Zhu C, et al. Intravenous nonviral gene therapy causes normalization of striatal tyrosine hydroxylase and reversal of motor impairment in experimental parkinsonism. Hum Gene Ther.2003,14(1):1-12.
    5. Schnyder A, Huwyler J. Drug transport to brain with targeted liposomes. NeuroRx.2005,2(1): 99-107.
    6. Monnard PA, Oberholzer T, Luisi P. Entrapment of nucleic acids in liposomes. Biochim Biophys Acta.1997,1329(1):39-50.
    7. Kim NH, Park HM, Chung SY, et al. Immunoliposomes carrying plasmid DNA:preparation and characterization. Arch Pharm Res.2004,27(12):1263-9.
    8. Schnell MA, Zhang Y, Tazelaar J, et al. Activation of innate immunity in nonhuman primates following intraportal administration of adenoviral vectors. Mol Ther.2001,3(5 Pt 1):708-22.
    9. Smyth Templeton N. Liposomal delivery of nucleic acids in vivo. DNA Cell Biol.2002,21: 857-867.
    10. Allen TM, Cullis PR. Drug delivery systems:entering the mainstream. Science.2004, 303:1818-22.
    11. Zhang Y, Jeong Lee H, Boado RJ, et al. Receptor-mediated delivery of an antisense gene to human brain cancer cells. J Gene Med.2002,4:183-194.
    12. Gabizon A, Shmeeda H, Barenholz Y. Pharmacokinetics of pegylated liposomal doxorubicin: review of animal and human studies. Clin Pharmacokinet.2003,42:419-436.
    13. Cullis PR, Chonn A, Semple SC. Interactions of liposomes and lipid-based carrier systems with blood proteins:relation to clearance behaviour in vivo. Adv Drug Deliv Rev.1998,32: 3-17.
    14. Maruyama K, Ishida O, Takizawa T, et al. Possibility of active targeting to tumor tissues with liposomes. Adv Drug Deliv Rev.1999,40:89-102.
    15. Klibanov AL, Maruyama K, Torchilin VP, et al. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett.1990,268:235-7.
    16. Baker EN. Structure and reactivity of transferrins. Adv Inorg Chem.1994,41:389-463.
    17. Crichton RR. Proteins of iron storage and transport. Adv Protein Chem.1990.40:281-363.
    18. Aisen P. Transferrin, the transferrin receptor, and the uptake of iron by cells. Metal Ions Biol Syst.1998,35:585-631.
    19. Sun H, Li H, Sadler PJ. Transferrin as a metal ion mediator. Chem Rev.1999,99:2817-42.
    20. Jeltsch JM, Chambon P. The complete nucleotide of the chicken ovotransferrin messenger-RNA. Eur J Biochem.1982,122:291-5.
    21. Williams J, Elleman TC, Kingston IB, et al. The primary structure of henovotransferrin. Eur J Biochem.1982,122:297-303.
    22. Metzboutigue MH, Joll_es J, Mazurier J,et al. Human lactotransferrin-amino-acid sequence and structural comparisons with other transferrins. Eur J Biochem.1984,145:659-76.
    23. Baggiolini M, DeDuve C, Masson PL, et al. Association of lactoferrin with specific granules in rabbit heterophil leukocytes. J Exp Med.1970,131:559-70.
    24. Leibman A, Aisen P. Distribution of iron between the binding-sites of transferrin in serum-Methods and results in normal human-subjects. Blood.1979,53:1058-65.
    25. Pantopoulos K, Iron metabolism and the IRE/IRP regulato2ry system:an update. Ann. N. Y. Acad. Sci,2004,1012:13.
    26. AisenP, Transferrin receptor 1, Int J Biochem. Cell Biol.2004,36:2137.
    27. Jefferies WA, Brandon MR, Hunt SV, et al. Transferrin receptor on endothelium of brain capillaries. Nature.1984,312:162-3.
    28. Ouyang Q, Bommakanti M, Miskimins WK. A mitogen-responsive promoter region that is synergistically activated through multiple signaling pathways. Mol Cell Biol. 1993,13:1796-804.
    29. Sarti P, Ginobbi P, D'Agostino I, et al. Liposomal targeting of leukaemia HL60 cells induced by transferrin-receptor endocytosis. Biotech Appl Biochem.1996,24:269-76.
    30. Eavarone DA, Yu X, Bellamkonda RV. Targeted drug delivery to C6 glioma by transferrin-coupled liposomes. J Biomed Mater Res.2000,51:10-4.
    31. Liao WP, DeHaven J, Shao J, et al. Liposomal delivery of alphainterferon to murine bladder tumor cells via transferrin receptor-mediated endocytosis. Drug Deliv.1998,5:111-8.
    32. Schnierle BS, Groner B. Retroviral targeted delivery. Gene Ther.1996,3:1069-73.
    33. Yang Y, Nunes FA, Berencsi K, et al. Cellular-immunity to viral-antigens limits E1-deleted adenoviruses for gene-therapy. Proc Natl Acad Sci USA.1994,91:4407-11.
    34. Lasic DD, Templeton NS. Liposomes in gene therapy. Adv Drug Deliver Rev.1996,20:221-66.
    35. Ilarduya de CT, Duzgunes N. Efficient gene transfer by transferrin lipoplexes in the presence of serum. Biochim Biophys Acta.2000,1463:333-42.
    36. Simoes S, Slepushkin V, Gaspar R, et al. Gene delivery by negatively charged ternary complexes of DNA, cationic liposomes, and transferrin or fusigenic peptides. Gene Ther. 1998,5:955-964.
    37. Kono K, Torikoshi Y, Mitsutomi M, et al. Novel gene delivery systems:complexes of fusigenic polymer-modified liposomes and lipoplexes. Gene Ther.2001,8:5-12.
    38. Yanagihara K, Cheng H, Cheng PW. Effects of epidermal growth factor, transferrin, and insulin on lipofection efficiency in human lung carcinoma cells. Cancer Gene Ther. 2000,7:59-65.
    39. Xu LN, Pirollo KF, Chang EH. Transferrin-liposome-mediated p53 sensitization of squamous cell carcinoma of the head and neck to radiation in vitro. Hum Gene Ther. 1997,8:467-75.
    40. Gosk T, Vermehren C, Storm G, et al. Targeting anti-transferrin receptor antibody (0X26) and OX26-conjugated liposomes to brain capillary endothelial cells using in situ perfusion. J Cerebral Blood Flow Metab.2004,24:1193-204.
    41. Lasic DD, Ceh B, Stuart MC, et al. Transmembrane gradient driven phase transitions within vesicles:lessons for drug delivery. Biochim Biophys Acta.1995,1239:145-56.
    42. Haavik J, Toska K. Tyrosine hydroxylase and Parkinson's disease. Mol Neurobiol. 1998,16:285-309.
    43.43.Zhang Y, Schlachetzki F, Zhang YF,et al. Normalization of striatal tyrosine hydroxylase and reversal of motor impairment in experimental Parkinsonism with intravenous nonviral gene therapy and a brain-specific promoter. Hum Gene Ther.2004,15:339-50.
    1. McFarland NR, Lee JS, Hyman BT, et al. Comparison of Transduction Efficiency of Recombinant AAV Serotypes 1,2,5, and 8 in the Rat Nigrostriatal System. J Neurochem. 2009,109(3):838-45.
    2. Rahim AA, Wong AMS, Howe SJ. Efficient gene delivery to the adult and fetal CNS using pseudotyped non-integrating lentiviral vectors. Gene therapy.2009,16(4):509-20.
    3. Glover DJ, Lipps HJ, et al. Towards safe, non-viral therapeutic gene expression in humans. Nat Rev Genet.2005,6(4):299-310.
    4. Li Z, Wang R, Li S, et al. Intraventricular pre-treatment with rAAV-VEGF induces intracranial hypertension and aggravates ischemic injury at the early stage of transient focal cerebral ischemia in rats. Neurol Res.2008 Oct,30(8):868-75
    5. Xia CF, Boado RJ, et al. Intravenous glial-derived neurotrophic factor gene therapy of experimental Parkinson's disease with Trojan horse liposomes and a tyrosine hydroxylase promoter. Journal of Gene Medicine.2008,10(3):306-15.
    6. Gosk T, Vermehren C, et al. Targeting anti-transferrin receptor antibody (0X26) and OX26-conjugated liposomes to brain capillary endothelial cells using in situ perfusion. Journal of Cerebral Blood Flow and Metabolism.2004,24(11):1193-1204.
    7. Qian ZM, Li H, et al. Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol Rev.2002,54(4):561-87.
    8. Jefferies WA, Brandon MR, et al. Transferrin receptor on endothelium of brain capillaries. Nature.1984,312(5990):162-3.
    9. Deaglio S, Capobianco A, et al. Structural, functional, and tissue distribution analysis of human transferrin receptor-2 by murine monoclonal antibodies and a polyclonal antiserum. Blood.2002,100(10):3782-9.
    10. Gentner B, Giustacchini A, Visigalli I, et al. Targeting Gene Transfer to Improve the Efficacy and Safety of Gene Therapy. Human gene therapy.2009,20(5):537.
    11.李桂林,栗世方,窦万臣,等.低氧特异性重组腺相关病毒VEGF_(165)的构建与表达.中国微侵袭神经外科杂志,2005,10:23-25.
    12.栗世方,王任直,徐珑,等.重组1、2、5型腺相关病毒载体在大鼠脑的转导效率研究.中华医学杂志,2003,83:1255-58.
    13. Li ZJ, Wang RZ. rAAV vector-mediated gene therapy for experimental ischemic stroke. Neurol India,2008,56:116-21.
    14. Montier T, Benvegnu T, Jaffres PA, et al. Progress in cationic lipid-mediated gene transfection:a series of bio-inspired lipids as an example. Curr Gene Ther,2008,8:296-312.
    15. Pardridge WM. Re-Engineering Biopharmaceuticals for Delivery to Brain with Molecular Trojan Horses. Bioconjug Chem,2008,19:1327-38.
    16. Filion MC, Phillips NC. Toxicity and immunomodulatory activity of liposomal vectors formulated with cationic lipids toward immune effector cells. Biochim Biophys Acta, 1997,1329(2):345-56.
    17. Masotti A, Mossa G, et al. Comparison of different commercially available cationic liposome-DNA lipoplexes:Parameters influencing toxicity and transfection efficiency. Colloids Surf B Biointerfaces,2009,68(2):136-44.
    18. Mizuno M, Yoshida J. Repeated exposure to cationic immunoli-posomes activates effective gene transfer to human glioma cells. Neurol Med Chir,1996,36:141-4.
    19. Harding JA, Engbers CM, Newman MS, et al. Immunogenicity and pharmacokinetic attributes of poly(ethylene glycol)-grafted immunoliposomes. Biochim Biophys Acta,1997, 1327:181-92.
    20. Soni V, Kohli DV, et al. Transferrin-conjugated liposomal system for improved delivery of 5-fluorouracil to brain. J Drug Target,2008,16(1):73-8.
    21. Lee Y, Messing A, et al. GFAP promoter elements required for region-specific and astrocyte-specific expression. Glia,2008,56(5):481-93.
    22. Zhang Y, Schlachetzki F, Pardridge WM. Global non-viral gene transfer to the promate brain following intravenous administration. Molecular Therapy,2003,7:11-8.
    23. Zhang Y, Pardridge WM. Delivery of β-galactosidase to mouse brain via the blood-brain barrier transferrin receptor. Journal of Pharmacology and Experimental Therapeutics,2005, 313:1075-81.
    1. Hayashi T, Abe K, Suzuki H, et al. Rapid induction of vascular endothelial growth factor gene expression after transient middle cerebral artery occlusion in rats. Stroke,1997,28: 2039-44.
    2. Plate KH, Beck H, Danner S, et al. Cell type specific upregulation of vascular endothelial growth factor in an MCA-occlusion model of cerebral infarct. J Neuropathol Exp Neurol, 1999,58:654-66.
    3. Hayashi T, Noshita N, Sugawara T, et al. Temporal profile of angiogenesis and expression of related genes in the brain after ischemia. J Cereb Blood Flow Metab,2003,23:166-80.
    4. Sun Y, Jin K, Xie L, et al. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest,2003,111:1843-51.
    5. Bellomo M, Adamo EB, Deodato B, et al. Enhancement of expression of vascular endothelial growth factor after adenoassociated virus gene transfer is associated with improvement of brain ischemia injury in the gerbil. Pharmacol Res,2003,48:309-17.
    6. Manoonkitiwongsa PS, Schultz RL, McCreery DB, et al. Neuroprotection of ischemic brain by vascular endothelial growth factor is critically dependent on proper dosage and may be compromised by angiogenesis. J Cereb Blood Flow Metab,2004,24:693-702.
    7. Storkebaum E, Lambrechts D, Carmeliet P. VEGF:Once regarded as a specific angiogenic factor, now implicated in neuroprotection. Bioessays,2004,26:943-54.
    8. Wang Y, Kilic E, Kilic U, et al. VEGF overexpression induces postischaemic neuroprotection, but facilitates haemodynamic steal phenomena. Brain,2005,128:52-63.
    9. Kaya D, Gursoy-Ozdemir Y, Yemisci M, et al. VEGF protects brain against focal ischemia without increasing blood-brain permeability when administered intracerebroventricularly. J Cereb Blood Flow Metab,2005,25:1111-8.
    10. Shen F, Su H, Fan Y, et al. Adeno-associated viral-vector-mediated hypoxia-inducible vascular endothelial growth factor gene expression attenuates ischemic brain injury after focal cerebral ischemia in mice. Stroke,2006,37:2601-6.
    11. Zhang L, Zhang ZG, Zhang C, et al. Intravenous administration of a GPⅡb/Ⅲa receptor antagonist extends the therapeutic window of intra-arterial tenecteplase-tissue plasminogen activator in a rat stroke model. Stroke,2004,35:2890-5.
    12. Davis S, Lees K, Donnan G. Treating the acute stroke patient as an emergency:Current practices and future opportunities. Int J Clin Pract,2006,60:399-407.
    13. Harrigan MR, Ennis SR, Sullivan SE, et al. Effects of intraventricular infusion of vascular endothelial growth factor on cerebral blood flow, edema, and infarct volume. Acta Neurochir (Wien),2003,145:49-53.
    14. Yan Q, Matheson C, Sun J, et al. Distribution of intracerebral ventricularly administered neurotrophins in rat brain and its correlation with Trk receptor expression. Exp Neurol,1994, 127:23-6.
    15. Pardridge WM. Targeting neurotherapeutic agents through the blood-brain barrier. Arch Neurol,2002,59:35-40.
    16. Li SF, Wang RZ, Meng QH, et al. Intra-ventricular infusion of rAAV1-EGFP resulted in transduction in multiple regions of adult rat brain:A comparative study with rAAV2 and rAAV5 vectors. Brain Res,2006,1122:1-9.
    17. Chen J, Sanberg PR, Li Y, et al. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke,32 (2001):2682-8.
    18. Zhu W, Fan YF, Hao Q, et al. Postischemic IGF-1 gene transfer promotes neurovascular regeneration after experimental stroke. Journal of Cerebral Blood Flow & Metabolism, 2009,29:1528-37.
    19. Hermann DM and Zechariah A. Implications of vascular endothelial growth factor for postischemic neurovascular remodeling. Journal of Cerebral Blood Flow & Metabolism. 2009,29:1620-43.
    20. Xu ZH, Gu WW, Huang J, et al. In vitro and in vivo evaluation of actively targetable nanoparticles for paclitaxel delivery, Int. J. Pharm.2005,288:361-8.
    21. Moreira JN, Gaspar R, Allen TM. Targeting Stealth liposomes in a mutine model of human small cell lung cancer, Biochim. Biophys. Acta.2001,1515:167-76.
    22. Li H, Qian ZM. Transferrin/transferrin receptor mediated drug delivery. Med Res Rev. 2002,22:225-50.
    23. Schlachetzki F, Zhang Y, Boado R, et al. Gene therapy of the brain:the trans-vascular approach. Neurology,2004,62:1275-81.
    24. Shi N, Pardridge WM. Noninvasive gene targeting to the brain. Proc Natl Acad Sci USA, 2000,97:7567-72.
    25. Zhang Y, Schlachetzki F, Pardridge WM. Global non-viral gene transfer to the primate brain following intravenous administration. Mol Ther,2003,7:11-8.
    26. Sako K, Okuma Y, Hosoi T, et al. STAT3 activation and c-FOS expression in the brain following peripheral administration of bacterial DNA. J Neuroimmunol.2005,158:40-9.
    27. Omori N, Maruyama K, Jin G, et al. Targeting of post-ischemic cerebral endothelium in rat by liposomes bearing polyethylene glycol-coupled transferrin. Neurol Res.2003, 25(3):275-9.
    28.28. Wang RZ, Zhang XF, Zhang J, et al. Gene transfer of vascular endothelial growth factor plasmid/liposome complexes in glioma. Clinical Hemorheology and Microcirculation, 2000,23:303-6.
    29. Zhang ZG, Zhang L, Jiang Q, et al.VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. J Clin Invest,2000,106(7):829-38.
    30. Chu K, Park KI, Lee ST, et al. Combined treatment of vascular endothelial growth factor and human neural stem cells in experimental focal cerebral ischemia. Neurosci Res, 2005,53:384-90.
    31. Kitagawa K, Matsumoto M, Kuwabara K, et al. Delayed, but marked, expression of apolipoprotein E is involved in tissue clearance after cerebral infarction. J Cereb Blood Flow Metab.2001,21:1199-207.
    1. Plank C, Tang MX, Wolfe AR et al. Branched cationic peptides for gene delivery:role of type and number of cationic residues in formation and in vitro activity of DNA polyplexes[J]. Hum Gene Ther,1999,10(2),319-332.
    2. Song, YK, Liu F, Chu S, et al. Characterization of cationic liposome-mediated gene transfer in vivo by intravenous administration[J]. Hum Gene Ther,1997,8(13),1585-1594.
    3. Mizuno M, Yoshida J. Repeated exposure to cationic immunoliposomes activates effective gene transfer to human glioma cells[J]. Neurol Med Chir (Tokyo),1996,36(3),141-144.
    4. Schnell MA, Zhang Y, Tazelaar J, et al. Activation of innate immunity in nonhuman primates following intraportal administration of adenoviral vectors. Mol Ther,2001,3(5 Pt 1),708-722.
    5. Smyth Templeton N. Liposomal delivery of nucleic acids in vivo. DNA Cell Biol,2002,21(12): 857-867.
    6. Thomas CE, Ehrhardt A, Kay, MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet,2003,4(5),346-358.
    7. Huwyler J, Wu D, et al. Brain drug delivery of small molecules using immunoliposomes[J]. Proc Natl Acad Sci USA,1996,93(24),14164-14169.
    8. Shi N, Pardridge WM. Noninvasive gene targeting to the brain[J]. Proc Natl Acad Sci USA, 2000,97(13),7567-7572.
    9. Shi N,. Zhang Y, Pardridge WM, et al. Brain-specific expression of an exogenous gene after i.v. administration[J]. Proc Natl Acad Sci USA,2001,98(22),12754-12759.
    10. Zhang Y, Schlachetzki F, Pardridge WM. Global non-viral gene transfer to the primate brain following intravenous administration[J]. Mol Ther,2003,7(1),11-18.
    11. Osaka G, Carey K, Cuthbertson A, et al. Pharmacokinetics, tissue distribution, and expression efficiency of plasmid DNA following intravenous administration of DNA/cationic lipid complexes in mice:use of a novel radionuclide approach[J]. J Pharmacol Sci,1996,85(6), 612-618.
    12. Zinn KR, Douglas JT, Smyth CA, et al. Imaging and tissue biodistribution of 99mTc-labeled adenovirus knob (serotype 5)[J]. Gene Ther,1998,5(6),798-808.
    13. Shi N, Boado RJ, Pardridge WM, et al. Receptor-mediated gene targeting to tissues in vivo following intravenous administration of pegylated immunoliposomes [J]. Pharm Res,2001,18(8), 1091-1095.
    14. Coloma MJ, Lee HJ, Kurihara A, et al. Transport across the primate blood-brain barrier of a genetically engineered chimeric monoclonal antibody to the human insulin receptor[J]. Pharm Res, 2000,17(3),266-274.
    15. Zhang Y, Zhu C, Pardridge WM, et al. Antisense gene therapy of brain cancer with an artificial virus gene delivery system[J]. Mol Ther,2002,6(1),67-72.
    16. Zhang Y, Calon F, Zhu C, et al. Intravenous non-viral gene therapy causes normalization of striatal tyrosine hydroxylase and reversal of motor impairment in experimental Parkinsonism[J]. Human Gene Therapy,2003,14(1),1-12.
    17. Chen ZY, Yant SR, He CY, et al. Linear DNAs concatemerize in vivo and result in sustained transgene expression in mouse liver[J]. Mol. Ther,2001,3(3),403-410.
    18. Xia CF, Boado RJ, Zhang Y, et al. Intravenous glial-derived neurotrophic factor gene therapy of experimental Parkinson's disease with Trojan horse liposomes and a tyrosine hydroxylase promoter[J].Journal of Gene Medicine,2008,10(3),306-315.
    19. Chu C, Zhang Y, Boado RJ, et al. Decline in exogenous gene expression in primate brain following intravenous administration is due to plasmid degradation[J].Pharm Res,2006,23(7), 1586-1590.
    20. Pardridge WM. Re-Engineering Biopharmaceuticals for Delivery to Brain with Molecular Trojan Horses[J]. Bioconjugate Chemistry,2008,19 (7),1327-1338.
    21. Xia CF, Zhang Y, Boado RJ, et al. Intravenous siRNA of brain cancer with receptor targeting and avidin-biotin technology[J]. Pharm Res,2007,24(12),2309-2316.
    22. Neuwelt E, Abbott NJ, Abrey L, et al. Strategies to advance translational research into brain barriers[J]. The Lancet Neurology,2008,7(1),84-96.
    1. Ambros V. (2001). microRNAs:tiny regulators with great potential. Cell.107(7):823-6.
    2. Esau CC and Monia BP. (2007). Therapeutic potential for microRNAs. Adv Drug Deliv Rev. 59(2-3):101-14.
    3. Gao FB. (2008). Posttranscriptional control of neuronal development by microRNA networks. Trends Neurosci.31(1):20-6.
    4. Filipowicz W, Bhattacharyya SN, et al. (2008). Mechanisms of post-transcriptional regulation by microRNAs:are the answers in sight? Nat Rev Genet.9(2):102-14.
    5. Calin GA, Sevignani C, Dumitru CD, et al. (2004b). Human microRNA genesare frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA. 101:2999-3004.
    6. Bottoni A, Piccin D, et al. (2005). miR-15a and miR-16-1 down-regulation in pituitary adenomas. J Cell Physiol.204(1):280-5.
    7. Shalak V, Kaminska M, Mitnacht-Kraus R, et al. (2001). The EMAPII cytokine is released from the mammalian multisynthetase complex after cleavage of its p43/proEMAPII component. J Biol Chem.276:23769-23776.
    8. Bottoni A, Zatelli MC, et al. (2007). Identification of differentially expressed microRNAs by microarray:a possible role for microRNA genes in pituitary adenomas. J Cell Physiol.210(2): 370-7.
    9. Cheng AM, Byrom MW, Shelton J, et al. (2005). Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res.33:1290-1297.
    10. Ezzat S, Kontogeorgos G, Redelmeier DA, et al. (1995). In vivo responsiveness of morphological variants of growth hormoneproducing pituitary adenomas to octreotide. Eur J Endocrinol.133:686-690.
    11. McCabe CJ, Boelaert K, Tannahill LA,et al. (2002). Vascular endothelial growth factor, its receptor KDR/Flk-1, and pituitary tumor transforming gene in pituitary tumors. J Clin Endocrinol Metab.87:4238-4244.
    12. Xu Y, Zhang T, Tang H, Zhang S, et al. (2005). Overexpression of PIM-1 is a potential biomarker in prostate carcinoma. J Surg Oncol.92:326-330.
    13. Billadeau DD. (2002). Cell growth and metastasis in pancreatic cancer:Is Vav the Rho'd to activation? Int J Gastrointest Cancer.31:5-13.
    14. Rhoads K, Arderiu G, Charboneau A, Hansen SL, Hoffman W, Boudreau N. (2005). A role for hox a5 in regulating angiogenesis and vascular patterning. Lymphat Res Biol.3:240-252.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700