干细胞微流控芯片的设计、制备、检测与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干细胞在细胞治疗、再生医学和癌症研究方面的临床应用前景和意义已被全世界所公知,但其在伦理道德、分化潜能、免疫排斥和安全性等方面尚存亟待解决的问题,而干细胞机理研究作为实现可控增殖与分化、降低免疫排斥和避免成瘤的基础研究,已引起越来越高的重视。微流控芯片以其所具备的独特优势,能够在几微米至几百微米尺度下实现对细胞的操纵控制,从而实现干细胞在可控微环境/小生境下的可控增殖与分化,是干细胞机理研究不可替代的手段之一。目前使用微流控芯片研究干细胞的工作刚刚起步,领域内的参考文献尚少,虽已取得了一些研究成果,但还未能形成统一、高效、稳定地在微流控芯片上操纵和培养干细胞的方法。本论文试图通过自行设计并制备的一种微流控芯片,来探索在微流控芯片上操纵控制干细胞的方法,并探索干细胞在微流控芯片上的培养方法。
     本论文从设计、制备和应用等方面对干细胞微流控芯片进行了研究,并针对在微流控芯片中干细胞需要进行呼吸作用、剪切力会对干细胞产生影响、制备过程中芯片材料的选择、制备效率的提高和成本的降低、微流控芯片易用性的提高、干细胞注入微流控芯片、干细胞在微流控芯片中的培养等问题进行了探索。
     在设计方面,本论文详细分析了干细胞在非芯片条件下培养的7个基本条件,并探讨了这7个基本条件在微流控芯片培养条件下实现的方法;考虑到微流控芯片培养条件对干细胞的影响以及在微流控芯片上操纵干细胞和培养干细胞对芯片结构的要求等因素,对微流控芯片的芯片结构进行了总体设计,并利用有限元分析软件对气室区和培养区进行了优化设计。结果表明:当气室结构中入口和出口的距离越长时,气室中流速较小部分所占比例越小,流速相对较大部分所占比例越大,越有利于迅速换气并减少气体残留,并且这一规律与入口、出口和气室三者的位置关系无关;通过理论计算可以得出,在常用电动微量注射装置驱动的微流控芯片中,当培养室直径在1mm量级上时,干细胞所受剪切力在10-2dynes/cm2量级上,并且这一量级上的剪切力远远小于已有报道的会对干细胞产生影响的平均剪切力值。
     在制备方面,本论文简单介绍了制备微流控芯片的材料、方法和流程,并介绍了常见的加工、键合、封装和检测技术;对微流控芯片在制备过程中,在芯片材料的选择、制备效率和成本、易用性等方面存在的问题进行了分析,并针对这些问题进行了研究。在微结构的加工过程中,采用光盘压印的方法进行加工;在基板和盖片的键合过程中,采用热压键合的方法进行;在微流控芯片的封装过程中,采用微针连接微流控芯片和外部设备;并分别对加工效率、键合效率和封装效率进行了估算。结果表明:PC材料最适合作为干细胞微流控芯片的制备材料;通过再键合,可以提高键合效率,从而提高了微流控芯片的制备效率并降低了制备成本;通过微针连接微流控芯片和外部设备,可以实现微流控芯片中微观结构与外部设备中宏观结构的连接,解决微流控芯片微观结构与外部宏观接口不匹配、难于封装的问题,并提高微流控芯片的易用性。
     在应用方面,本论文选用ICR小鼠骨髓间充质干细胞作为实验细胞;并且选用低温湿法灭菌作为微流控芯片的灭菌处理方法;为方便实验操作,设计了一套手动微量注射装置。利用微量注射装置,将单细胞和多个细胞注入到微流控芯片中,并与非芯片条件下刚刚完成接种还未贴壁的细胞进行了对比。同时,为了验证微流控芯片气室区和培养区的优化结果与实际情况是否相符,选用单细胞作为微流控芯片中液体流速的标记物,对单细胞移动速度进行了测量,并将所得测量值与同等条件下液体流速的计算值进行了对比。此外,在将单细胞和多个细胞注入到微流控芯片中以后,还对单细胞和多个细胞进行了培养,并与非芯片条件下培养的细胞进行了对比。结果表明:注入后,微流控芯片中和非芯片条件下的细胞形态一致;单细胞移动速度的测量值与液体流速的计算值基本一致,验证了对微流控芯片气室区和培养区进行优化所得出的结果;培养中,微流控芯片中和非芯片条件下的细胞形态一致;微流控芯片中有限的培养面积可能抑制了ICR小鼠骨髓间充质干细胞的增殖,并且这种对细胞增殖的抑制或促进作用可能与细胞种类有关。
Stem cells are essential for cell therapy, regenerative medicine and cancerresearch, which are well known. However, there are also problems to be solved inethics and morals, differentiation potency, immunological rejection and safety. Themechanism study of stem cells, which are important for controlling proliferation anddifferentiation, reducing immune rejection and avoiding tumorigenesis, has drawnmore and more attention. Microfluidic chips with its unique advantages could beemployed to control proliferation and differentiation of stem cells in amicroenvironment, which makes microfluidic chips one of the irreplaceable tools inmechanism studies of stem cells. The research of stem cells in microfluidic chips hasjust started currently. The references in this field are still less. Moreover, there are notstandard, efficient and stable methods to control and culture stem cells in microfluidicchips. This paper attempts to explore the methods of controlling and culturing stemcells in homemade microfluidic chips.
     In this paper, the design, fabrication and application of microfluidic chips forstem cells are researched. The problems of stem cells’ breathing, shear force’sinfluence, microfluidic chips’ material selecting, microfluidic chips’ productivity, costand usability, stem cells’ microinjection and culturing are explored.
     In the respects of designing microfluidic chips,7basic conditions of culturingstem cells in culture dishes were analyzed. In addition, the methods of realizing7basic conditions in microfluidic chips were analyzed. Based on the analysis,microfluidic chips are designed. Moreover, the air chambers and the culture chambersin microfluidic chips are optimized by finite element method. Results show: when thedistance between the entrance and exit of gas chamber increases, the percentage ofportion with smaller velocity reduces, the percentage of portion with greater velocityincreases, the velocity of changing air increases and the residue of air becomes less,which has nothing to do with the structures of the entrance, the exit and gas chamber;and in microfluidic chips driven by electric micro injection device, when the diameterof culture chamber is1mm more or less, the shear force suffered by stem cells isabout10-2dynes/cm2which has no influence to the stem cells.
     In the respects of fabricating microfluidic chips, the material, methods andprocesses of fabricating microfluidic chips are introduced. Some important problems in fabricating microfluidic chips are analyzed: the selection of microfluidic chips’material, the productivity and cost of fabricating microfluidic chips and the usabilityof microfluidic chips. In the processing cover slips, CD/DVD manufacturingtechnology is adopted. In the bonding of cover slips and substrates, the thermalbonding method is adopted. In the packaging of microfluidic chips, the micro needlesare adopted. Meanwhile, the productivity of processing, bonding and packaging isestimated. Results show: the material PC is suited for fabricating microfluidic chips;repeated bonding could increase the productivity and reduce the cost of fabricatingmicrofluidic chips; and using micro needles could make the usability of microfluidicchips easier.
     In the respects of applying microfluidic chips, ICR mouse bone marrowmesenchymal stem cells were chosen as the experimental cells and low temperaturesteam sterilization was chosen as the microfluidic chips’ sterilization methods. Inaddition, a manual injection device was designed and made. Using the manualmicroinjection device and an electric microinjection device, a single cell and cellswere microinjected into microfluidic chips. Moreover, the flow velocity inmicrofluidic chips was measured to confirm the optimized results. After themicroinjection and measurement, single cells and cells were cultured in microfluidicchips. Results show: the movement velocity of a single cell is similar to the liquidflow velocity which means the optimized results and the real situation reach a goodagreement; the limited culture area in microfluidic chips may inhibit the proliferationrate of ICR mouse bone marrow mesenchymal stem cells; and the inhibition orpromotion of proliferation rate may relate to the kinds of cells.
引文
[1] DING S, SCHULTZ P G. A role for chemistry in stem cell biology [J]. Nature biotechnology,2004,22(7):833-40.
    [2] LEROU P H, DALEY G Q. Therapeutic potential of embryonic stem cells [J]. Blood Rev,2005,19(6):321-31.
    [3] KUEHNLE I, GOODELL M A. The therapeutic potential of stem cells from adults [J]. Br Med J,2002,325(7360):372-6.
    [4] RINGE J, KAPS C, BURMESTER G R, et al. Stem cells for regenerative medicine: advances inthe engineering of tissues and organs [J]. Naturwissenschaften,2002,89(8):338-51.
    [5] MIMEAULT M, HAUKE R, BATRA S K. Stem cells: A revolution in therapeutics-Recentadvances in stem cell biology and their therapeutic applications in regenerative medicine and cancertherapies [J]. Clin Pharmacol Ther,2007,82(3):252-64.
    [6] TANG C, ANG B T, PERVAIZ S. Cancer stem cell: target for anti-cancer therapy [J]. Faseb J,2007,21(14):3777-85.
    [7] HE S H, NAKADA D, MORRISON S J. Mechanisms of Stem Cell Self-Renewal [M]. Annu RevCell Dev Biol. Palo Alto; Annual Reviews.2009:377-406.
    [8] LIU N, LU M, TIAN X M, et al. Molecular mechanisms involved in self-renewal andpluripotency of embryonic stem cells [J]. J Cell Physiol,2007,211(2):279-86.
    [9] MORRISON S J, SPRADLING A C. Stem cells and niches: Mechanisms that promote stem cellmaintenance throughout life [J]. Cell,2008,132(4):598-611.
    [10] RADHIKA P. Exploring the Recent Advances in Stem Cell Research [J]. Journal of Stem CellResearch&Therapy,2011:1000113.
    [11] TILL J E, MCCULLOCH E A. A direct measurement of the radiation sensitivity of normal mousebone marrow cells [J]. Radiation research,1961,14(2):213-22.
    [12] WEISSMAN I L, ANDERSON D J, GAGE F. Stem and progenitor cells: Origins, phenotypes,lineage commitments, and transdifferentiations [J]. Annu Rev Cell Dev Biol,2001,17:387-403.
    [13] WERTZ D C. Embryo and stem cell research in the USA: a political history [J]. Trends inMolecular Medicine,2002,8(3):143-6.
    [14] WILSON J M. A History Lesson for Stem Cells [J]. Science,2009,324(5928):727-8.
    [15] PERRY D. Patients' voices: The powerful sound in the stem cell debate [J]. Science,2000,287(5457):1423.
    [16] BAYLIS F, MCLEOD C. The stem cell debate continues: the buying and selling of eggs forresearch [J]. Journal of Medical Ethics,2007,33(12):726-31.
    [17] EDWARDS R. IVF and the history of stem cells [J]. Nature,2001:349-52.
    [18] THOMSON J A, ITSKOVITZ-ELDOR J, SHAPIRO S S, et al. Embryonic stem cell lines derivedfrom human blastocysts [J]. Science,1998,282(5391):1145-7.
    [19] CLARKE D L, JOHANSSON C B, WILBERTZ J, et al. Generalized potential of adult neuralstem cells [J]. Science,2000,288(5471):1660-3.
    [20] KRAUSE D S, THEISE N D, COLLECTOR M I, et al. Multi-organ, multi-lineage engraftment bya single bone marrow-derived stem cell [J]. Cell,2001,105(3):369-77.
    [21] YU J, VODYANIK M A, SMUGA-OTTO K, et al. Induced pluripotent stem cell lines derivedfrom human somatic cells [J]. Science,2007,318(5858):1917-20.
    [22] TAKAHASHI K, YAMANAKA S. Induction of pluripotent stem cells from mouse embryonic andadult fibroblast cultures by defined factors [J]. Cell,2006,126(4):663-76.
    [23] MORRISON S J, SHAH N M, ANDERSON D J. Regulatory mechanisms in stem cell biology [J].Cell,1997,88(3):287-98.
    [24] SMITH A. A glossary for stem-cell biology [J]. Nature,2006,441(7097):1060.
    [25] ALISON M R, POULSOM R, FORBES S, et al. An introduction to stem cells [J]. The Journal ofpathology,2002,197(4):419-23.
    [26] POTTEN C S, LOEFFLER M. Stem-cells-attributes, cycles, spirals, pitfalls and uncertainties-lessons for and from the crypt [J]. Development,1990,110(4):1001-20.
    [27] HALL P A, WATT F M. Stem-cells-the generation and maintenance of cellular diversity [J].Development,1989,106(4):619-33.
    [28] VAN DER KOOY D, WEISS S. Why stem cells?[J]. Science,2000,287(5457):1439-41.
    [29] EISENBERG L M, EISENBERG C A. Stem cell plasticity, cell fusion, and transdifferentiation [J].Birth Defects Research Part C: Embryo Today: Reviews,2003,69(3):209-18.
    [30] BONGSO A, LEE E H. Stem Cells: Their Definition, Classification and Sources [M]. Stem cells:from bench to bedside. Singapore; World Scientific Publishing Co. Pte. Ltd.2005:1-13.
    [31] COLE-TURNER R, DEMOPULOS F D, DORFF R E N, et al. Ethical issues in human stem cellresearch Volume III Religious perspectives [M]. Rockville, Maryland: United States National BioethicsAdvisory Commission,2000.
    [32] FRAZZETTO G. Embryos, cells and God [J]. EMBO reports,2004,5(6):553.
    [33] DE WERT G, MUMMERY C. Human embryonic stem cells: research, ethics and policy [J].Human reproduction,2003,18(4):672-82.
    [34] ANNAS G J, CAPLAN A, ELIAS S. Stem cell politics, ethics and medical progress [J]. Nat Med,1999,5(12):1339-41.
    [35] DRUKKER M, KATCHMAN H, KATZ G, et al. Human embryonic stem cells and theirdifferentiated derivatives are less susceptible to immune rejection than adult cells [J]. Stem Cells,2006,24(2):221-9.
    [36] CLARKE M F, FULLER M. Stem cells and cancer: two faces of eve [J]. Cell,2006,124(6):1111-5.
    [37] FERNANDES T G, DIOGO M M, CLARK D S, et al. High-throughput cellular microarrayplatforms: applications in drug discovery, toxicology and stem cell research [J]. Trends inBiotechnology,2009,27(6):342-9.
    [38] NEWMAN J D, TURNER A P F. Historical perspective of biosensor and biochip development[M]. Handbook of Biosensors and Biochips. Wiley.2008:41-56.
    [39] FODOR S P, READ J L, PIRRUNG M C, et al. Light-directed, spatially addressable parallelchemical synthesis [J]. Science,1991,251(4995):767-73.
    [40] XU J, HE X, ZHOU Y, et al. Research and applications of biochip technologies [J]. ChineseScience Bulletin,2000,45(2):101-8.
    [41] WHITESIDES G M. The origins and the future of microfluidics [J]. Nature,2006,442(7101):368-73.
    [42] HAEBERLE S, ZENGERLE R. Microfluidic platforms for lab-on-a-chip applications [J]. LabChip,2007,7(9):1094-110.
    [43] PASQUARELLI A. Biochips: Technologies and applications [J]. Materials Science andEngineering: C,2008,28(4):495-508.
    [44] ANDERSON J R, CHIU D T, WU H, et al. Fabrication of microfluidic systems in poly(dimethylsiloxane)[J]. Electrophoresis,2000,21:27-40.
    [45] TIMONEY C, FELDER R. Biochip Technology of the Future—Today![J]. Journal of theAssociation for Laboratory Automation,1999,4(4):86-9.
    [46] VAN DEN BERG A, LAMMERINK T. Micro total analysis systems: microfluidic aspects,integration concept and applications [J]. Microsystem technology in chemistry and life science,1998:21-49.
    [47] FAIR R. Digital microfluidics: is a true lab-on-a-chip possible?[J]. Microfluidics andNanofluidics,2007,3(3):245-81.
    [48] ZOU L, HUANG Z S, WONG K Y, et al. Research Progress in Carbohydrate Chips [J]. ChineseJournal of Organic Chemistry,2009,29(11):1689-99.
    [49] ZHU H, SNYDER M. Protein chip technology [J]. Current Opinion in Chemical Biology,2003,7(1):55-63.
    [50] EL-ALI J, SORGER P K, JENSEN K F. Cells on chips [J]. Nature,2006,442(7101):403-11.
    [51] CHENG J, SHELDON E L, WU L, et al. Preparation and hybridization analysis of DNA/RNAfrom E-coli on microfabricated bioelectronic chips [J]. Nature biotechnology,1998,16(6):541-6.
    [52] GUISEPPI-ELIE A, BRAHIM S, SLAUGHTER G, et al. Design of a subcutaneous implantablebiochip for monitoring of glucose and lactate [J]. Sensors Journal, IEEE,2005,5(3):345-55.
    [53] SAKAI-KATO K, KATO M, TOYO'OKA T. Creation of an on-chip enzyme reactor byencapsulating trypsin in sol-gel on a plastic microchip [J]. Anal Chem,2003,75(3):388-93.
    [54] ENANDER K. Folded polypeptide scaffolds for biosensor and biochip applications: design,synthesis, functionalisation and characterisation [D]; Universitetet i Link ping,2003.
    [55] BORREBAECK C A K. Antibodies in diagnostics-from immunoassays to protein chips [J].Immunology Today,2000,21(8):379-82.
    [56] RAMSAY G. DNA chips: State-of-the-art [J]. Nature biotechnology,1998,16(1):40-4.
    [57] OGURA M, AGATA Y, WATANABE K, et al. RNA chip: quality assessment of RNA bymicrochannel linear gel electrophoresis in injection-molded plastic chips [J]. Clinical Chemistry,1998,44(11):2249-55.
    [58] PARK S, SHIN I. Fabrication of carbohydrate chips for studying protein–carbohydrateinteractions [J]. Angewandte Chemie International Edition,2002,41(17):3180-2.
    [59] GABIG M, WEGRZYN G. An introduction to DNA chips: principles, technology, applicationsand analysis [J]. ACTA BIOCHIMICA POLONICA-ENGLISH EDITION-,2001,48(3):615-22.
    [60]张文毓.生物芯片产业发展现状及展望[J].传感器世界,2007,13(10):6-10.
    [61] WALKER G M, ZERINGUE H C, BEEBE D J. Microenvironment design considerations forcellular scale studies [J]. Lab Chip,2004,4(2):91-7.
    [62] MAHONEY M J, CHEN R R, TAN J, et al. The influence of microchannels on neurite growth andarchitecture [J]. Biomaterials,2005,26(7):771-8.
    [63] YI C Q, LI C W, JI S L, et al. Microfluidics technology for manipulation and analysis ofbiological cells [J]. Anal Chim Acta,2006,560(1-2):1-23.
    [64] MCCLAIN M A, CULBERTSON C T, JACOBSON S C, et al. Microfluidic devices for thehigh-throughput chemical analysis of cells [J]. Anal Chem,2003,75(21):5646-55.
    [65] CHUNG T D, KIM H C. Recent advances in miniaturized microfluidic flow cytometry for clinicaluse [J]. Electrophoresis,2007,28(24):4511-20.
    [66] HATTORI K, SUGIURA S, KANAMORI T. Microenvironment array chip for cell cultureenvironment screening [J]. Lab Chip,2011,11(2):212-4.
    [67] LIU B F, OZAKI M, HISAMOTO H, et al. Microfluidic chip toward cellular ATP andATP-conjugated metabolic analysis with bioluminescence detection [J]. Anal Chem,2005,77(2):573-8.
    [68] CHENG W, KLAUKE N, SEDGWICK H, et al. Metabolic monitoring of the electricallystimulated single heart cell within a microfluidic platform [J]. Lab Chip,2006,6(11):1424-31.
    [69] DI CARLO D, WU L Y, LEE L P. Dynamic single cell culture array [J]. Lab Chip,2006,6(11):1445-9.
    [70] ROPER M G, SHACKMAN J G, DAHLGREN G M, et al. Microfluidic chip for continuousmonitoring of hormone secretion from live cells using an electrophoresis-based immunoassay [J]. AnalChem,2003,75(18):4711-7.
    [71] CHO S, GORJUP E, THIELECKE H. Chip-based time-continuous monitoring of toxic effects onstem cell differentiation [J]. Annals of Anatomy-Anatomischer Anzeiger,2009,191(1):145-52.
    [72] YUE X, LI P C H. A three-dimensional flow control concept for single-cell experiments on amicrochip.1. Cell selection, cell retention, cell culture, cell balancing, and cell scanning [J]. AnalChem,2004,76(18):5273-81.
    [73] BURDICK J A, VUNJAK-NOVAKOVIC G. Engineered microenvironments for controlled stemcell differentiation [J]. Tissue Engineering Part A,2008,15(2):205-19.
    [74] ENGER J, GOKS R M, RAMSER K, et al. Optical tweezers applied to a microfluidic system [J].Lab Chip,2004,4(3):196-200.
    [75] LEE H, LIU Y, HAM D, et al. Integrated cell manipulation system—CMOS/microfluidic hybrid[J]. Lab Chip,2007,7(3):331-7.
    [76] PAMME N. Magnetism and microfluidics [J]. Lab Chip,2006,6(1):24-38.
    [77] LI P C H, HARRISON D J. Transport, manipulation, and reaction of biological cells on-chipusing electrokinetic effects [J]. Anal Chem,1997,69(8):1564-8.
    [78] HARRISON D J, FLURI K, SEILER K, et al. Micromachining a miniaturized capillaryelectrophoresis-based chemical analysis system on a chip [J]. Science,1993,261(5123):895-7.
    [79] HUH D, GU W, KAMOTANI Y, et al. Microfluidics for flow cytometric analysis of cells andparticles [J]. Physiological measurement,2005,26(3): R73.
    [80] WANG Z, EL-ALI J, ENGELUND M, et al. Measurements of scattered light on a microchip flowcytometer with integrated polymer based optical elements [J]. Lab Chip,2004,4(4):372-7.
    [81] LEE M Y, KUMAR R A, SUKUMARAN S M, et al. Three-dimensional cellular microarray forhigh-throughput toxicology assays [J]. Proceedings of the National Academy of Sciences,2008,105(1):59.
    [82] KHADEMHOSSEINI A, FERREIRA L, BLUMLING J, et al. Co-culture of human embryonicstem cells with murine embryonic fibroblasts on microwell-patterned substrates [J]. Biomaterials,2006,27(36):5968-77.
    [83] ROJAS-MAYORQUIN A E, TORRES-RUIZ N M, ORTUNO-SAHAGUN D, et al. Microarrayanalysis of striatal embryonic stem cells induced to differentiate by ensheathing cell conditioned media[J]. Developmental Dynamics,2008,237(4):979-94.
    [84] PEREZ-IRATXETA C, PALIDWOR G, PORTER C J, et al. Study of stem cell function usingmicroarray experiments [J]. FEBS Lett,2005,579(8):1795-801.
    [85] COBO F, CONCHA A. Application of microarray technology for microbial diagnosis in stem cellcultures: a review [J]. Cytotherapy,2007,9(1):53-9.
    [86] FLANAGAN L A, RHEE S W, SCHWARTZ P H, et al. Human neural stem cell growth anddifferentiation in a gradient-generating microfluidic device [J]. Lab Chip,2005,5(4):401-6.
    [87] ZENG L, XIAO Q, MARGARITI A, et al. HDAC3is crucial in shear-and VEGF-induced stemcell differentiation toward endothelial cells [J]. The Journal of cell biology,2006,174(7):1059-69.
    [88] WHEELER A R, THRONDSET W R, WHELAN R J, et al. Microfluidic device for single-cellanalysis [J]. Anal Chem,2003,75(14):3581-6.
    [89] WANG X, CHEN S, KONG M, et al. Enhanced cell sorting and manipulation with combinedoptical tweezer and microfluidic chip technologies [J]. Lab Chip,2011,11(21):3656-62.
    [90] SKELLEY A M, KIRAK O, SUH H, et al. Microfluidic control of cell pairing and fusion [J].Nature methods,2009,6(2):147-52.
    [91] VOLDMAN J. Electrical forces for microscale cell manipulation [J]. Annu Rev Biomed Eng,2006,8:425-54.
    [92] INGLIS D W, RIEHN R, STURM J C, et al. Microfluidic high gradient magnetic cell separation[J]. Journal of Applied Physics,2006,99(8):08K101.
    [93] HUANG W H, AI F, WANG Z L, et al. Recent advances in single-cell analysis using capillaryelectrophoresis and microfluidic devices [J]. Journal of Chromatography B,2008,866(1):104-22.
    [94] LEE S W, TAI Y C. A micro cell lysis device [J]. Sensors and Actuators A: Physical,1999,73(1):74-9.
    [95] LU H, SCHMIDT M A, JENSEN K F. A microfluidic electroporation device for cell lysis [J]. LabChip,2004,5(1):23-9.
    [96] LU H, GAUDET S, SCHMIDT M A, et al. A microfabricated device for subcellular organellesorting [J]. Anal Chem,2004,76(19):5705-12.
    [97] LI Y, BUCH J S, ROSENBERGER F, et al. Integration of isoelectric focusing with parallelsodium dodecyl sulfate gel electrophoresis for multidimensional protein separations in a plasticmicrofludic network [J]. Anal Chem,2004,76(3):742-8.
    [98] VAN NOORT D, ONG S M, ZHANG C, et al. Stem cells in microfluidics [J]. BiotechnologyProgress,2009,25(1):52-60.
    [99] KANG Y, LI D. Electrokinetic motion of particles and cells in microchannels [J]. Microfluidicsand Nanofluidics,2009,6(4):431-60.
    [100] SATO K, YAMANAKA M, TAKAHASHI H, et al. Microchip‐based immunoassay systemwith branching multichannels for simultaneous determination of interferon‐γ [J]. Electrophoresis,2002,23(5):734-9.
    [101] BURG T P, MANALIS S R. Suspended microchannel resonators for biomolecular detection[J]. Applied Physics Letters,2003,83(13):2698-700.
    [102]百度知道.成功的细胞培养条件[M]. http://zhidao.baidu.com/question/445052045.2013.
    [103]维基百科.呼吸作用[M].http://zh.wikipedia.org/wiki/%E5%91%BC%E5%90%B8%E4%BD%9C%E7%94%A8.2013.
    [104] CHEN B P C, LI Y S, ZHAO Y H, et al. DNA microarray analysis of gene expression inendothelial cells in response to24-h shear stress [J]. Physiol Genomics,2001,7(1):55-63.
    [105] JALALI S, LI Y S, SOTOUDEH M, et al. Shear stress activates p60src-Ras-MAPKsignaling pathways in vascular endothelial cells [J]. Arterioscler Thromb Vasc Biol,1998,18(2):227-34.
    [106] ANDO J, NOMURA H, KAMIYA A. The effect of fluid share-stress on the migration andproliferation of cultured endothelial-cells [J]. Microvasc Res,1987,33(1):62-70.
    [107] DIMMELER S, HAENDELER J, RIPPMANN V, et al. Shear stress inhibits apoptosis ofhuman endothelial cells [J]. FEBS Lett,1996,399(1-2):71-4.
    [108] KITAYAMA J, HIDEMURA A, SAITO H, et al. Shear stress affects migration behavior ofpolymorphonuclear cells arrested on endothelium [J]. Cell Immunol,2000,203(1):39-46.
    [109] WATERS C M, GLUCKSBERG M R, DEPAOLA N, et al. Shear stress alters pleuralmesothelial cell permeability in culture [J]. J Appl Physiol,1996,81(1):448-58.
    [110] LEE A A, GRAHAM D A, DELA CRUZ S, et al. Fluid shear stress-induced alignment ofcultured vascular smooth muscle cells [J]. J Biomech Eng-Trans ASME,2002,124(1):37-43.
    [111]SATO M, NAGAYAMA K, KATAOKA N, et al. Local mechanical properties measured by atomicforce microscopy for cultured bovine endothelial cells exposed to shear stress [J]. J Biomech,2000,33(1):127-35.
    [112] YAMAMOTO K, SOKABE T, WATABE T, et al. Fluid shear stress induces differentiation ofFlk-1-positive embryonic stem cells into vascular endothelial cells in vitro [J]. American Journal ofPhysiology-Heart and Circulatory Physiology,2005,288(4): H1915-24.
    [113] CHIA-CHING W, YOU-CHEN C, CHENG-NAN C, et al. Synergism of biochemical andmechanical stimuli in the differentiation of human placenta-derived multipotent cells into endothelialcells [J]. J Biomech,2008,41(4):813-21.
    [114] ILLI B, SCOPECE A, NANNI S, et al. Epigenetic histone modification and cardiovascularlineage programming in mouse embryonic stem cells exposed to laminar shear stress [J]. CirculationResearch,2005,96(5):501-8.
    [115] YEON J H, PARK J K. Cytotoxicity test based on electrochemical impedance measurementof HepG2cultured in microfabricated cell chip [J]. Analytical Biochemistry,2005,341(2):308-15.
    [116] LAUNDER B E, SPALDING D B. Lectures in mathematical models of turbulence [M].1972.
    [117] SHIH T H, LIOU W W, SHABBIR A, et al. A new k-[epsilon] eddy viscosity model for highreynolds number turbulent flows [J]. Computers&Fluids,1995,24(3):227-38.
    [118] STONE H A, STROOCK A D, AJDARI A. Engineering flows in small devices [J]. AnnuRev Fluid Mech,2004,36:381-411.
    [119] KONSTANTOPOULOS K, KUKRETI S, MCINTIRE L V. Biomechanics of cellinteractions in shear fields [J]. Advanced Drug Delivery Reviews,1998,33(1-2):141-64.
    [120] LUO W, JONES S R, YOUSAF M N. Geometric Control of Stem Cell Differentiation Rateon Surfaces [J]. Langmuir,2008,24(21):12129-33.
    [121] SONG W, LU H X, KAWAZOE N, et al. Adipogenic differentiation of individualmesenchymal stem cell on different geometric micropatterns [J]. Langmuir,2011,27(10):6155-62.
    [122] MAHMOOD J, TAKITA H, OJIMA Y, et al. Geometric effect of matrix upon celldifferentiation: BMP-induced osteogenesis using a new bioglass with a feasible structure [J]. JBiochem,2001,129(1):163-71.
    [123] STOLBERG S, MCCLOSKEY K E. Can Shear Stress Direct Stem Cell Fate?[J].Biotechnology Progress,2009,25(1):10-9.
    [124]祁恒.高聚物基连续流式PCR微流控芯片系统与应用技术研究[D];北京工业大学,2009.
    [125]周兆英,叶雄英,李勇, et al.微流量系统的基础技术研究[J].中国机械工程,1999,10(9):991-3.
    [126]罗怡,娄志峰,褚德南, et al.玻璃微流控芯片的制作[J].纳米技术与精密工程,2004,2(1):20-3.
    [127]殷学锋,沈宏.制造玻璃微流控芯片的简易加工技术[J].分析化学,2003,31(1):116-9.
    [128] MCDONALD J C, WHITESIDES G M. Poly (dimethylsiloxane) as a material forfabricating microfluidic devices [J]. Accounts of chemical research,2002,35(7):491-9.
    [129] GERLACH A, KNEBEL G, GUBER A, et al. Microfabrication of single-use plasticmicrofluidic devices for high-throughput screening and DNA analysis [J]. Microsystem Technologies,2002,7(5):265-8.
    [130] HASHIMOTO M, CHEN P C, MITCHELL M W, et al. Rapid PCR in a continuous flowdevice [J]. Lab Chip,2004,4(6):638-45.
    [131]陆振华,许宝建,金庆辉, et al.用于PDMS微芯片塑性成型的SU-8模具制作工艺的优化[J].2008:639-44.
    [132] R TTING O, R PKE W, BECKER H, et al. Polymer microfabrication technologies [J].Microsystem Technologies,2002,8(1):32-6.
    [133] COSTELA A, GARC A‐MORENO I, FLORIDO F, et al. Laser ablation of polymericmaterials at157nm [J]. Journal of Applied Physics,1995,77(6):2343-50.
    [134] WU C H, CHEN C H, FAN K W, et al. Design and fabrication of polymer microfluidicsubstrates using the optical disc process [J]. Sensors and Actuators A: Physical,2007,139(1):310-7.
    [135] LEE L J, MADOU M J, KOELLING K W, et al. Design and fabrication of CD-likemicrofluidic platforms for diagnostics: polymer-based microfabrication [J]. Biomedical Microdevices,2001,3(4):339-51.
    [136] MADOU M J, LEE L J, DAUNERT S, et al. Design and fabrication of CD-like microfluidicplatforms for diagnostics: microfluidic functions [J]. Biomedical Microdevices,2001,3(3):245-54.
    [137]殷学锋,方群,凌云扬.微流控分析芯片的加工技术[J].现代科学仪器,2001,4(1): l4.
    [138] REYES D R, IOSSIFIDIS D, AUROUX P A, et al. Micro total analysis systems.1.Introduction, theory, and technology [J]. Anal Chem,2002,74(12):2623-36.
    [139] MADOU M J. Fundamentals of microfabrication: the science of miniaturization [M]. BocaRaton, FL: CRC Press,2002.
    [140] RAI-CHOUDHURY P. Handbook of microlithography, micromachining, andmicrofabrication [M]. Bellingham, WA: SPIE Press,1997.
    [141] RAI-CHOUDHURY P. Handbook of microlithography, micromachining, andmicrofabrication [M]. Bellingham, WA: SPIE Press,1997.
    [142] ZHANG C, XU J, MA W, et al. PCR microfluidic devices for DNA amplification [J].Biotechnology advances,2006,24(3):243-84.
    [143]张瑜. PMMA基PCR生物芯片的准分子激光微加工、键合、封装技术研究[D];北京工业大学,2004.
    [144]李永刚. PDMS微流控芯片关键工艺技术研究[D];中国科学院研究生院(长春光学精密机械与物理研究所),2006.
    [145] PEROZZIELLO G, BUNDGAARD F, GESCHKE O. Fluidic interconnections formicrofluidic systems: A new integrated fluidic interconnection allowing plug ‘n’play functionality [J].Sensors and actuators B: Chemical,2008,130(2):947-53.
    [146] GRAY B, JAEGGI D, MOURLAS N, et al. Novel interconnection technologies forintegrated microfluidic systems [J]. Sensors and Actuators A: Physical,1999,77(1):57-65.
    [147]苑伟政,马炳和.微机械与微细加工技术[M].西北工业大学出版社,2000.
    [148] WEBER M. Handbook of optical materials [M]. USA: CRC Press,2002.
    [149] ZHANG J, HUANG H, JI X, et al. Fabrication and transmission characteristic of PDMSplasma photonic crystal; proceedings of the9th International Conference on Solid-State andIntegrated-Circuit Technology, ICSICT2008, Beijing, F,2008[C]. IEEE.
    [150] BLACK J. Biological performance of materials: fundamentals of biocompatibility [M]. CRC,2005.
    [151] DILLINGHAM E, WEBB N, LAWRENCE W, et al. Biological evaluation of polymers I.Poly (methyl methacylate)[J]. Journal of biomedical materials research,2004,9(6):569-96.
    [152] VALLITTU P K, EKSTRAND K. In vitro cytotoxicity of fibre-polymethyl methacrylatecomposite used in dentures [J]. J Oral Rehabil,1999,26(8):666-71.
    [153] HIEBL B, L TZOW K, LANGE M, et al. Cytocompatibility testing of cell culture modulesfabricated from specific candidate biomaterials using injection molding [J]. Journal of Biotechnology,2010,148(1):76-82.
    [154] PITHON M M, DOS SANTOS R L, MARTINS F O, et al. Cytotoxicity of polycarbonateorthodontic brackets [J]. Brazilian Journal of Oral Sciences,2009,8(2):84-7.
    [155] LODIEN G, MORISBAK E, BRUZELL E, et al. Toxicity evaluation of root canal sealersin vitro [J]. International endodontic journal,2008,41(1):72-7.
    [156] MARK J E. Polymer data handbook [M]. Oxford University Press New York,2009.
    [157] WELLE A, GOTTWALD E. UV-based patterning of polymeric substrates for cell cultureapplications [J]. Biomedical Microdevices,2002,4(1):33-41.
    [158] LECLERC E, SAKAI Y, FUJII T. Cell culture in3-dimensional microfluidic structure ofPDMS (polydimethylsiloxane)[J]. Biomedical Microdevices,2003,5(2):109-14.
    [159] LI P, XU B, LI L, et al. Fabrication of biochip based on CD/DVD manufacturing technology[M]. Proceedings of SPIE.2009:751709.
    [160]百度百科.表面粗糙度[M]. http://baike.baidu.com/view/55599.htm.2013.
    [161] HENG Q, TAO C, TIE-CHUAN Z. Surface roughness analysis and improvement ofmicro-fluidic channel with excimer laser [J]. Microfluidics and Nanofluidics,2006,2(4):357-60.
    [162] HUANG Y, LIU S, YANG W, et al. Surface roughness analysis and improvement ofPMMA-based microfluidic chip chambers by CO2 laser cutting [J]. Applied SurfaceScience,2010,256(6):1675-8.
    [163] BEYER NARDI N, SILVA MEIRELLES L. Mesenchymal stem cells: isolation, in vitroexpansion and characterization [J]. Stem Cells,2006:249-82.
    [164]孙晓艳,范洪学.骨髓间充质干细胞的研究进展[J].吉林医学,2007,28(2):156-9.
    [165] BRIGHTON C T, HUNT R M. Early histological and ultrastructural changes in medullaryfracture callus [J]. The Journal of bone and joint surgery American volume,1991,73(6):832.
    [166] RAHFOTH B, WEISSER J, STERNKOPF F, et al. Transplantation of allograft chondrocytesembedded in agarose gel into cartilage defects of rabbits [J]. Osteoarthritis and Cartilage,1998,6(1):50-65.
    [167] PITTENGER M F, MACKAY A M, BECK S C, et al. Multilineage potential of adult humanmesenchymal stem cells [J]. Science,1999,284(5411):143-7.
    [168] WOODBURY D, SCHWARZ E J, PROCKOP D J, et al. Adult rat and human bone marrowstromal cells differentiate into neurons [J]. Journal of neuroscience research,2000,61(4):364-70.
    [169] WANG J-S, SHUM-TIM D, GALIPEAU J, et al. Marrow stromal cells for cellularcardiomyoplasty: feasibility and potential clinical advantages [J]. The Journal of thoracic andcardiovascular surgery,2000,120(5):999-1006.
    [170] WIKIPEDIA. Mesenchymal stem cell [M].http://en.wikipedia.org/wiki/Mesenchymal_stem_cell.2013.
    [171] BARRY F P, MURPHY J M. Mesenchymal stem cells: clinical applications and biologicalcharacterization [J]. The international journal of biochemistry&cell biology,2004,36(4):568-84.
    [172]邱林,金先庆.骨髓间充质干细胞的生物学特性及其临床治疗应用[J].中国组织工程研究与临床康复,2008,12(012):2347-50.
    [173] SATOH H, KISHI K, TANAKA T, et al. Transplanted mesenchymal stem cells are effectivefor skin regeneration in acute cutaneous wounds [J]. Cell transplantation,2004,13(4):405-12.
    [174] KOC O, DAY J, NIEDER M, et al. Allogeneic mesenchymal stem cell infusion for treatmentof metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-IH)[J]. Bone marrowtransplantation,2002,30(4):215.
    [175] FOUILLARD L, BENSIDHOUM M, BORIES D, et al. Engraftment of allogeneicmesenchymal stem cells in the bone marrow of a patient with severe idiopathic aplastic anemiaimproves stroma [J]. Leukemia,2003,17(2):474-6.
    [176] KON E, MURAGLIA A, CORSI A, et al. Autologous bone marrow stromal cells loaded ontoporous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones [J].Journal of biomedical materials research,2000,49(3):328-37.
    [177] CHAMBERLAIN J R, SCHWARZE U, WANG P-R, et al. Gene targeting in stem cells fromindividuals with osteogenesis imperfecta [J]. Science,2004,303(5661):1198-201.
    [178] TORSVIK A, BJERKVIG R. Mesenchymal stem cell signaling in cancer progression [J].Cancer Treatment Reviews,2013,39(2):180-8.
    [179]百度百科. ICR小鼠[M]. http://baike.baidu.com/view/980741.htm.2013.
    [180]中国科学院遗传发育所实验动物中心. ICR小鼠[M].http://lac.genetics.ac.cn/fwnr/ArticleShow.asp?ArticleID=8.2013.
    [181]上海研生生化试剂有限公司.灭菌方法的分类[M].http://www.ybzhan.cn/st24610/Info_11308.html.2011.
    [182]百度百科.灭菌[M]. http://baike.baidu.com/view/314928.htm.2013.
    [183]百度百科.高压蒸汽灭菌法[M]. http://baike.baidu.com/view/1855644.htm.2013.
    [184]百度百科.射线灭菌法[M]. http://baike.baidu.com/view/1855646.htm.2013.
    [185]中华人民共和国国家质量监督检验检疫总局. GB19258紫外线杀菌灯[M].2003.
    [186]百度百科.过滤灭菌法[M]. http://baike.baidu.com/view/8689426.htm.2013.
    [187]百度百科.化学灭菌法[M]. http://baike.baidu.com/view/1282668.htm.2013.
    [188]上海高鸽工贸有限公司.液相微量进样器[M]. http://www.sh-gaoge.com/baojia.htm.2013.
    [189]北京卓立汉光仪器有限公司. ACFS系列螺纹副[M].http://www.zolix.com.cn/templates/channel/index.aspx?nodeid=109&page=ContentPage&contentid=290&tohtml=false.2013.
    [190]仝识非,宋治远,姚青, et al.小鼠骨髓间充质干细胞的分离与纯化培养的实验研究[J].第三军医大学学报,2007,29(10):907-10.
    [191]许琴,朱依纯.小鼠骨髓间充质干细胞的分离及培养[J].遵义医学院学报,2002,25(002):109-11.
    [192] WU H W, LIN C C, HWANG S M, et al. A microfluidic device for chemical and mechanicalstimulation of mesenchymal stem cells [J]. Microfluidics and Nanofluidics,2011,11(5):545-56.
    [193] LECAULT V, VANINSBERGHE M, SEKULOVIC S, et al. High-throughput analysis ofsingle hematopoietic stem cell proliferation in microfluidic cell culture arrays [J]. Nature methods,2011,8(7):581-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700