BZR1靶基因的筛选及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油菜素甾醇类物质(Brassinosteroids)是继生长素,细胞分裂素,乙烯,赤霉素和脱落酸之后被广泛认定的第六大类植物内源激素,具有促进植物生长发育,细胞伸长和分裂,增强作物抗逆以及提高产量等作用。近年来,研究人员对油菜素内酯的重要功能进行了大量研究,尤其是在信号转导途径方面。但BZR1(BRASSINAZOLE-RESISTANT1)作为油菜素内酯信号通路中的关键转录因子,如何调控下游响应基因的表达目前还尚不清楚。所以,对BZR1靶基因的功能分析对于理解BR下游的信号通路以及阐明其与其他信号通路之间的关系有着很重要的意义。
     本研究通过对BZR1的靶基因进行初步筛选,将其克隆至含有35S启动子的载体中进行过表达,然后对转基因植株进行表型鉴定,由此,筛选到两个过表达植株具有明显表型的基因:庇荫响应的负调控因子PAR1(PHYTOCHROME RAPIDLYREGULATED1)以及一个功能未知的基因(暂命名为QQ1)。PAR1属于HLH转录因子家族,由于缺乏经典的DNA结合区域,所以被认为可能通过与能够结合DNA的转录因子形成异源二聚体,进而来调控基因的表达,但目前还未发现与PAR1相互作用的转录因子。本文利用酵母双杂交系统对可能与其相互作用的基因进行初步确认,并运用DNA pull down实验和染色质免疫共沉淀等实验对基因进行了体内以及体外验证,分析其机理,取得的主要研究结果如下:
     1.通过将候选靶基因构建到带有MYC标签的35s过表达载体中,筛选到两个具有明显表型的基因PAR1和QQ1。与野生型Col-0相比,PAR1,QQ1基因的过表达植株均出现植株矮小,叶柄缩短,颜色深绿等表型。
     2. PAR1与光敏色素相互作用因子PIF4在体内和体外均能相互作用。与野生型Col-0相比,PAR1OX转基因植株对光超敏感,增加光强,转基因植株的下胚轴缩短的更为明显。光照可明显增加PAR1的蛋白量,且这种增加量对红光,远红光和蓝光均有所响应,表明PAR1蛋白量的增加被多种光受体所调控。
     3.在qRT-PCR实验中,PAR1抑制PIF4的靶基因,与野生型Col-0相比,HFR1,PIL1和IAA29基因的表达在PAR1OX中较低。运用DNA pull-down实验以及染色质免疫共沉淀技术在体外和体内均证明了PAR1抑制PIF4结合DNA。将T1代的PAR1OX/PIF4OX双转基因植株与PAR1OX以及PIF4OX转基因植株进行比较,PIF4OX促进下胚轴的伸长,PAR1OX部分抑制PIF4OX下胚轴的伸长,表明PIF4在PAR1OX转基因植株中的活性受到抑制。同时,PAR1抑制PIF4所调节的部分生理响应,表现在PAR1OX转基因植株对赤霉素和高温响应不敏感,这与pifq的四突变体(缺失PIF1,PIF3,PIF4以及PIF5)相似,即下胚轴的伸长受到抑制,均不敏感。
     4.用酵母双杂交系统筛选与PAR1相互作用的因子时,除了PIF4,另外还发现PRE1也与PAR1相互作用,同时双分子荧光互补实验也证明了PAR1与PRE1的相互作用。PRE1属于bHLH家族,受油菜素内酯以及赤霉素的正调控。将PAR1OX与PREOX进行杂交,F1代转基因植株完全显示出PREOX的表型,即叶柄伸长,叶子伸展等,说明PRE1抑制了PAR1OX矮小的表型。以上的结果预示着PAR1-PRE1和PAR-PIF4可能形成HLH/bHLH的异源二聚体来共同响应光和植物激素,进而调控细胞伸长和植物的生长发育。
     5.此外,还筛选到另外一个过表达植株具有明显表型的BZR1靶基因,命名为QQ1,经过序列比对分析得出QQ1属于HLH家族,不含有DNA结合区域,与AIF1和PAR1位于较近的分支点上,亲缘关系较为密切。对其进行初步的研究后发现,QQ1可以和PRE1在酵母双杂交系统中相互作用,而且短时间的光照能很显著的增加其蛋白量,BL处理能够降低其蛋白量,这与QQ1的过表达植株的表型相一致,以上的结果可初步推测QQ1可能是另外一个连接光和油菜素内酯信号转导的一个桥梁分子。下一步的工作将集中在阐明QQ1在光与内源激素交叉信号中作用的分子机制。
(Brassinosteroids)have been recognized as the sixth class of plant hormones aftercytokinin, auxin, gibberellins, ethylene and abscisic acid. Brassinosteroids regulate diverseplant growth and developmental processes such as promotion of stem elongation and celldivision, increase of tolerance to various stresses. Recently, more progresses were made infunctions analysis of Brassinosteroids, special in elucidating the brassinosteroid signalingpathway. BZR1(BRASSINAZOLE-RESISTANT1) is a key transcription factor in the BRsignaling pathway to regulate gene expression. How BZR1regulates the expression ofdownstream genes is still unclear. Analysis of the target genes of BZR1is a key forunderstanding the downstream of BR pathways and elucidating the transcriptional networkwith other signaling pathway, and also improving the bioactive substances of medicinal plant.
     In this study, we screened some BR regulated BZR1targets genes. We analyzed thegrowth phenotype of the over-expressing transgenic plants and their response to light andvarious hormones. Finally, we identified two genes, over-expression of which resulted inobvious phenotypes in the transgenic plants, PAR1(PHYTOCHROME RAPIDLYREGULATED1)and QQ1with unknown function. PAR1and its closest homolog PAR2arenegative regulators of shade-avoidance syndrome (SAS), they belong to the HLHtranscription factor family that lacks a typical basic domain required for DNA binding, andare believed to regulate gene expressions through DNA binding transcription factors that areyet to be identified. We used yeast-two-hybrid system to screen the possible genes which caninteract with the target genes. Further analysis of the mechanism by sorts of moleculartechniques such as DNA pull-down and chromatin immunoprecipitation assay identified thefunctions in vitro and vivo. The results show as follows:
     1. We generated overexpressing transgenic plants fused with MYC tag for candidategenes. Over expressing PAR1(PAR1OX) and QQ1(QQ1OX) transgenic plants displayeddwarfism with reduced petiole length and small leaves compared with wild-type Col-0.
     2. Here, we show that PAR1interacts with PIF4(phytochrome interaction factor4) inyeast-two-hybrid assay, bimolecular fluorescence complementation, in vitro pull down assayand Co-immunoprecipitation assay. Transgenic plants overexpressing PAR1arehypersensitive to light; the hypocotyl length of PAROX is shorter than wildtype Col-0understrong light density. PAR1protein level increased in etiolated seedlings under white light, and also under in red, far-red and blue light, indicating that PAR1protein stability is regulated bymultiple photoreceptors.
     3. PAR1inhibits PIF4direct target genes. The expression level of HFR1, PIL1andIAA29in PAR1OX are lower than wild type Col-0in qRT-PCR result. DNA pull-down andchromatin immunoprecipitation (ChIP) assays showed that PAR1inhibits PIF4DNA bindingin vitro and in vivo. We generated PAR1OX/PIF4OX double transgenic plants and thencompared hypocotyl length with each single transgenic plant. While PIF4OX dramaticallypromoted hypocotyl elongation, PAR1OX partially suppressed the long-hypocotyl phenotypeof PIF4OX, consistent with PIF4being less active in the PAR1OX background. In addition,PAR1is involved in the PIF4-mediated response, as transgenic plants overexpressing PAR1are insensitive to gibberellin (GA) or high temperature in hypocotyl elongation, similar to thepifq (PIF1, PIF3, PIF4and PIF5mutant).
     4. In addition to PIF4, PAR1also interacts with PRE1in yeast-two-hybrid andbimolecular fluorescence complementation assay. PRE1, belonging to HLH family, isactivated by brassinosteroids (BRs) and GA. We generated PAR1OX/PRE1OX doubletransgenic plants. The F1-generation plants showed long petioles and expended leaf blades,similar to PRE1OX plants. It indicated that overexpression of PRE1largely suppressed thedwarf phenotype of PAR1OX. These results indicate that PAR1–PRE1and PAR1–PIF4heterodimers form a complex HLH/bHLH network regulating cell elongation and plantdevelopment in response to light and hormones.
     5. In addition to PAR1, we also identified a BZR1directly target gene which hasobviously phenotype in transgenic plants, named QQ1. QQ1belongs to HLH family lacks atypical basic domain required for DNA binding. It is close to AIF1and PAR1after alignment.We found that QQ1interacts with PRE1in the yeast-two-hybrid assay. QQ1protein leveldramatically increased when exposed under short time of white light. BL treatment reducedits protein level which is consistent with the phenotype of the PAROX transgenic plant. Theresults indicated that QQ1might be another link for integrating the light and BR signalingpathway.
引文
Aitken, A.(2006).14-3-3proteins: A historic overview. Seminars in Cancer Biology16:162-172.
    Albrecht, C., Russinova, E., Kemmerling, B., Kwaaitaal, M., and de Vries, S.C.(2008). ArabidopsisSOMATIC EMBRYOGENESIS RECEPTOR KINASE proteins serve brassinosteroid-dependentand-independent signaling pathways. Plant Physiology148:611-619.
    Arguello-Astorga, G., and Herrera-Estrella, L.(1998). Evolution of light-regulated plant promoters. AnnualReview of Plant Physiology and Plant Molecular Biology49:525-555.
    Atchley, W.R., Terhalle, W., and Dress, A.(1999). Positional dependence, cliques, and predictive motifs inthe bHLH protein domain. Journal of Molecular Evolution48:501-516.
    Bai, M.Y., Zhang, L.Y., Gampala, S.S., Zhu, S.W., Song, W.Y., Chong, K., and Wang, Z.Y.(2007).Functions of OsBZR1and14-3-3proteins in brassinosteroid signaling in rice. Proceedings of theNational Academy of Sciences of the United States of America104:13839-13844.
    Bridges, D., and Moorhead, G.(2005).14-3-3proteins: a nuMber of functions for a nuMbered protein.Science's STKE: signal transduction knowledge environment2005:re10.
    Buck, M.J., and Atchley, W.R.(2003). Phylogenetic analysis of plant basic helix-loop-helix proteins.Journal of Molecular Evolution56:742-750.
    Cano-Delgado, A., Yin, Y.H., Yu, C., Vafeados, D., Mora-Garcia, S., Cheng, J.C., Nam, K.H., Li, J.M.,and Chory, J.(2004). BRL1and BRL3are novel brassinosteroid receptors that function in vasculardifferentiation in Arabidopsis. Development131:5341-5351.
    Chattopadhyay, S., Ang, L.H., Puente, P., Deng, X.W., and Wei, N.(1998a). Arabidopsis bZIP proteinHY5directly interacts with light-responsive promoters in mediating light control of geneexpression. Plant Cell10:673-683.
    Chattopadhyay, S., Puente, P., Deng, X.W., and Wei, N.(1998b). Combinatorial interaction oflight-responsive elements plays a critical role in determining the response characteristics oflight-regulated promoters in Arabidopsis. Plant Journal15:69-77.
    Choe, S., Schmitz, R.J., Fujioka, S., Takatsuto, S., Lee, M.O., Yoshida, S., Feldmann, K.A., and Tax, F.E.(2002). Arabidopsis brassinosteroid-insensitive dwarf12mutants are semidominant and defectivein a glycogen synthase kinase3beta-like kinase. Plant Physiology130:1506-1515.
    Chory, J., Nagpal, P., and Peto, C.A.(1991). PHENOTYPIC AND GENETIC-ANALYSIS OF DET2, ANEW MUTANT THAT AFFECTS LIGHT-REGULATED SEEDLING DEVELOPMENT INARABIDOPSIS. Plant Cell3:445-459.
    Clouse, S.D.(1996). Molecular genetic studies confirm the role of brassinosteroids in plant growth anddevelopment. Plant Journal10:1-8.
    Clouse, S.D., Langford, M., and McMorris, T.C.(1996). A brassinosteroid-insensitive mutant inArabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiology111:671-678.
    Clouse, S.D., and Sasse, J.M.(1998). Brassinosteroids: Essential regulators of plant growth anddevelopment. Annual Review of Plant Physiology and Plant Molecular Biology49:427-451.
    Clouse, S.D., Zurek, D.M., McMorris, T.C., and Baker, M.E.(1992). Effect of brassinolide ongene-exppression in elongating soybean epicotyls. Plant Physiology100:1377-1383.
    De Rybel, B., Audenaert, D., Vert, G., Rozhon, W., Mayerhofer, J., Peelman, F., Coutuer, S., Denayer, T.,Jansen, L., Nguyen, L., Vanhoufte, I., Beemster, G.T.S., Vleminckx, K., Jonak, C., Chory, J., Inze,D., Russinova, E., and Beeckman, T.(2009). Chemical Inhibition of a Subset of Arabidopsisthaliana GSK3-like Kinases Activates Brassinosteroid Signaling. Chemistry&Biology16:594-604.
    Devlin, P.F., Halliday, K.J., Harberd, N.P., and Whitelam, G.C.(2003). The rosette habit of Arabidopsisthaliana is dependent upon phytochrome action: Novel phytochromes control internode elongationand flowering time. Plant Journal10:1127-1134.
    Dhaubhadel, S., Chaudhary, S., Dobinson, K.F., and Krishna, P.(1999). Treatment with24-epibrassinolide,a brassinosteroid, increases the basic thermotolerance of Brassica napus and tomato seedlings.Plant Molecular Biology40:333-342.
    Feng, S., Martinez, C., Gusmaroli, G., Wang, Y., Zhou, J., Wang, F., Chen, L., Yu, L., Iglesias-Pedraz,J.M., and Kircher, S.(2008). Coordinated regulation of Arabidopsis thaliana development by lightand gibberellins. Nature451:475-479.
    Friedrichsen, D.M., Joazeiro, C.A.P., Li, J.M., Hunter, T., and Chory, J.(2000).Brassinosteroid-insensitive-1is a ubiquitously expressed leucine-rich repeat receptorserine/threonine kinase. Plant Physiology123:1247-1255.
    Fujimori, T., Yamashino, T., Kato, T., and Mizuno, T.(2004). Circadian-controlled basic/helix-loop-helixfactor, PIL6, implicated in light-signal transduction in Arabidopsis thaliana. Plant and CellPhysiology45:1078-1086.
    Galstyan, A., Cifuentes-Esquivel, N., Bou-Torrent, J., and Martinez-Garcia, J.F.(2011). The shadeavoidance syndrome in Arabidopsis: a fundamental role for atypical basic helix-loop-helix proteinsas transcriptional cofactors. Plant J66:258-267.
    Gampala, S.S., Kim, T.-W., He, J.-X., Tang, W., Deng, Z., Bai, M.-Y., Guan, S., Lalonde, S., Sun, Y.,Gendron, J.M., Chen, H., Shibagaki, N., Ferl, R.J., Ehrhardt, D., Chong, K., Burlingame, A.L., andWang, Z.-Y.(2007). An essential role for14-3-3proteins in brassinosteroid signal transduction inArabidopsis. Developmental Cell13:177-189.
    Gendron, J.M., and Wang, Z.Y.(2007). Multiple mechanisms modulate brassinosteroid signaling. CurrentOpinion in Plant Biology10:436-441.
    Gray, W.M., Ostin, A., Sandberg, G., Romano, C.P., and Estelle, M.(1998). High temperature promotesauxin-mediated hypocotyl elongation in Arabidopsis. Proc Natl Acad Sci USA95:7197-7202.
    Gregory, L.E., and Mandava, N.B.(1982). The activity and interaction of brassinolide and gibberellic acidin mung bean epicotyls. Physiologia PlantaruM54:239-243.
    Grove, M.D., Spencer, G.F., Rohwedder, W.K., Mandava, N., Worley, J.F., Warthen, J.D., Steffens, G.L.,Flippenanderson, J.L., and Cook, J.C.(1979). Brassinolide, a plant growth-promoting steroidislated from brassica napus pollen. Nature281:216-217.
    Halliday, K.J., and Fankhauser, C.(2003). Phytochrome-hormonal signalling networks. New Phytologist157:449-463.
    He, J.X., Gendron, J.M., Sun, Y., Gampala, S.S.L., Gendron, N., Sun, C.Q., and Wang, Z.Y.(2005). BZR1is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses.Science307:1634-1638.
    He, J.X., Gendron, J.M., Yang, Y.L., Li, J.M., and Wang, Z.Y.(2002). The GSK3-like kinase BIN2phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signalingpathway in Arabidopsis. Proceedings of the National Academy of Sciences of the United States ofAmerica99:10185-10190.
    He, K., Gou, X., Yuan, T., Lin, H., Asami, T., Yoshida, S., Russell, S.D., and Li, J.(2007). BAK1andBKK1regulate Brassinosteroid-dependent growth and BrassinosteroidIndependent cell-deathpathways. Current Biology17:1109-1115.
    Heim, M.A., Jakoby, M., Werber, M., Martin, C., Weisshaar, B., and Bailey, P.C.(2003). The basichelix-loop-helix transcription factor family in plants: A genome-wide study of protein structureand functional diversity. Molecular Biology and Evolution20:735-747.
    Hellens, R.P., Allan, A.C., Friel, E.N., Bolitho, K., Grafton, K., Templeton, M.D., Karunairetnam, S.,Gleave, A.P., and Laing, W.A.(2005). Transient expression vectors for functional genomics,quantification of promoter activity and RNA silencing in plants. Plant Meth1:13.
    Hink, M.A., Shah, K., Russinova, E., de Vries, S.C., and Visser, A.J.W.G.(2008). Fluorescence fluctuationanalysis of Arabidopsis thaliana somatic embryogenesis receptor-like kinase and brassinosteroidinsensitive1receptor oligomerization. Biophysical Journal94:1052-1062.
    Hong, Z., Jin, H., Tzfira, T., and Li, J.(2008). Multiple Mechanism-Mediated Retention of a DefectiveBrassinosteroid Receptor in the Endoplasmic ReticuluM of Arabidopsis. Plant Cell20:3418-3429.
    Hornitschek, P., Lorrain, S., Zoete, V., Michielin, O., and Fankhauser, C.(2009). Inhibition of the shadeavoidance response by formation of non-DNA binding bHLH heterodimers. EMBO J28:3893-3902.
    Hu, W., Su, Y.S., and Lagarias, J.C.(2009). A Light-Independent Allele of Phytochrome B FaithfullyRecapitulates Photomorphogenic Transcriptional Networks. Molecular Plant2:166-182.
    Hubbard, S.R.(2004). Juxtamembrane autoinhibition in receptor tyrosine kinases. Nature ReviewsMolecular Cell Biology5:464-470.
    Huq, E., Al-Sady, B., Hudson, M., Kim, C.H., Apel, M., and Quail, P.H.(2004).PHYTOCHROME-INTERACTING FACTOR1is a critical bHLH regulator of chlorophyllbiosynthesis. Science305:1937-1941.
    Huq, E., and Quail, P.H.(2002). PIF4, a phytochrome-interacting bHLH factor, functions as a negativeregulator of phytochrome B signaling in Arabidopsis. EMBO J21:2441-2450.
    Huse, M., Muir, T.W., Xu, L., Chen, Y.G., Kuriyan, J., and Massague, J.(2001). The TGF beta receptoractivation process: An inhibitor-to substrate-binding switch. Molecular Cell8:671-682.
    Jang, I.C., Yang, Y., Seo, H.S., and Chua, N.-H.(2005). HFR1is targeted by COP1E3ligase forpost-translational proteolysis during phytochrome A signaling. Gene Dev19:593-602.
    Jeong, M.J., and Shih, M.C.(2005). Interaction of a GATA factor with cis-acting elements involved inlight regulation of nuclear genes encoding chloroplast glyceraldehyde-3-phosphate dehydrogenasein Arabidopsis (vol300, pg555,2003). Biochemical and Biophysical Research Communications333:1385-1385.
    Jiao, Y.L., Lau, O.S., and Deng, X.W.(2007). Light-regulated transcriptional networks in higher plants.Nature Reviews Genetics8:217-230.
    Jin, H., Yan, Z., Nam, K.H., and Li, J.(2007). Allele-specific suppression of a defective brassinosteroidreceptor reveals a physiological role of UGGT in ER quality control. Molecular Cell26:821-830.
    Kang, J.G., Yun, J., Kim, D.H., Chung, K.S., Fujioka, S., Kim, J.I., Dae, H.W., Yoshida, S., Takatsuto, S.,Song, P.S., and Park, C.M.(2001). Light and brassinosteroid signals are integrated via adark-induced small G protein in etiolated seedling growth. Cell105:625-636.
    Kang, X., Chong, J., and Ni, M.(2005). HYPERSENSITIVE TO RED AND BLUE1, a ZZ-Type ZincFinger Protein, Regulates Phytochrome B-Mediated Red and Cryptochrome-Mediated Blue LightResponses. Plant Cell17:822-835.
    Karlova, R., Boeren, S., van Dongen, W., Kwaaitaal, M., Aker, J., Vervoort, J., and de Vries, S.(2009).Identification of in vitro phosphorylation sites in the Arabidopsis thaliana somatic embryogenesisreceptor-like kinases. Proteomics9:368-379.
    KatsuMi, M.(1991). Physiologocal modes of brassinolide action in cucuMber hypocotyl growth. AcsSymposiuM Series474:246-254.
    Khanna, R., Huq, E., Kikis, E.A., Al-Sady, B., Lanzatella, C., and Quail, P.H.(2004). A novel Molecularrecognition motif necessary for targeting photoactivated phytochrome signaling to specific basichelix-loop-helix transcription factors. Plant Cell16:3033-3044.
    Kim, T.W., Michniewicz, M., Bergmann, D.C., and Wang, Z.Y.(2012). Brassinosteroid regulates stomataldevelopment by GSK3-mediated inhibition of a MAPK pathway. Nature482:419-U1526.
    Kim, T.W., and Wang, Z.Y.(2010). Brassinosteroid Signal Transduction from Receptor Kinases toTranscription Factors. In: Annual Review of Plant Biology, Vol61--Merchant, S., Briggs, W.R.,and Ort, D., eds.681-704.
    Kim, Y.M., Woo, J.C., Song, P.S., and Soh, M.S.(2002). HFR1, a phytochrome A-signalling component,acts in a separate pathway from HY5, downstream of COP1in Arabidopsis thaliana. Plant Journal30:711-719.
    Kinoshita, T., Cano-Delgado, A.C., Seto, H., HiranuMa, S., Fujioka, S., Yoshida, S., and Chory, J.(2005).Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nature433:167-171.
    Koini, M.A., Alvey, L., Allen, T., Tilley, C.A., Harberd, N.P., Whitelam, G.C., and Franklin, K.A.(2009).High Temperature-Mediated Adaptations in Plant Architecture Require the bHLH TranscriptionFactor PIF4. Curr Biol19:408-413.
    Krishna, P.(2003). Brassinosteroid-mediated stress responses. Journal of Plant Growth Regulation22:289-297.
    Kunihiro, A., Yamashino, T., and Mizuno, T.(2010). PHYTOCHROME-INTERACTING FACTORSPIF4and PIF5Are Implicated in the Regulation of Hypocotyl Elongation in Response to BlueLight in Arabidopsis thaliana. Biosci Biotechnol Biochem74:2538-2541.
    Lee, J., He, K., Stolc, V., Lee, H., Figueroa, P., Gao, Y., Tongprasit, W., Zhao, H.Y., Lee, I., and Deng, X.(2007). Analysis of transcription factor HY5genomic binding sites revealed its hierarchical role inlight regulation of development. Plant Cell19:731-749.
    Lee, S., Lee, S., Yang, K.-Y., Kim, Y.-M., Park, S.-Y., Kim, S.Y., and Soh, M.-S.(2006). Overexpressionof PRE1and its Homologous Genes Activates Gibberellin-dependent Responses in Arabidopsisthaliana. Plant Cell Physiol47:591-600.
    Li, J., Wen, J.Q., Lease, K.A., Doke, J.T., Tax, F.E., and Walker, J.C.(2002). BAK1, an Arabidopsis LRRreceptor-like protein kinase, interacts with BRI1and modulates brassinosteroid signaling. Cell110:213-222.
    Li, J.M., Nagpal, P., Vitart, V., McMorris, T.C., and Chory, J.(1996). A role for brassinosteroids inlight-dependent development of Arabidopsis. Science272:398-401.
    Li, J.M., and Nam, K.H.(2002). Regulation of brassinosteroid signaling by a GSK3/SHAGGY-like kinase.Science295:1299-1301.
    Li, J.M., Nam, K.H., Vafeados, D., and Chory, J.(2001). BIN2, a new brassinosteroid-insensitive locus inArabidopsis. Plant Physiology127:14-22.
    Li, K.R., and Feng, C.H.(2011). Effects of brassinolide on drought resistance of Xanthoceras sorbifoliaseedlings under water stress. Acta Physiologiae PlantaruM33:1293-1300.
    Li, L., Yu, X., Thompson, A., Guo, M., Yoshida, S., Asami, T., Chory, J., and Yin, Y.(2009). ArabidopsisMYB30is a direct target of BES1and cooperates with BES1to regulate brassinosteroid-inducedgene expression. Plant Journal58:275-286.
    Liu, H., Yu, X., Li, K., Klejnot, J., Yang, H., Lisiero, D., and Lin, C.(2008a). Photoexcited CRY2interactswith CIB1to regulate transcription and floral initiation in Arabidopsis. Science322:1535.
    Liu, H.T., Yu, X.H., Li, K.W., Klejnot, J., Yang, H.Y., Lisiero, D., and Lin, C.T.(2008b). PhotoexcitedCRY2Interacts with CIB1to Regulate Transcription and Floral Initiation in Arabidopsis. Science322:1535-1539.
    Lorrain, S., Allen, T., Duek, P.D., Whitelam, G.C., and Fankhauser, C.(2008). Phytochrome-mediatedinhibition of shade avoidance involves degradation of growth-promoting bHLH transcriptionfactors. Plant J53:312-323.
    Luccioni, L.G., Oliverio, K.A., Yanovsky, M.J., Boccalandro, H.E., and Casal, J.J.(2002). Brassinosteroidmutants uncover fine tuning of phytochrome signaling. Plant Physiology128:173-181.
    Luo, X.M., Lin, W.H., Zhu, S.W., Zhu, J.Y., Sun, Y., Fan, X.Y., Cheng, M.L., Hao, Y.Q., Oh, E., Tian,M.M., Liu, L.J., Zhang, M., Xie, Q., Chong, K., and Wang, Z.Y.(2010). Integration of Light-andBrassinosteroid-Signaling Pathways by a GATA Transcription Factor in Arabidopsis.Developmental Cell19:872-883.
    Malinowski, R., Higgins, R., Luo, Y., Piper, L., Nazir, A., Bajwa, V.S., Clouse, S.D., Thompson, P.R., andStratmann, J.W.(2009). The tomato brassinosteroid receptor BRI1increases binding of systemin totobacco plasma membranes, but is not involved in systemin signaling. Plant Molecular Biology70:603-616.
    Mandava, N.B.(1988). Plant growth-promoting brassinosteroids. Annual Review of Plant Physiology andPlant Molecular Biology39:23-52.
    Manfield, I.W., Devlin, P.F., Jen, C.H., Westhead, D.R., and Gilmartin, P.M.(2007). Conservation,convergence, and divergence of light-responsive, circadian-regulated, and tissue-specificexpression patterns during evolution of the Arabidopsis GATA gene family. Plant Physiology143:941-958.
    Martinez-Garcia, J.F., Huq, E., and Quail, P.H.(2000). Direct targeting of light signals to a promoterelement-bound transcription factor. Science288:859-863.
    Mitchell, J.W., Mandava, N., Worley, J.F., Plimmer, J.R., and Smith, M.V.(1970). Brassins-a NewFamily of Plant Hormones From Rape Pollen. Nature225:1065-1066.
    Mora-Garcia, S., Vert, G., Yin, Y.H., Cano-Delgado, A., Cheong, H., and Chory, J.(2004). Nuclear proteinphosphatases with Kelch-repeat domains modulate the response to bras sino steroids inArabidopsis. Genes&Development18:448-460.
    Muslin, A.J., Tanner, J.W., Allen, P.M., and Shaw, A.S.(1996). Interaction of14-3-3with signalingproteins is mediated by the recognition of phosphoserine. Cell84:889-897.
    Nakagawa, T., Kurose, T., Hino, T., Tanaka, K., Kawamukai, M., Niwa, Y., Toyooka, K., Matsuoka, K.,Jinbo, T., and Kimura, T.(2007). Development of series of gateway binary vectors, pGWBs, forrealizing efficient construction of fusion genes for plant transformation. J Biosci Bioeng104:34-41.
    Nakamura, A., Fujioka, S., Sunohara, H., Kamiya, N., Hong, Z., Inukai, Y., Miura, K., Takatsuto, S.,Yoshida, S., Ueguchi-Tanaka, M., Hasegawa, Y., Kitano, H., and Matsuoka, M.(2006). The roleof OsBRI1and its homologous genes, OsBRL1and OsBRL3, in rice. Plant Physiology140:580-590.
    Nakashita, H., Yasuda, M., Nitta, T., Asami, T., Fujioka, S., Arai, Y., Sekimata, K., Takatsuto, S.,Yamaguchi, I., and Yoshida, S.(2003). Brassinosteroid functions in a broad range of diseaseresistance in tobacco and rice. Plant Journal33:887-898.
    Nam, K.H., and Li, J.M.(2002). BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling.Cell110:203-212.
    Neff, M.M., Fankhauser, C., and Chory, J.(2000). Light: an indicator of time and place. Genes&Development14:257-271.
    Neff, M.M., Nguyen, S.M., Malancharuvil, E.J., Fujioka, S., Noguchi, T., Seto, H., Tsubuki, M., Honda, T.,Takatsuto, S., Yoshida, S., and Chory, J.(1999). BAS1: A gene regulating brassinosteroid levelsand light responsiveness in Arabidopsis. Proceedings of the National Academy of Sciences of theUnited States of America96:15316-15323.
    Ni, M., Tepperman, J.M., and Quail, P.H.(1998). PIF3, a phytochrome-interacting factor necessary fornormal photoinduced signal transduction, is a novel basic helix-loop-helix protein. Cell95:657-667.
    Nomura, T., Bishop, G.J., Kaneta, T., Reid, J.B., Chory, J., and Yokota, T.(2003). The LKA gene is aBRASSINOSTEROID INSENSITIVE1homolog of pea. Plant Journal36:291-300.
    Nozue, K., Covington, M.F., Duek, P.D., Lorrain, S., Fankhauser, C., Harmer, S.L., and Maloof, J.N.(2007). Rhythmic growth explained by coincidence between internal and external cues. Nature448:358-361.
    Oh, E., Kang, H., Yamaguchi, S., Park, J., Lee, D., Kamiya, Y., and Choi, G.(2009a). Genome-WideAnalysis of Genes Targeted by PHYTOCHROME INTERACTING FACTOR3-LIKE5duringSeed Germination in Arabidopsis. Plant Cell21:403-419.
    Oh, E., Kim, J., Park, E., Kim, J.I., Kang, C., and Choi, G.(2004). PIL5, a phytochrome-interacting basichelix-loop-helix protein, is a key negative regulator of seed germination in Arabidopsis thaliana.Plant Cell16:3045-3058.
    Oh, M.-H., Wang, X., Kota, U., Goshe, M.B., Clouse, S.D., and Huber, S.C.(2009b). Tyrosinephosphorylation of the BRI1receptor kinase emerges as a component of brassinosteroid signalingin Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America106:658-663.
    Oh, M.H., Ray, W.K., Huber, S.C., Asara, J.M., Gage, D.A., and Clouse, S.D.(2000). Recombinantbrassinosteroid insensitive1receptor-like kinase autophosphorylates on serine and threonineresidues and phosphorylates a conserved peptide motif in vitro. Plant Physiology124:751-765.
    Osterlund, M.T., Hardtke, C.S., Wei, N., and Deng, X.W.(2000). Targeted destabilization of HY5duringlight-regulated development of Arabidopsis. Nature405:462-466.
    Perez-Perez, J.M., Ponce, M.R., and Micol, J.L.(2002). The UCU1Arabidopsis gene encodes aSHAGGY/GSK3-like kinase required for cell expansion along the proximodistal axis.Developmental Biology242:161-173.
    Puente, P., Wei, N., and Deng, X.W.(1996). Combinatorial interplay of promoter elements constitutes theminimal determinants for light and developmental control of gene expression in Arabidopsis.Embo Journal15:3732-3743.
    Rahimi, R.A., and Leof, E.B.(2007). TGF-beta signaling: A tale of two responses. Journal of CellularBiochemistry102:593-608.
    Roger, H., Ellen, F., Karen, B., Karryn, G., Sakuntala, K., and William, L.(2005). Transient expressionvectors for functional genomics, quantification of promoter activity and RNA silencing in plants.Plant Methods1.
    Roig-Villanova, I., Bou-Torrent, J., Galstyan, A., Carretero-Paulet, L., Portoles, S., Rodriguez-Conception,M., and Martinez-Garcia, J.F.(2007). Interaction of shade avoidance and auxin responses: a rolefor two novel atypical bHLH proteins. EMBO J26:4756-4767.
    Roig-Villanova, I., Bou, J., Sorin, C., Devlin, P., and Martínez-García, J.(2006). Identification of PrimaryTarget Genes of Phytochrome Signaling. Early Transcriptional Control during Shade AvoidanceResponses in Arabidopsis. Plant Physiol141:85-96.
    Russinova, E., Borst, J.W., Kwaaitaal, M., Cano-Delgado, A., Yin, Y.H., Chory, J., and de Vries, S.C.(2004). Heterodimerization and endocytosis of Arabidopsis brassinosteroid receptors BRI1andAtSERK3(BAK1). Plant Cell16:3216-3229.
    Ryu, H., Kim, K., Cho, H., Park, J., Choe, S., and Hwang, I.(2007). Nucleocytoplasmic shuttling of BZR1mediated by phosphorylation is essential in Arabidopsis brassinosteroid signaling. Plant Cell19:2749-2762.
    Sairam, R.K.(1994). Effect of homobrassinolide application on plant metabolism and grain yieid underirrigated and moisture stress conditions of two wheat varieties. Plant Growth Regulation14:173-181.
    Salter, M.G., Franklin, K.A., and Whitelam, G.C.(2003). Gating of the rapid shade-avoidance response bythe circadian clock in plants. Nature426:680-683.
    Sasse, J.M.(1990). Brassinolide-induced elongation and auxin. Physiologia PlantaruM80:401-408.
    Sasse, J.M.(1991). Brassinolide-induced elongation. Acs SymposiuM Series474:255-264.
    Scazzocchio, C.(2000). The fungal GATA factors. Current Opinion in Microbiology3:126-131.
    Schlessinger, J.(2002). Ligand-induced, receptor-mediated dimerization and activation of EGF receptor.Cell110:669-672.
    Schmidt, E.D.L., Guzzo, F., Toonen, M.A.J., and deVries, S.C.(1997). A leucine-rich repeat containingreceptor-like kinase marks somatic plant cells competent to form embryos. Development124:2049-2062.
    Schoonheim, P.J., Veiga, H., Pereira, D.D., Friso, G., van Wijk, K.J., and de Boer, A.H.(2007). Acomprehensive analysis of the14-3-3interactome in barley leaves using a complementaryproteomics and two-hybrid approach. Plant Physiology143:670-683.
    SchuMacher, K., and Chory, J.(2000). Brassinosteroid signal transduction: still casting the actors. CurrentOpinion in Plant Biology3:79-84.
    SchuMacher, K., Vafeados, D., McCarthy, M., Sze, H., Wilkins, T., and Chory, J.(1999). The Arabidopsisdet3mutant reveals a central role for the vacuolar H+-ATPase in plant growth and development.Genes&Development13:3259-3270.
    Shimada, Y., Goda, H., Nakamura, A., Takatsuto, S., Fujioka, S., and Yoshida, S.(2003). Organ-specificexpression of brassinosteroid-biosynthetic genes and distribution of endogenous brassinosteroidsin Arabidopsis. Plant Physiology131:287-297.
    Stavang, J.A., Gallego-Bartolom, J., Gmez, M.a.D., Yoshida, S., Asami, T., Olsen, J.E., Garca-Martnez,J.L., Alabad, D., and Blzquez, M.A.(2009). Hormonal regulation of temperature-induced growthin Arabidopsis. The Plant Journal60:589-601.
    Sun, Y., Fan, X.Y., Cao, D.M., Tang, W.Q., He, K., Zhu, J.Y., He, J.X., Bai, M.Y., Zhu, S.W., Oh, E., Patil,S., Kim, T.W., Ji, H.K., Wong, W.H., Rhee, S.Y., and Wang, Z.Y.(2010). Integration ofBrassinosteroid Signal Transduction with the Transcription Network for Plant Growth Regulationin Arabidopsis. Developmental Cell19:765-777.
    Symons, G.M., Smith, J.J., Nomura, T., Davies, N.W., Yokota, T., and Reid, J.B.(2008). The hormonalregulation of de-etiolation. Planta227:1115-1125.
    Szekeres, M., Nemeth, K., KonczKalman, Z., Mathur, J., Kauschmann, A., Altmann, T., Redei, G.P., Nagy,F., Schell, J., and Koncz, C.(1996). Brassinosteroids rescue the deficiency of CYP90, acytochrome P450, controlling cell elongation and de-etiolation in arabidopsis. Cell85:171-182.
    Tang, W.Q., Yuan, M., Wang, R.J., Yang, Y.H., Wang, C.M., Oses-Prieto, J.A., Kim, T.W., Zhou, H.W.,Deng, Z.P., Gampala, S.S., Gendron, J.M., Jonassen, E.M., Lillo, C., DeLong, A., Burlingame,A.L., Sun, Y., and Wang, Z.Y.(2011). PP2A activates brassinosteroid-responsive gene expressionand plant growth by dephosphorylating BZR1. Nature Cell Biology13:124-U149.
    Terzaghi, W.B., and Cashmore, A.R.(1995). LIGHT-REGULATED TRANSCRIPTION. Annual Reviewof Plant Physiology and Plant Molecular Biology46:445-474.
    Tian, Q., and Reed, J.W.(2001). Molecular links between light and auxin signaling pathways. Journal ofPlant Growth Regulation20:274-280.
    Toledo-Ortiz, G., Huq, E., and Quail, P.H.(2003). The Arabidopsis basic/helix-loop-helix transcriptionfactor family. The Plant Cell Online15:1749.
    Uozu, S., Tanaka-Ueguchi, M., Kitano, H., Hattori, K., and Matsuoka, M.(2000). Characterization ofXET-related genes of rice. Plant Physiology122:853-859.
    Vert, G., and Chory, J.(2006). Downstream nuclear events in brassinosteroid signalling. Nature441:96-100.
    Vert, G., Nemhauser, J.L., Geldner, N., Hong, F.X., and Chory, J.(2005). Molecular mechanisms ofsteroid hormone signaling in plants. In: Annual Review of Cell and Developmental Biology.177-201.
    Von Arnim, A., and Deng, X.W.(1996). Light control of seedling development. Annual Review of PlantPhysiology and Plant Molecular Biology47:215-243.
    Vonarnim, A.G., and Deng, X.W.(1994). Light inactivation of Arabidopsis photomorphogenic repressorCOP1involves a cell-specific regulation of its nucleocytoplasmic partitioning. Cell79:1035-1045.
    Wang, H., Zhu, Y., Fujioka, S., Asami, T., and Li, J.(2009). Regulation of Arabidopsis BrassinosteroidSignaling by Atypical Basic Helix-Loop-Helix Proteins. Plant Cell21:3781-3791.
    Wang, X., Kota, U., He, K., Blackburn, K., Li, J., Goshe, M.B., Huber, S.C., and Clouse, S.D.(2008).Sequential transphosphorylation of the BRI1/BAK1receptor kinase complex impacts early eventsin brassinosteroid signaling. Developmental Cell15:220-235.
    Wang, X.F., Goshe, M.B., Soderblom, E.J., Phinney, B.S., Kuchar, J.A., Li, J., Asami, T., Yoshida, S.,Huber, S.C., and Clouse, S.D.(2005a). Identification and functional analysis of in vivophosphorylation sites of the Arabidopsis BRASSINOSTEROID-INSENSITIVE1receptor kinase.Plant Cell17:1685-1703.
    Wang, X.L., Li, X.Q., Meisenhelder, J., Hunter, T., Yoshida, S., Asami, T., and Chory, J.(2005b).Autoregulation and homodimerization are involved in the activation of the plant steroid receptorBRI1. Developmental Cell8:855-865.
    Wang, Z.Y., Nakano, T., Gendron, J., He, J.X., Chen, M., Vafeados, D., Yang, Y.L., Fujioka, S., Yoshida,S., Asami, T., and Chory, J.(2002). Nuclear-localized BZR1mediates brassinosteroid-inducedgrowth and feedback suppression of brassinosteroid biosynthesis. Developmental Cell2:505-513.
    Wang, Z.Y., Seto, H., Fujioka, S., Yoshida, S., and Chory, J.(2001). BRI1is a critical component of aplasma-membrane receptor for plant steroids. Nature410:380-383.
    Xu, W., Purugganan, M.M., Polisensky, D.H., Antosiewicz, D.M., Fry, S.C., and Braam, J.(1995).Arabidopsis TCH4, regulated by hormones and the environment, encodes a xyloglucanendotransglycosylase. Plant Cell7:1555-1567.
    Yan, Z.Y., Zhao, J., Peng, P., Chihara, R.K., and Li, J.M.(2009). BIN2Functions Redundantly with OtherArabidopsis GSK3-Like Kinases to Regulate Brassinosteroid Signaling. Plant Physiology150:710-721.
    Yin, Y.H., Vafeados, D., Tao, Y., Yoshida, S., Asami, T., and Chory, J.(2005). A new class oftranscription factors mediates brassinosteroid-regulated gene expression in Arabidopsis. Cell120:249-259.
    Yin, Y.H., Wang, Z.Y., Mora-Garcia, S., Li, J.M., Yoshida, S., Asami, T., and Chory, J.(2002). BES1accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promotestem elongation. Cell109:181-191.
    Yu, X., Li, L., Li, L., Guo, M., Chory, J., and Yin, Y.(2008). Modulation of brassinosteroid-regulated geneexpression by jumonji domain-containing proteins ELF6and REF6in Arabidopsis. Proceedings ofthe National Academy of Sciences of the United States of America105:7618-7623.
    Yun, H.S., Bae, Y.H., Lee, Y.J., Chang, S.C., Kim, S.-K., Li, J., and Nam, K.H.(2009). Analysis ofphosphorylation of the BRI1/BAK1complex in arabidopsis reveals amino acid residues critical forreceptor formation and activation of BR signaling. Molecules and Cells27:183-190.
    Zhang, L.Y., Bai, M.Y., Wu, J., Zhu, J.Y., Wang, H., Zhang, Z., Wang, W., Sun, Y., Zhao, J., Sun, X.,Yang, H., Xu, Y., Kim, S.H., Fujioka, S., Lin, W.H., Chong, K., Lu, T., and Wang, Z.Y.(2009).Antagonistic HLH/bHLH Transcription Factors Mediate Brassinosteroid Regulation of CellElongation and Plant Development in Rice and Arabidopsis. Plant Cell21:3767-3780.
    Zhao, J., Peng, P., Schmitz, R.J., Decker, A.D., Tax, F.E., and Li, J.M.(2002). Two putative BIN2substrates are nuclear components of brassinosteroid signaling. Plant Physiology130:1221-1229.
    Zhou, A., Wang, H.C., Walker, J.C., and Li, J.(2004). BRL1, a leucine-rich repeat receptor-like proteinkinase, is functionally redundant with BRI1in regulating Arabidopsis brassinosteroid signaling.Plant Journal40:399-409.
    Zurek, D.M., Rayle, D.L., McMorris, T.C., and Clouse, S.D.(1994). Investigation of gene expression,growth kinetics, and wall extensibility during brassinosteroid-regulated stem elongation. PlantPhysiology104:505-513.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700