用户名: 密码: 验证码:
PVSA/PVAm共混复合膜的制备及其CO_2分离性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分离CO2的固定载体膜同时具备良好的稳定性和渗透选择性能,是一类很有
    发展前景的新型分离膜。聚合物共混改性是开发具有崭新性能膜材料的重要途
    径。
     本文利用我们实验室已开发出的固定载体膜材料—聚N-乙烯基-γ-氨基丁
    酸钠(PVSA)和聚乙烯基胺(PVAm)研制出PVSA/PVAm共混膜材料,并以聚醚
    砜(PES)超滤膜为支撑体制成共混复合膜。采用现代分析测试手段红外、X射线
    衍射(XRD)、材料拉伸测试及环境扫描电子显微镜(ESEM)对PVSA和共混聚
    合物的微观结构、共混聚合物的拉伸性能和共混复合膜的形貌特征进行了研究。
    结果表明,通过聚合物共混的方法,膜材料的力学性能得到了改善;两种聚合物
    相容性良好,电镜显示共混复合膜表层致密光滑,与支撑层紧密结合。以CO2/CH4
    体系为研究对象,考察了共混复合膜的透过选择性能,系统研究了各种因素如耦
    合效应、PVSA/PVAm配比、铸膜环境温度及湿度对膜结构和性能的影响。以CO2、
    CH4、N2、O2为研究对象,系统地探讨了该共混复合膜对不同气体体系的分离性
    能。研究结果表明,以该共混聚合物为表层,PES超滤膜为支撑层制得的
    PVSA/PVAm共混复合膜综合性能优越。在PVSA wt%=33.3%,压力为 1.04atm
    时,PVSA/PVAm共混复合膜的CO2渗透速率和CO2/CH4理想分离因子分别为
    6.48×10-6 cm3 (STP)cm-2 s-1 cmHg-1和 217。用 50%CO2和 50%CH4组成的混合气进
    行测试时,在CO2分压为 0.518atm的情况下,CO2的渗透速率达到了 5.56×
    10-6cm3(STP) cm-2 s-1 cmHg-1,CO2/CH4的分离因子为 49.7。不同气体通过该共混
    复合膜的快慢顺序为CO2>O2>CH4>N2,理想分离因子大小为αCO2/N2>α
    CO2/CH4>αCO2/O2。
     本论文还采用丙烯酰胺与马来酸酐进行共聚并水解得到聚合物马来酸钠-
    丙稀酰胺(MAS-Am),采用该共聚物为表层,PES超滤膜为支撑层制得复合膜,
    初步探讨了该复合膜对CO2/CH4体系的渗透选择性。结果表明,相对PVSA/PVAm
    共混复合膜而言,该膜的CO2渗透速率以及CO2/CH4的分离因子较低。在纯气测
    试中,当压力为 1.04atm时,该复合膜CO2的渗透速率为 1.04×10-6 cm3(STP) cm-2
    s-1 cmHg-1,CO2/CH4理想分离因子为 66。当用 50%CO2和 50%CH4组成的混合气
    进行测试时,CO2分压为 0.56atm时,CO2渗透速率为 5.58×10-7 cm3(STP) cm-2 s-1
    cmHg-1,CO2/CH4分离因子为 43.6。
Fixed carrier membranes for CO2 separation are promising membranes, which
    have the advantages of both stability and good permselectivity. Polymer blending is a
    useful method which can result in a new product with properties not found in single
    polymers.
     Poly(N-vinyl-γ-sodium aminobutyrate)(PVSA) and polyvinyamine(PVAm)
    are two fixed carrier membrane materials developed by our research group. In this
    work, fixed carrier blend materials—PVSA/PVAm were prepared by using PVSA and
    PVAm successfully. Composite membranes were developed with the blend material
    PVSA/PVAm as active layers and polyethersulfone ultrafiltration membrane as
    support. Tensile elongation measurement was used to test the mechanics of blend
    materials. FTIR(Fourier Transform Infrared Spectroscopy), XRD(X-ray diffractions)
    and ESEM (Environmental Scanning Electron Microscope) were employed to
    characterize the structure of PVSA and blend materials PVSA/PVAm and the
    morphology of the PVSA/PVAm blend composite membranes. The results show that
    the mechanical properties of the blend polymer are better than that of the two single
    polymers, the active layers of the composite membranes are smooth and dense.
     The permselectivities of the blend composite membranes were measured with
    pure CO2 and CH4 gas as well as binary mixture of CO2 and CH4. The effects of many
    kinds of factors such as “coupling effects”, PVSA/PVAm ratio, cross-linking and
    casting temperature and relative humidity on performances of the PVSA/PVAm blend
    composite membranes were discussed in detail. The permselectivity of the blend
    membranes for CO2/N2 and CO2/O2 were also measured. The PVSA/PVAm blend
    composite membranes present excellent comprehensive performances, which are
    better than single PVSA and PVAm composite membranes. For pure feed gases, at
    pressure of 1.04 atm,PVSA wt%=33.3%, the PVSA/PVAm blend composite
    membrane displays a CO2 permeation rate of 6.48×10-6 cm3 (STP)cm-2 s-1 cmHg-1 and
    CO2/CH4 ideal separation factor of 217. For mixed feed gas composed of 50% CO2
    and 50% CH4, at CO2 partial pressure of 0.518 atm,PVSA wt%=33.3%, the
    PVSA/PVAm blend composite membrane displays a CO2 permeation rate of
    5.56×10-6 cm3 (STP)cm-2 s-1 cmHg-1 and CO2/CH4 ideal separation factor of 49.7. The
    permeation rate sequence of different gases is CO2>O2>CH4>N2, and the ideal
    selectivity sequence of different gas systems is α CO2/N2>αCO2/CH4>αCO2/O2.
     II
    
    
    Copolymer poly( maleic acid sodium-co-acrylamide) (MAS-Am) was
    synthesized by using maleic anhydride and acrylamide. The composite membrane
    MAS-Am/PES were developed with this material as active layer and polyethersulfone
    ultrafiltration membrane as support. And the permselectivities of the composite
    membrane were also measured with pure CO2 and CH4 gas as well as binary mixture
    of CO2 and CH4. For pure feed gases, at pressure of 1.04 atm,MAS-Am composite
    membrane displays a CO2 permeation rate of 1.05×10-6 cm3 (STP)cm-2 s-1 cmHg-1 and
    CO2/CH4 ideal separation factor of 66. For mixed feed gas composed of 50% CO2 and
    50% CH4, at CO2 partial pressure of 0.56 atm, the MAS-Am composite membrane
    displays a CO2 permeation rate of 5.58×10-7 cm3 (STP)cm-2 s-1 cmHg-1 and CO2/CH4
    ideal separation factor of 43.6.
引文
参考文献
    [1] Richard W.Baker, Future direction of membrane gas separation technology, Ind.
     Eng.Chem.Res.,2002(41):1393-1411
    [2] 夏明珠,严莲荷,雷武等,二氧化碳的分离回收技术与综合利用,现代化
     工,1991,19(5):46~48
    [3] 刘振东,最新实用节能手册,北京:地震出版社,1994
    [4] T.A.谢苗诺娃,列伊捷斯主编,南京化学工业公司研究院译,工业气体的净
     化,北京:化学工业出版社,1977
    [5] 时钧,袁权,高从楷,膜技术手册,北京,化学工业出版社,2001,2~3
    [6] 黄仲涛等编著,无机膜技术及应用,北京:中国石化出版社, 1999
    [7] 李传峰,钟顺和,无机膜气体传递机理和模型,膜科学与技术,1999,20
     (3):34~36
    [8] 王金渠,无机膜分离,化工进展,1993,(3):4~10
    [9] S.A.Stern, New developments in membrane processesfor gas separation, MMI
     Press Symp.Ser. , 1986 (5):1-37
    [10] W.J.Koros and R.T.Chem, Separation of gaseous mixtures (Ed.), Hand book of
     gas separation process technology, Wiley, New York, NY,1987
    [11] S.A. Stern and H.L.Frish, Selective permeation of gases through polymer, Annu.
     Rev. Mater. Sci., 1981 (11): 523-550
    [12] S.A. Stern and S. Trohalaki, Gas diffusion in rubbery and glassy polymer, ACS
     Symp. Ser., 1990(423): 22-59
    [13] H.L. Frisch and S.A. Stern , Diffusion of small molecules in polymers, CRC Crit.
     Rev. Solid State Mater.Sci., 1983(11):123-187
    [14] Fujita H, Diffusion in Polymer-diluent systems, Fortschr. Hochpolym. Forsch,
     1964, 3(3): 1~47
    [15] J.S. Vrentas and J.L. Duda , Encyclopedia of polymer science and engineering,
     Wiley, New York, NY, 1986
    [16] Paul D R, Koros W J, Effect of partially immobilizing sorption on permeability
     and the diffusion time-lag, J. Polym. Sci, Polym. Phys. Ed, 1976, 14: 675~685
    [17] Koros W J, Paul D R, Huvard G S, Energetics of gas sorption in glassy polymers,
     Polymer, 1979, 20: 956~960
    [18] E. Smit, M.H.V. Mulder, C.S.Smolder, Modeling of the diffusion of carbon
     75
    
    
    参考文献
     dioxide in polyimide matrices by computer silulations, J. Membrane Sci,
     1992(73):247-257
    [19] 刘茉娥等编著,膜分离技术, 北京:化学工业出版社,1998
    [20] Barrier R M. Diffusivities in Glassy Polymers for the Dual Mode Sorption Model
     ,Journal of Membr Sci,1984(18):25~35
    [21] Noble R D. Analysis of Facilitated Transport with Fixed Site Carrier Membrane
     Journal of Membr Sci,1990(50):207~214
    [22] Noble R D. Generalized Microscopic Mechanism of Facilitated Transport in
     Fixed Site Carrier Membrane, Journal of Membr Sci,1992,75:121~129
    [23] Cluster E L,Aris R,Bhown A,On the Limits of Facilitated Diffusion, Journal of
     Membr Sci,1989(43):149~164
    [24] 徐仁贤,气体分离膜应用的现状和未来,膜科学与技术,2003(23):123-127
    [25] H.P. Hsieh, Inorganic membranes, Membrane Mater. Proc,1990(84):1
    [26] A.F. Ismail, L.I.B. David, A review on the latest development of carbon
     membrane for gas separation, Journal of Membr Sci, 2001(193)1-18
    [27] oresh J E, Soffer A, The carbon molecular sieve membranes, General properties
     and the permeability of CH4/H2 mixture, Sep. Sci. Tech, 1987, 22: 973~982
    [28] Centeno T A, Fuertes A B, Supported carbon molecular sieve membranes based
     on phenolic resin, J. Membr. Sci, 1999, 160: 201~211
    [29] Liang G H, Sha G Y, Guo S C, Carbon membranes for gas separation devied
     from coal tar pitch, Carbon, 1999, 37: 1391~1397
    [30] Koresh J E, Soffer A, The carbon molecular sieve membranes, General properties
     and the permeability of CH4/H2 mixture, Sep. Sci. Tech, 1987( 22): 973~982
    [31] Liang G H, Sha G Y, Guo S C, Carbon membranes for gas separation devied
     from coal tar pitch, Carbon, 1999(37): 1391~1397
    [32] Koros W J, Mahajan R, Pushing the limits on possibilties for large scale gas
     separation: which strategies? J. Membr. Sci, 2000(175): 181~196
    [33] 吕丽春,李琳,陶瓷膜气体在分离中的应用,膜科学与技术,1995,15(2)
     :12~20
    [34] Kammermeyer K, Silicon rubbers as a selective barrier, Ind. Eng. Chem, 1957(
     49): 1685~1686
    [35] Stern S A, Shah V M, Hardy B J, Structure/permeability relationships in silicone
     polymers, J. Polym. Sci, Part B: Polym. Phys, 1987(25): 1263~1298
    [36] T. Masuda, E . Isobe and T. Higashimura, Poly[1-(trimethylsilyl)-1-propyne]:
     76
    
    
    参考文献
     anew high polymer synthesized with extremely high gas permeability, J.
     Am.Chem.Soc.1983(105):7473-7474
    [37] N.A.Plate, S.G. Durgarjan, V.S. Khotimskii, Novel poly(silicon oleins) for gas
     separation, J.Membrene Sci., 1990 (52): 289.
    [38] Koros W J, Fleming G K, Membrane based-gas separation, J.Membr. Sci, 1993,
     83(1): 1~80
    [39] Liu Y, Wang R, Chung T S, Chemical Cross-linking modification of polyimide
     membranes for gas separation, J. Membr. Sci, 2001(189): 231~239
    [40] Lin W H, Chung T S, Gas permeability, diffusivity, solubility, and aging
     characteristics of 6FDA-durene polyimide membranes, J.Membr. Sci. 2001(186):
     183~193
    [41] Masri M Al, Kricheldorf H R, Fritsh D, New polyimides for gas sepatation, I
     polyimides derived from substituted terphenylenes and
     4,4’—(hexafluoroisopropylidene) diphthalicanhydride, Maromolecules,
     1999(32): 1853~1858
    [42] Fang J H, Kita H, Okamoto K, Hyperbranched polyimide for gas separation
     application. I. Synthesis and characterization, Macromolecules, 2000(33):
     4639-4646
    [43] 李保安,聚乙烯胺-聚砜复合功能膜及其CO2分离性能研究:[博士学位论文]
     ,天津:天津大学,1998
    [44] Brien K Co, Koros W J, Polyimide materials based on pyromellitic dianhydride
     for the separation of carbon dioxide and methane gas mixtures, J Membr. Sci,
     1988(35): 217~230
    [45] Stern S A, Mi Y, Yamamoto H, et al., Structure/Permeability relationships of
     polyimide membranes. I. Applications to the separation of gas mixtures, J.
     Polym. Sci., Polym. Phys. Ed, 1989(27): 1887~1909
    [46] Matsumoto Kenji, Xu Ping , Nishikimi T, Gas permeation of aromatic
     polyimides. I . Relationship between gas permeabilities and dielectric constants,
     J. Membr. Sci, 1993(81): 15~22
    [47] 祁喜旺,陈翠仙,蒋维钧,聚酰亚胺气体分离膜,膜科学与技术,1996,16(2)
     :1~7
    [48] S.A. Stern, Polymers for gas separation: the next decade, J. Membr. Sci,
     1994(1-65)
     77
    
    
    参考文献
    [49] Robeson L M, Correlation of separation factor versus permeability for polymeric
     membranes, J. Membr. Sci, 1991( 62): 165~185
    [50] Robeson L M, Burgoyne W F, Langsam M, Savoca A C, Tien C F, High
     performance polymers for membrane separation, Polymer, 1994(35): 4970~4978
    [51] Ward W J, Robb W L, Carbon dioxide –oxygen separation: facilitated transport
     of carbon dioxide across a liquid film, Science, 1967(156): 1481~1484
    [52] Ward W. J, Robb W L, Liquid Membranes for use in the separation of gases. US.
     Patent 3.396.510, 1968
    [53] Matson S L, Lopez J and Quinn J A. Separation of gases with synthetic
     membranes, Chem Eng Sci,1983(38):503~504.
    [54] Meldon J H, Stroeve P and Gregoire C E. Facilitated transport of carbon dioxide,
     a review, Chem Eng Commun,1982(16):263~300.
    [55] Davis R A, Sandall O C. CO2/CH4 Separation by facilitated transport in
     amine-polyethylene glycol mixtures, AIChE J,1993(39):1135~1145.
    [56] Ward W J, Robb W L. Carbon dioxide-oxygen separation: facilitated transport of
     carbon dioxide across a liquid film[J].Science,1967(156):1481~1484
    [57] Neplebroek A M. Bargaman D, Smolders CA, Supported liquid membrane:
     stabilization by gelation[J]. J Membrane Sci,1992(67):149~165
    [58 H.Strathmann, H.Schulenberg-shell, B.Buer, German Patent DE 42,38097(1994)
    [59] Sirkar K K. Hollow fiber contained liquid membrane-based
     permeation-separation and separation-reaction-separation:An overview.
     In:ICOM’96[C],Yokohama: The membrane Society of Janpan 1996,578~579.
    [60] Guha A K,Majumdar S, Sirkar K K. A large-scale study of gas separation by
     hollow-fiber contained liquid membrane permeation, J Membrane
     Sci,1992(62):293~307
    [61] Leblanc O H,Ward W J, Matson S L, et al. Facilitated transport in ion-exchange
     membranes,. J Membrane Sci, 1980(6):339~343.
    [62] Way J.D Noble R D, Reed D L, et al. Facilitated transport of CO2 in
     ion-exchange membranes, AIChE.J. 1987(33): 480~487.
    [63] Matsuyama H, Teramoto M, Iwai K. Development of a new functional
     cation-exchange membrane and its application to facilitated transport of CO2, J
     Membr Sci, 1994(93):237~244
    [64] 甄寒菲,王志, 李保安,王世昌。用于分离CO2的高分子膜,高分子材料
     科学与工程,1999,15(6):29~31
     78
    
    
    参考文献
    [65] Matsuyama H, Hirai K, Teramoto M. Selective permeation of Carbon dioxide
     through plasma polymerized membrane from diisopropylamine, J Membr Sci,
     1994( 92): 257~265.
    [66] Matsuyama H, Terada A, Nakagawara T, et al. Facilitated transport of CO2
     through polyethylenimine/poly (vinyl alcohol) blend membrane, J Membr Sci,
     1999(163):221~227.
    [67] Matsuyama H, Teramoto M, Sakakura H. Selectivie permeation of CO2 through
     Poly{2-(N, N-dimethyl) aminoethyl methacrylate} membrane prepared by
     plasma-graft polymerization technique, J. Membr Sci, 1996(114): 193~200
    [68] Yoshikawa M, Fujimoto K, Kinugawa H, et al. Selective permeation of carbon
     dioxide through synthetic polymeric membranes having amine moiety, Chem.
     Letter, 1994, 243~347.
    [69] Kim. Jae Hoon, Ha Seong Yong, Nam. Sang Yong, Selective permeation of CO2
     through pore-filled polyacrylonitrile membrane with poly(ethylene glycol),
     2001(186):97-107
    [70] Ying Zhang, Zhi Wang, Shichang Wang, Synthesis and characteristics of novel
     fixed carrier membrane for CO2 separation, Chem. Letter, 2002,430~431.
    [71] 张颖,分离CO2/CH4固定载体复合膜的制备与性能研究:[博士学位论文],
     天津:天津大学,2003
    [72] 董传明,用于分离CO2/CH4中空纤维固定载体复合膜研制,[硕士学位论文]
     ,天津,天津大学,2003
    [73] Louis Cot, Andre Ayral, Jean Durand, Inorganic membranes and solid state
     sciences, Solid State Sciences, 2000(2):313-334
    [74] William J. Koros, Rajiv Mahajan, Pushing the limits on possibilities for large
     scale gas separation: which strategies? J. Membr Sci, 2000(175)181-196
    [75] Masashi Asaeda, Shin Yamasaki, Separation of inorganic/organic gas mixtures by
     porous silica membranes, Separation and purification Technology, 2001(25):
     151-159
    [76] M. L. Sforca, I.V.P. Yoshida, S.P. Nunes, Organic-inorganic membranes prepared
     from polyether diamine and epoxy silane, J. Membr Sci, 1999(159): 197-207
    [77] Xin-Gui Li, Ingo Kresse, Jugen Springer, Morphology and gas permselectivity of
     blend polyvinylpyridine with ethylcelluse, Polymer, 2001(42):6859-6869
    [78] De Q.Vu, William J. Koros, Stephen J. Miller, Mixed matrix membrane using
     carbon molecular sieves I. Preparation and experimental results, J. membr. Sci,
     79
    
    
    参考文献
     2003(211):311-334
    [79] 章永化,龚克成。Sol-Gel法制备有机/无机纳米复合材料的进展,高分子材
     料科学与工程,1997(13):14-17
    [80] 章永化,龚克成。有机/无机混杂纳米材料,高技术通讯,1995(7):56-58
    [81] Jingtong Li, Shichang Wang, Kazukiyo Nagai, Tsutomu Nakagawa, Effect of
     polyethyleneglycol(PEG) on gas permeabilities and perselectivities in its
     cellulose acetate(CA) blend membranes, J. Membr. Sci, 1998(138): 143-152
    [82] 吴培熙,张留城, 北京,中国轻工业出版社,聚合物共混改性,1996
    [83] 合成聚合物膜,第二版 (美)R.E.凯斯廷(Robert E.Kesting)著,王学松,
     赵宝泉等译,北京, 化学工业出版社,1992
    [84] 田中诚之编著,姚海文译,有机化合物的结构测定方法—利用13C-NMR、
     1H-NMR、 IR和MS图谱的综合解析,北京:化学工业出版社,1986,68~69
    [85] 董炎明,高分子材料实用剖析技术,北京:中国石化出版社,1997,189~191
    [86] 邵毓芳,嵇根定编著,高分子物理实验,南京,南京大学出版社,1998
    [87] Levy G B, Frank H P. Determination of molecular weight of
     polyvinylpyrrolidone II, J. Poly. Sci, 1955(17): 247~254
    [88] 永泽满,潼泽章主编,陈振兴译,高分子水处理剂,北京,化学工业出版社
     ,1985
    [89] 赵之平,王志,王世昌,现代分析测试技术在膜结构与性能研究中的应用
     ,膜科学与技术,2001,12(6):34~39
    [90] 崔英德,易国斌,廖列文编著,聚乙烯吡咯烷酮的合成与应用,北京,科
     学出版社,2001
    [91] 严瑞煊,水溶性高分子,北京:化学工业出版社,1998,602~608
    [92] 张婉南,张钧,卢建军等,聚醚砜超率膜的研制,水处理技术,1989, 15(3):
     170~173
    [93] 陈忠祥,周美娟,肖通虎等,非溶剂草酸对形成聚醚砜微孔膜的影响研究
     ,膜科学与技术,2001,21(6):21~26
    [94] 付晓泰,王振平,卢双舫,气体在水中的溶解机理及溶解度方程,中国科
     学. B辑,1996, 26(2): 124~129
    [95] 王纪孝,功能性聚合物膜的制备及其性能研究,[博士后出站报告],天津:
     天津大学,2000
    [96] 王国全,王秀芬编著,聚合物改性,北京,轻工业出版社,2000
    [97] Alentiev A Y, Yampolskii Y P, Free volume model and tradeoff relations of gas
     permeability and selectivity in glassy polymers, J. Membr. Sci, 2000(165):
     201~216
    [98] Stern S A, Fang S M, Frisch H L, Effect of pressure on gas permeability
     80
    
    
    参考文献
     coefficients. A new application of “free volume” theory, J. Polym. Sci, Part
     A-2, 1992(10): 201~219
    [99] Yeom C K, Lee S H, Lee J M. Study of transport of pure and mixed CO2/N2
     gases through polymeric membranes, J. Appl. Poly. Sci, 2000(78): 179~189
    [100] Barrer R M., Diffusivities in glassy polymers for the dual mode sorption model,
     J. Membr. Sci, 1984,18: 25~35
    [101] Barbari T A., Polymeric membranes based on bisphenol-A for gas separations,
     J. Membr. Sci, 1989(42): 69~86
    [102] 功能高分子材料,马建标,北京:化学工业出版社精细化工出版中心,2000
    [103] 斯特赖厄尔 L,唐有祺,张惠珠,吴相钰译,生物化学,北京:北京大学
     出版社,1990
    [104] Christopher J. Orme, Mason K. Harrup, Characterization of gas transport in
     selected rubbery amorphous polyphosphazene membranes, J. Membr. Sci,
     2001(186):249-256
    [105] 超强吸水剂,邹新禧,北京:化学工业出版社,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700