量子点敏化TiO_2基纳米结构太阳能电池制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子点敏化太阳能电池(Quantum dots sensitized solar cells)是目前材料科学、物理、化学等交叉学科的热点研究方向,国外学者预测该类电池是未来高效率低成本太阳电池的最佳候选之一。但是迄今光电转换效率还无法与染料敏化太阳能电池相媲美是制约该种电池进一步发展的瓶颈。基于目前国内外量子点敏化电池的研究进展,本论文结合已经成熟的纳米薄膜制备工艺,对改善量子点敏化电池的光电转换效率进行了系列探索研究。主要结果与创新点如下:
     1、制备了CdS量子点敏化Ti02纳米晶多孔薄膜太阳能电池,发现通过提高工作电极孔隙率,可改善CdS量子点对其“浸润”性修饰;以“整体烧结”方式在FTO导电玻璃与Ti02纳米晶多孔薄膜之间引入Ti02致密层可改善其界面接触;采用ZnS层钝化CdS量子点可以提高电池的短路电流密度,电池的光电转换效率可达1.84%;电池经高压汞灯持续照射168 h,性能稳定,光电转换效率仅下降5%。
     2、以镀有Sn02晶种层的玻璃基片为原始衬底,通过控制晶种层的表面粗糙度和外露晶面,并引入离子屏蔽剂,利用水热法成功制备了可剥离的无支撑金红石型Ti02纳米棒阵列薄膜。移植到导电玻璃上将其作为CdS量子点敏化太阳能电池的工作电极,经ZnS钝化后电池光电转换效率达到1.27%。
     3、利用溶剂热法以Ti片为Ti源生长纳米棒阵列,利用CH30H/Br2混合溶液腐蚀剩余Ti片,成功制备出无支撑锐钛矿型TiO2纳米阵列薄膜。移植到导电玻璃上作为CdS量子点敏化太阳能电池的工作电极,经ZnS钝化后电池光电转换效率为1.55%。
     4、利用快速热注入法在油胺体系中,通过控制反应速率,成功制备了分别具有黄铜矿、闪锌矿和纤锌矿三种不同晶型的单分散CuInS2量子点,结果表明,较快的反应速率有利于得到黄铜矿结构CuInS2量子点,反之则得到闪锌矿或纤锌矿结构的CuInS2量子点。该类量子点几乎可吸收全部可见光区的太阳光。
     5、采用二次阳极氧化法成功制备出两端开孔无支撑Ti02纳米管阵列薄膜,二次阳极氧化的脉冲电压上限幅值越大,阵列薄膜底部开孔率越高;将无支撑Ti02纳米管阵列薄膜移植到导电玻璃上作为工作电极,试制了新型结构CuInS2量子点敏化太阳能电池,经ZnS钝化后,其光电转换效率为0.64%。
Quantum dots-sensitized solar cell (QDSSC) is one of the hottest spotlights as the crossdisciplinary research of materials science, physics, and chemistry. Many researchers have forecasted that these devices will be one of the most potential photovoltaics with high-efficiency and low-cost. However, the lower power conversion efficiency which can't compete with that of DSSCs has still been the "bottleneck" for limiting their further development. Based on the recent progress of QDSSC's researches, the exploratory researches were performed on the QDSSC, especially for improving their power conversion efficiency by combining the well-established preparation technologies on the nano-structured fim. The main results and conclusions are summarized as follows:
     Firstly, a series of CdS quantum dots-sensitized TiO2 nanoparticulate film solar cells were prepared. It was found that the CdS QDs well-covered working electrode can be obtained by increasing the porosity of TiO2 film; the interface contactance of a compact TiO2 layer between FTO substrate and TiO2 working electrode can be improved by sintering the compact layer together with the electrode; after passivated by ZnS layer, the short current density (Jsc) of the CdS QDs sensitized TiO2 solar cells can be improved, with the power conversion efficiency of 1.84%. The solar cell shows good stability after the irradiation of high-voltage mercury lamp for 168 hours, the power conversion efficiency drops as little as for 5%.
     Secondly, free-standing TiO2 (rutile) nanorod arrays films were successfully prepared by hydrothermal method using the silde glass coated with SnO2 seed layer as the original substrate, through the control of surface texture and exposed crystalline plane of SnO2 and the introduction of screening agent. The obtained free-standing film was transplanted onto FTO glass to fabricate the working electrode for CdS quantum dots-sensitized solar cells. After the passivation with ZnS, the solar cells based on the corresponding working electrode exhibited photo-to-current efficiency of 1.27%.
     Thirdly, free-standing anatase TiO2 nanorod arrays films were successfully prepared through solvothermal method by using commercial Ti foils as the Ti source and substrate for growth of TiO2 nanorods and using the mixed Br2/CH3OH solution to etch the residual Ti substrate. The obtained free-standing film was transplanted onto FTO glass to fabricate the working electrode for CdS quantum dots-sensitized solar cells. After the passivation with ZnS, the solar cells based on the corresponding working electrode exhibited photo-to-current efficiency of 1.55%.
     Fourthly, mono-disperse CuInS2 quantum dots with three different types of crystal structure (including chalcopyrite, zinc-blende and wurtzite) were successfully synthesized in oleylamine reaction system via hot-injection method by controlling the reaction rate of the system. It was indicated that the higher reaction rate is propitious to obtain chalcopyrite-structural CuInS2 quantum dots, otherwise, CuInS2 quantum dots with zinc-blende or wurtzite structure will be obtained. The CuInS2 quantum dots can absorb almost the all of visible light.
     Fifthly, free-standing TiO2 nano-tubes array films with both-end opened are successfully prepared by the two-step anodic oxidations. During the second anodic oxidation, the larger maximum the amplitude of impulsive voltage applied to, the higher percentage of bottom-open tubes area of the free-standing film exhibited. The obtained free-standing TiO2 nano-tubes array films were transplanted onto FTO glass to fabricate the working electrodes, and a novel structure of CuInS2 quantum dots sensitized solar cells were developed tentatively. After the passivation with ZnS, the solar cells based on the corresponding working electrode exhibited photo-to-current efficiency of 0.64%.
引文
[1]滨川圭弘著.太阳能光伏电池及其应用[M]-张红梅等译,北京:科学出版社,2008.
    [2]史永谦.核能发电的优点及世界核电发展动向[J],能源工程,2007,1:1-7.
    [3]A. J. Nozik, Exciton multiplication and relaxation dynamics in quantum dots: applications to ultrahigh-efficiency solar photon conversion [J]. Inorg. Chem.,2005,44:6893-6899.
    [4]曾我哲夫著.纳米结构材料在太阳能转化中的应用[M],北京:科学出版社,2007.
    [5]张立德,牟季美著.纳米材料和纳米结构[M],北京:科学出版社,2001.
    [6]I. Mora-sero, S. Gimenez, F. Fabregat-Santiago, R. Gomez, Q. Shen, T. Toyoda, and J. Bisquert, Recombination in quantum dot sensitized solar cells [J]. Acc. Chem. Res.,2009, 42:1848-1857.
    [7]J. B. Sambur, T. Novet, B. A. Parkinson, Photovoltaic system multiple exciton collection in a sensitized photovoltaic system [J]. Science,2010,330:63-66.
    [8]S. Emin, S. P. Singh, L. Y. Han, N. Satoh, and A. Islam, Colloidal quantum dot solar cells [J]. Sol. Energy,2011,85:1264-1282.
    [9]M. Law, M. C. Beard, S. Choi, J. M. Luther, M. C. Hanna, and A. J. Nozik, Determining the internal quantum efficiency of PbSe nanocrystal solar cells with the aid of an optical model [J]. Nano Lett.,2008,8:3904-3910.
    [10]C. Y. Liu, U. R. Kortshagen, A silicon nanocrystal Schottky junction solar cell produced from colloidal silicon nanocrystals [J]. Nanoscale Res.,2010,5:1253-1256.
    [11]J. D. Olson, Y. W. Rodriguez, L. D. Yang, G. B. Alers, and S. A. Carter, CdTe Schottky diodes from colloidal nanocrystals [J]. Appl. Phys. Lett.,2010,96,242103.
    [12]J. Tang, X. Wang, L. Brzozowski, D. R. Barkhouse, R. Debnath, L. Levina, and E. H. Sargent, Schottky quantum dot solar cells stable in air under solar illumination [J]. Adv. Mater.,2010,22:1398-1402.
    [13]E. J. Klem, D. D. MacNeil, L. Levina, and E. H. Sargent, Solution processed photovoltaic devices with 2% infrared monochromatic power conversion efficiency: performance optimization and oxide formation [J]. Adv. Mater.,2008,20:3433-3439.
    [14]J. M. Luther, M. Law, M. C. Beard, Q. Song, M. O. Reese, R. J. Ellingson, and A. J. Nozik, Schottky solar cells based on colloidal nanocrystal films [J]. Nano Lett.,2008, 8:3488-3492.
    [15]R. Debnath, M. T. Greiner, I. J. Kramer, A. Fischer, J. Tang, D. A. R. Barkhouse, X. H. Wang, L. Levina, Z. H. Lu, and E. H. Sargent, Depleted-heterojunction colloidal quantum dot photovoltaics employing low-cost electrical contacts [J]. Appl. Phys. Lett.,2010, 97:023109.
    [16]W. Ma, J. M. Luther, H. Zheng, Y. Wu, and A. P. Alivisatos, Photovoltaic devices employing ternary PbSxSe1-xnanocrystals [J]. Nano Lett.,2009,9:1699-1703.
    [17]A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, X. H. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M. K. Nazeeruddin, M. Gratzel, and E. H. Sargent, Depleted-heterojunction colloidal quantum dot solar cells [J]. ACS Nano,2010, 4:3374-3380.
    [18]B. R. Hyun, Y. W. Zhong, A. C. Bartnik, L. F. Sun, H. D. Abruna, F. W. Wise, J. D. Goodreau, J. R. Matthews, T. M. Leslie, and N. F. Borrelli, Electron injection from colloidal PbS quantum dots into titanium dioxide nanoparticles [J]. ACS Nano,2008, 2:2206-2212.
    [19]J. M. Luther, J. Gao, M. T. Lloyd, O. E. Semonin, M. C. Beard, and A. J. Nozik, Stability assessment on a 3% bilayer PbS/ZnO quantum dot heterojunction solar cell [J]. Adv. Mater.,2010,22:3704-3707.
    [20]T. Ju, R. L. Graham, G. Zhai, Y. W. Rodriguez, A. J. Breeze, L. Yang, G. B. Alers, and S. A. Carter, High efficiency mesoporous titanium oxide PbS quantum dot solar cells at low temperature [J]. Appl. Phys. Lett.,2010,97:043106.
    [21]K. S. Leschkies, T. J. Beatty, M. S. Kang, D. J. Norris, and E. S. Aydil, Solar cells based on junction between colloidal PbSe nanocrystals and thin ZnO films [J]. ACS Nano,2009, 3:3638-3648.
    [22]R. Konenkamp, Inorganic-extended junction devices. Nanostrucrured and Photoelectrochemical Systems for Solar Photon Conversion [B]. Imperial College Press, 2008,393-452 (Chapter 6).
    [23]R. Tena-Zaera, M. A. Ryan, G. Hodes, CdSe sensitized p-CuSCN/nanowire n-ZnO heterojunctions [J]. Adv. Mater.,2005,17:1512-1515.
    [24]H. Kawazoe, M. Yasukawa, H. Hyodu, M. Kurital, H. Yanagi, and H. Hosono, P-type electrical conduction in transparent thin films of CuAlO2 [J]. Nature,1997,389:939-942.
    [25]K. Ernst, A. Belaidi, and R. Konenkamp, Solar cell with extremely thin absorber on highly structured substrate [J]. Semicond. Sci. Technol.,2003,18:475-480.
    [26]Y. Itzhaik, O. Niitsoo, M. Page, G. Hodes, Sb2S3-sensitized nanoporous TiO2 solar cells [J]. J. Phys. Chem C,2009,113:4254-4256.
    [27]J. Wienke, M. Krunks, F. Lenzmann, Inx(OH)ySz as recombination barrier in TiO2/inorganic absorber heterojunctions [J]. Semicond. Sci. Technol.,2003,18:876-880.
    [28]K. Taretto, U. Rau. Influence of built-in voltage in optimized extremely thin absorber solar cells [J]. Thin Solid Films,2005,480-481:447-451.
    [29]J. A. Chang, J. H. Rhee, S. H. Im, Y. H. Lee, H. Kim, S. I. Seok, M. K. Nazeeruddin, and M. Gratzel, High-performance nanostructured inorganic-organic heterojunction solar cells [J]. Nano Lett.,2010,10:2609-2612.
    [30]A. J. Mozer, Y. Wada, K. J. Jiang, N. Masaki, S. Yanagida, and S. N. Mori, Efficient dye-sensitized solar cells based on a 2-thiophen-2-ylvinyl-conjugated ruthenium photosensitizer and conjugated polymer hole conductor [J]. Appl. Phys. Lett.,2006,89:043509.
    [31]A. Nadarajah, R. C. Word, K. VanSant, and R. Konenkamp, Nanowire quantum dot polymer solar cells [J]. Phys. Stat. Sol.,2008,245:1834-1837.
    [32]R. Kniprath, J. P. Rabe, J. T. McLeskey, D. Y. Wang, S. Kirstein, Hybrid photovoltaic cells with Ⅱ-Ⅵ quantum dot sensitizers fabricated by layer-by-layer deposition of water-soluble components [J]. Thin Solid Films,2009,518:295-298.
    [33]R. Plass, P. Serge, J. Krueger, and M. Gratzel, Quantum dot sensitization of organic inorganic hybrid solar cells [J]. J. Phys. Chem. B,2002,106:7578-7580.
    [34]H. C. Leventis, F. O'Mahony, J. Akhtar, M. Afzaal, P. O'Brien, and S. A. Haque, Transient optical studies of interfacial charge transfer at nanostructured metal oxides/PbS quantum dot/organic hole conductor heterojunctions [J]. J. Am. Chem. Soc.,2010,132:2743-2750.
    [35]K. P. Acharya, N. N. Hewa-Kaskarage, T. R. Alabi, I. Nemitz, E. Khon, B. Ullrich, P. Anzenbacher, and M. Zamkov, Synthesis of PbS/TiO2 colloidal heterostructures for photovoltaic applications [J]. J. Phys.Chem. C,2010,114:12496-12504.
    [36]H. Hoppe, N. S. Sariciftci, Organic solar cells:an overview [J]. J. Mater. Res.,2004,19: 1924-1945.
    [37]S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, Bulk heterojunction solar cells with internal quantum efficiency approaching 100%[J]. Nat. Photon.,2009,3:297-302.
    [38]L. Han, D. Qin, X. Jiang, Y Liu, L. Wang, J. Chen, and Y. Cao, Synthesis of high quality zinc-blende CdSe nanocrystals and their application in hybrid solar cells [J]. Nanotechnology,2006,17:4736-4742.
    [39]Y. Y. Lin, T. H. Chu, S. S. Li, C. H. Chuang, C. H. Chang, W. F. Su, C. P. Chang, M. W. Chu, and C. W. Chen, Interfacial nanostructuring on the performance of polymer/TiO2 nanorod bulk heterojunction solar cells [J]. J. Am. Chem. Soc.,2009,131:3644-3649.
    [40]A. M. Hussain, B. Neppolian, H. S. Shim, S. H. Kim, S. K. Kim, H. C. Choi, W. B. Kim, K. Lee, and S. J. Park, Efficiency enhacement in bulk heterojunction polymer photovoltaic cells using ZrTiO4/Bi2O3 metal-oxide nanocomposites [J]. Jpn. J. Appl. Phys.,2010,49: 042301-042304.
    [41]M. T. Lloyd, Y. J. Lee, R. J. Davis, E. Fang, R. M. Fleming, J. W. P. Hsu, R. J. Kline, and M. F. Toney, Improved efficiency in poly(3-hexylthiophene)/zinc oxide solar cells via lithium incorporation [J]. J. Phys. Chem. C,2009,113:17608-17612.
    [42]M. Bredol, K. Matras, A. Szatkowski, J. Sanetrac, and A. Prodi-Schwab, P3HT/ZnS:a new hybrid bulk heterojunction photovoltaic system with very high open circuit voltage [J]. Sol. Energy Mater. Sol. Cells,2009,93:662-666.
    [43]J. X. Jiang, F. Chen, W. M. Qiu, Q. X. Yan, Y. X. Nan, X. Hao, L. G. Yang, and H. Z. Chen, Effects of molecular interface modification in CdS/polymer hybrid bulk heterojunction solar cells [J]. Sol. Energy Mater. Sol. Cells,2010,94:2223-2229.
    [44]A. C. Arango, D. C. Oertel, Y. F. Xu, M. G. Bawendi, and V. Bulovic, Heterojunction photovoltaics using printed colloidal quantum dots as a photosensitive layer [J]. Nano Lett.,2009,9:860-863.
    [45]T. Shiga, K. Takechi, and T. Motohiro, Photovoltaic performance and stability of CdTe/polymeric hybrid solar cells using a C60 buffer layer [J]. Sol. Energy Mater. Sol. Cells,2006,90:1849-1858.
    [46]A. Maria, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, Solution-processed infrared photovoltaic devices with>10% monochromatic internal quantum efficiency [J]. Appl. Phys. Lett.,2005,87:213112.
    [47]Z. Tan, T. Zhu, M. Thein, S. Gao, A. Cheng, F. Zhang, C. F. Zhang, H. P. Su, J. K. Wang, R. Henderson, J. Hahm, Y. P. Yang, and J. Xu, Integration of planar and bulk heterojunctions in polymer/nanocrystal hybrid photovoltaic cells [J]. Appl. Phys. Lett., 2009,95:063510.
    [48]C. Y. Liu, Z. C. Holman, U. R. Kortshagen, Hybrid solar cells from P3HT and silicon nanocrystals [J]. Nano Lett.,2009,9:449-452.
    [49]Y. Feng, D. Yun, X. Zhang, W. Feng, Solution-processed bulk heterojunction photovoltaic devices based on poly(2-methoxy,5-octoxy)-1,4-phenylenevinylene-multiwalled carbon nanotubes/PbSe quantum dots [J]. Appl. Phys. Lett.,2010,96:093301.
    [50]M. C. Arenas, N. Mendoza, H. Cortina, M. E. Nichoc, and H. L. Hu, Influence of poly3-octylthiophene (P3OT) film thickness and preparationmethod on photovoltaic performance of hybrid ITO/CdS/P3OT/Au solar cells [J]. Sol. Energy Mater. Sol. Cells, 2010,94:29-33.
    [51]H. Y. Chen, K. F. L. Michael, G. W. Yang, H. G. Monbouquette, and Y. Yang, Nanoparticle assisted high photoconductive gain in composites of polymer and fullerene [J]. Nat. Nanotech.2008,3:543-1547.
    [52]T. L. Wang, C. H. Yang, Y. T. Shieh, A. C. Yeh, L. W. Juan, and H. C. Zeng, Synthesis of new nanocrystal polymer nanocomposite as the electron acceptor in polymer bulk heterojunction solar cells [J]. Eur. Polym. J.,2010,46:634-642.
    [53]Y. Zhou, F. S. Riehle, Y. Yuan, H. F. Schleiermacher, M. Niggemann, G. A. Urban, and M. Kruger, Improved efficiency of hybrid solar cells based on non-ligand-exchanged CdSe quantum dots and poly(3-hexylthiophene) [J]. Appl. Phys. Lett.,2010,96:013304.
    [54]S. Dayal, M. O. Reese, A. J. Ferguson, D. S. Ginley, G. Rumbles, and N. Kopidakis, The effect of nanoparticle shape on the photocarrier dynamics and photovoltaic device performance of ploy(3-hexylthiophene):CdSe nanoparticl bulk heterojunction solar cells [J]. Adv. Funct. Mater.,2010,20:2629-2635.
    [55]Y. Xin, Z. Huang, Z. J. Jiang, D. F. Li, L. Peng, J. L. Zhai, and D. J. Wang, Photoresponse of a single poly(p-phenylene vinylene)-CdSe bulkheterojunction submicron fibe [J]. Chem. Commun.,2010,46,2316-2318.
    [56]I. Lokteva, N. Radychev, F. Witt, H. Borchert, J. Parisi, and J. Kolny-Olesiak, Surface treatment of CdSe nanoparticles for application in hybrid solar cells:the effect of multiple ligand exchange with pyridine [J]. J. Phys. Chem. C,2010,114:12784-12791.
    [57]N. T. N. Truong, W. K. Kim, C. Park, Effect of CdSe/P3HT composition on electrical and structural properties of bulk heterojunction solar cell active layer [J]. Sol. Energy Mater. Sol. Cells.,2010,95:167-170.
    [58]B. Sun, E. Marx, N. C. Greenham, Photovoltaic devices using blends of branched CdSe nanoparticles and conjugated polymers [J]. Nano Lett.,2003,3:961-963.
    [59]P. Wang, A. Abrusci, H. M. P. Wong, M. Svensson, M. R. Andersson, and N. C. Greenham, Photoinduced charge transfer and efficient solar energy conversion in a blend of a red polyfluorene copolymer with CdSe nanoparticles [J]. Nano Lett.,2006,6:1789-1793.
    [60]X. Wang, H. J. Zhu, Y. M. Xu, Ha. Wang, Y. Tao, S. Hark, X. D. Xiao, and Q. Li, Aligned ZnO/CdTe core-shell nanocable arrays on indium tin oxide:Synthesis and photoelectrochemical properties [J]. ACS Nano,2010,6:3302-3308.
    [61]J. Albero, E. J. Ajuria, C. Waldauf, R. Pacios, and E. Palomares, Photo-induced electron recombination dynamics inCdSe/P3HT hybrid heterojunctions [J]. Phys. Chem. Chem. Phys.,2009,11:9644-9647.
    [62]N. C. Greenham, X. G. Peng, and A. P. Alivisatos, Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity [J]. Phys. Rev. B,1996,54:17628-17637.
    [63]N. C. Greenham, X. G. Peng, and A. P. Alivisatos, Charge separation and transport in conjugated polymer/cadmium selenide nanocrystal composites studied by photoluminescence quenching and photoconductivity [J]. Synth. Metals,1997, 84:545-546.
    [64]W. U. Huynh, X. G. Peng, and A. P. Alivisatos, CdSe nanocrystals rods/ poly(3-hexylthiophene) composite photovoltaic devices [J]. Adv. Mater.,1999.11, 923-926.
    [65]W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, Hybrid nanorod polymer solar cells [J]. Science,2002,295:2425-2427.
    [66]W. U. Huynh, J. J. Dittmer, N. Teclemariam, D. J Milliron, A. P. Alivisatos, and K. Barnham, Charge transport in hybrid nanorodpolymer composite photovoltaic cells [J]. Phys. Rev. B,2003,67:115326-115331.
    [67]J. D. Olson, G. P. Gray, and S. A. Carter, Optimizing hybrid photovoltaics through annealing and ligand choice [J]. Sol. Energy Sol. Cells,2009,93:519-523.
    [68]K. Palaniappan, J. W. Murphy, N. Khanam, J. Horvath, H. Alshareef, M. Quevedo Lopez, M. C. Biewer, S. Y. Park, K. J. Moon, B. Gnade, C. Mihaela, Poly(3-hexylthiophene) CdSe quantum dot bulk heterojunction solar cells: influence of the functional end-group of the polymer [J]. Macromolecules,2009,42:3845-3848.
    [69]R. Vogel, K. Pohl, and H. Weller, Sensitization of highly porous, polycrystalline TiO2 electrodes by quantum sized CdS [J]. Chem. Phys. Lett.,1990,174:241-245.
    [70]G. Hodes, Coparison of dye- and semiconductor-sensitized porous nanocrystalline liquid junction solar cells [J]. J. Phys. Chem. C,2008,112:17778-17787.
    [71]J. H. Yum, S. H. Choi, S. S. Kim, D. Y. Kim, and Y. Eun, CdSe quantum dots sensitized TiO2 electrodes for photovoltaic cells [J]. J. Korean Electrochem. Soc.,2007,10:257-261.
    [72]W. Lee, S. H. Kang, S. K. Min, Y. Sung, and S. Han, Co-sensitization of vertically aligned TiO2 nanotubes with two different sizes of CdSe quantum dots for broad spectrum [J]. Electrochem. Commun.,2008,10:1579-1582.
    [73]T. Toyoda, T. Uehata, R. Suganuma, S. Tamura, A. Sato, K. Yamamoto, Q.Shen, and N. Kobayashi, Crystal growth of CdSe quantum dots adsorbed on nanoparticle, inverse opal, and nanotube TiO2 photoelectrodes characterized by photoacoustic spectroscopy [J]. Jpn. J. Appl. Phys.2007,46:4616-4621.
    [74]D. Baker, and P. V. Kamat, Photosensitization of TiO2 nanotubes with CdS quantum dots: Particulate versus tubular support architectures [J]. Adv. Funct. Mater.,2009,19:805-811.
    [75]S. Chen, M. Paulose, C. Ruan, G. K. Mora, O. K. Varghesea, D. Kouzoudisb, and C. A. Grimes, Electrochemically synthesized CdS nanoparticle-modified TiO2 nanotube-array photoelectrodes:preparation, characterization, and application to photoelectrochemical cells [J]. J. Photochem. Photobiol. A,2006,177:177-184.
    [76]L. Liu, J. Hensel, and R. C. Fitzmorris, Preparation and photoelectrochemical properties of CdSe/TiO2 hybrid mesoporous structures [J]. J. Phys. Chem. Lett.,2010,1:155-160.
    [77]J. Chen, J. Wu, W. Lei, J. L. Song, W. Q. Deng, and X. W. Sun, Co-sensitized quantum dot solar cell based on ZnO nanowire [J]. Applied Surface Science,2010,256:7438-7441.
    [78]C. H. Chang, Y. L. Lee., Chemical bath deposition of CdS quantum dots onto mesoscopic TiO2 films for application in quantum-dot-sensitized solar cells [J]. Appl. Phys. Lett., 2007,91:053503.
    [79]H. J. Lee, M. Wang, P. Chen, D. R. Gamelin, S. M. Zakeeruddin, M. Gratzel, and M. K. Nazeeruddin, Efficient CdSe quantum dot sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction processes [J]. Nano Lett.,2009, 9:4221-4227.
    [80]Y. L. Lee, C. F. Chi, and S. Y. Liau, CdS/CdSe co-sensitized TiO2 photoelectrodes for efficient hydrogen generation in a photoelectrochemical cell [J]. Chem. Mater.,2010, 22:922-927.
    [81]I. Robel, V. Subramanian, M. Kuno, and P. V. Kamat, Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films [J]. J. Am. Chem. Soc.2006,128:2385-2393.
    [82]J. B. Sambur, B. A. Parkinson, CdSe/ZnS core/shell quantum dot sensitization of low index TiO2 single crystal surfaces [J]. J. Am. Chem. Soc.2010,132:2130-2131.
    [83]J. B. Sambur, S. C. Riha, D. J. Choi, and B. A. Parkinson, Influence of surface chemistry on the binding and electronic coupling of CdSe quantum dots to single crystal TiO2 surfaces [J]. Langmuir,2010,26:4839-4847.
    [84]S. Gimenez, I. Mora-Sero, L. Macor, N. Guijarro, T. Lana-Villarreal, R. Gomez, L. J. Diguna, Q. Shen, T. Toyoda, and J. Bisquert, Improving the performance of colloidal quantum-dot-sensitized solar cells [J]. Nanotechnology,2009,20:295204.
    [85]J. L. Blackburn, D. C. Selmarten, R. J. Ellingson, M. Jones, O. Micic, and A. J. Nozik, Electron and hole transfer from indium phosphide quantum dots [J]. J. Phys. Chem. B, 2005,109:2625-2631.
    [86]M. Simurdaa, P. Nemeca, P. Formanek, I. Nemecc, Y. Nemcovac, and P. Malya, Morphology of CdSe films prepared by chemical bath deposition: The role of substrate [J]. Thin Solid Films,2006,511-512:71-75.
    [87]L. L. M. Peter, D. J. Riley, E. J. Tull, and K. G. U. Wijayantha, Photosensitization of nanocrystalline TiO2 by self-assembled layers of CdS quantum dots [J]. Chem. Commun., 2002,1030-1031.
    [88]S. C. Lin, Y. L. Lee, C. H. Chang, Y. J. Shen, and Y M. Yang Quantum-dot-sensitized solar cells:Assembly of CdS-quantum-dots coupling techniques of self-assembled monolayer and chemical bath deposition [J]. Appl. Phys. Lett.,2007,90:143517.
    [89]L. J. Diguna, Q. Shen, J. Kobayashi, and T. Toyoda, High efficiency of CdSe quantum-dot-sensitized TiO2 inverse opal solar cells [J]. Appl. Phys. Lett.,2007,91: 023116.
    [90]A. Zaban, O. I. Micic, B. A. Gregg, and A. J. Nozik, Photosensitization of nanoporous TiO2 electrodes with InP quantum dots [J]. Langmuir,1998,14:3153-3156.
    [91]O. Niitsoo, S. K. Sarkar, C. Pejoux, S. Ruhle, D. Cahen, and G. Hodes, Chemical bath deposited CdS/CdSe-sensitized porous TiO2 solar cells [J]. J. Photochem. Photobiol. A, 2006,181:306-313.
    [92]T. Toyoda, J. Kobayashi, and Q. Shen, Correlation between crystal growth and photosensitization of nanostructured TiO2 electrodes using supporting Ti substrates by self-assembled CdSe quantum dots [J]. Thin Solid Films,2008,516,2426-2431.
    [93]K. Okazaki, N. Kojima, Y. Tachibana, S. Kuwabata, and T. Torimoto, One-step preparation and photosensitivity of size-quantized cadmium chalcogenide nanoparticles deposited on porous zinc oxide film electrodes [J]. Chem. Lett.,2007,36:712-713.
    [94]H. M. Pathan, C. D. Lokhande, Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method [J]. Bull. Mater. Sci.,2004, 27:85-111.
    [95]H. J. Lee, H. C. Leventis, S. J. Moon, P. Chen, I. Seigo, S. A. Haque, T. Torres, F. Nuesch, T. Geiger, S. M. Zakeeruddin, M. Gratzel, M. K. Nazeeruddin, PbS and CdS quantum dot-sensitized solid-state solar cells:"Old concepts, new results" [J]. Adv. Funct. Mater., 2009,19:2735-2742.
    [96]H. J. Lee, J. H. Yum,, H. C. Leventis, S. M. Zakeeruddin, S. A. Haque, P. Chen, S. I. Seok, M. Gratzel, and M. K. Nazeeruddin, CdSe quantum dot-sensitized solar cells exceeding efficiency 1% at full-sun intensity [J]. J. Phys. Chem. C,2008,112:11600-11608.
    [97]G. Zhu, F. Su, T. Lv, L. K. Pan, and Z. Sun, Au nanoparticles as interfacial layer for CdS quantum dot-sensitized solar cells [J]. Nanoscale Res. Lett.,2010,52:1749-1754.
    [98]X. F. Gao, W. T. Sun, Z. D. Hu, G. Ai, Y. L. Zhang, S. Feng, F. Li, and L. M. Peng, An efficient method to form heteroj unction CdS/TiO2 photoelectrodes using highly ordered TiO2 nanotube array films [J]. J. Phys. Chem. C,2009,113:20481-20485.
    [99]M. Gratzel, Photoelectrochemical cell [J]. Nature,2001,414:338-344.
    [100]Q. X. Zhang, Y. D. Zhang, S. Q. Huang, X. M. Huang, Y. H. Luo, Q. B. Meng, and D. M. Li, Application of carbon counter electrode on CdS quantum dot sensitized solar cells (QDSSCs) [J]. Electrochem. Commun.,2010,12:327-330.
    [101]S. Q. Fan, B. Fang, J. H. Kim, J. S. Yu, and K. Jaejung, Hierarchical nanostructured spherical carbon with hollow core/mesoporous shell as a highly efficient counter electrode in CdSe quantum dot-sensitized solar cells [J]. Appl. Phys. Lett.,2010,96:063501.
    [102]P. Sudhagar, J. H. Jung, S. Park, Y. G. Lee, R. Sathyamoorthy, Y. S. Kang, and H. Ahn, The performance of coupled (CdS:CdSe) quantum dot-sensitized TiO2 nanofibrous solar cells [J]. Electrochem. Commun.,2009,11:2220-2224.
    [103]J. H. Bang, and P. V. Kamat, Quantum dot sensitized solar cells. A tale of two semiconductor nanocrystals:CdSe and CdTe [J]. ACS Nano,2009,3:1467-1476.
    [104]S. A. Sapp, C. M. Elliott, C. Contado, S. Caramori, and C. A. Bignozzi, Substituted polypyridine complexes of cobalt (Ⅱ/Ⅲ) as efficient electron-transfer mediators in dye-sensitized solar cells [J]. J. Am. Chem. Soc.,2002,124:11215-11222.
    [105]R. D. Schaller, and V. I. Klimov, High efficiency carrier multiplication in PbSe nanocrystals:Implications for solar energy conversion [J]. Phys. Rev. Lett.,2004,92: 186601-186607.
    [106]B. Carlson, K. Leschkies, E. Aydil, and X. Y. Zhu, Valence band alignment at cadmium selenide quantum dot and zinc oxide (100) interfaces [J]. J. Phys. Chem. C,2008, 112:8419-8423.
    [107]Y. J. Shen, and Y. L. Lee, Assembly of CdS quantum dots onto mesoscopic TiO2 films for quantum dot-sensitized solar cell applications [J]. Nanotechnology,2008,19:045602.
    [108]R. S. Dibbell, and D. F. Watson, Distance-dependent electron transfer in tethered assemblies of CdS quantum dots and TiO2 nanoparticles [J]. J. Phys. Chem. C,2009, 113:3139-3149.
    [109]K. Tvrdy, and P. V. Kamat, Substrate driven photochemistry of CdSe quantum dot films: charge injection and irreversible transformations on oxide surfaces [J]. J. Phys. Chem. A, 2009,113:3765-3772.
    [110]I. Robel, M. Kuno, and P. V. Kamat, Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles [J]. J. Am. Chem. Soc.,2007,129:4136-4137.
    [111]M. Tomkiewicz, The potential distribution at the TiO2 aqueous electrolyte interface [J]. J. Electrochem. Soc.,1979,126:1505-1510.
    [112]J. M. Bolts, and M. S. Wrighton, Correlation of photocurrent-voltage curves with flat-band potential for stable photoelectrodes for the photoelectrolysis of water [J]. J. Phys. Chem.1976,80:2641-2645.
    [113]V. Chakrapani, K. Tvrdy, and P. V. Kamat., Modulation of electron injection in CdSe-TiO2 system through medium alkalinity [J]. J. Am. Chem. Soc.,2010,132:1228-1229.
    [114]D. Cahen, and A. Khan, Electron energetics at surfaces and interfaces:concepts and experiments [J]. Adv. Mater.,2003,15:271-277.
    [115]E. M. Barea, M. Shalom, A. Zaban, and J. Bisquert, Design of injection and recombination in quantum dot sensitized solar cells [J]. J. Am. Chem. Soc.,2010,132:6834-6839.
    [116]J. R. Mann, and D. F. Watson, Adsorption of CdSe nanoparticles to thiolated TiO2 surfaces: influence of intralayer disulfide formation on CdSe surface coverage [J]. Langmuir,2007, 23:10924-10928.
    [117]J. Chen, D. W. Zhao, J. L. Song, X. W. Sun, W. Q. Deng, X. W. Liu, and W. Lei, Directly assembled CdSe quantum dots on TiO2 aqueous solution by adjusting pH value for quantum dot sensitized solar cells [J]. Electrochem. Commun.,2009,11:2265-2267.
    [118]K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices [J]. Nano Lett.,2007,7:1793-1798.
    [119]W. Lee, J. Lee, S. Lee, W. Yi, S. H. Han, and B. W. Cho, Enhanced charge collection and reduced recombination of CdS/TiO2 quantum dots sensitized solar cells in the presence of single-walled carbon nanotubes [J]. Appl. Phys. Lett.,2008,92:153510.
    [120]J. Chen, C. Li, D. W. Zhao, W. Lei, Y. Zhang, M. T. Cole, D. P. Chu, B. P. Wang, Y. P. Cui, X. W. Sun, and W. I. Milne, A quantum dot sensitized solar cell based on vertically aligned carbon nanotube template ZnO arrays [J]. Electrochem. Commun.,2010,12:1432-1435.
    [121]G. Y. Lan, Z. Yang, Y. W. Lin, Z. H. Lin, H. Y. Liao, and H. T. Chang, A simple strategy for improving the energy conversion of multilayered CdTe quantum dot-sensitized solar cells [J]. J. Mater. Chem.,2009,19:2349-2355.
    [122]Z. Yang, and H. T. Chang, CdHgTe and CdTe quantum dot solar cells displaying an energy conversion efficiency exceeding 2%[J]. Sol. Energy Mater. Sol. Cells.2010, 94:2046-2051.
    [123]M. Shalom, S. Dor, S. Ruhle, L. Grinis, and A. Zaban, Core/CdS quantum dot/shell mesoporous solar cells with improved stability and efficiency using an amorphous TiO2 coating [J]. J. Phys. Chem. C,2009,113:3895-3898.
    [124]Z. F. Liu, M. Miyauchi, Y. Uemura, Y. Cui, K. Hara, Z. G. Zhao, K. Sunahara, and A. Furube, Enhancing the performance of quantum dots sensitized solar cell by SiO2 surface coating [J]. Appl. Phys. Lett.,2010,96(23):233107.
    [125]S. Ruhle, M. Shalom, and A. Zaban, Quantum-dot-sensitized solar cells [J]. Chem. Phys. Chem.2010,11:2290-2304.
    [126]H. J. Lee, P. Chen, S. J. Moon, F. Sauvage, K. Sivula, T. Bessho, D. R. Gamelin, P. Comte, S. M. Zakeeruddin, S. II. Seok, M. Gratzel, and M. K. Nazeeruddin, Regenerative PbS and CdS quantum dot sensitized solar cells with a cobalt complex as hole mediator [J]. Langmuir,2009,25:7602-7608.
    [127]Y. Tachibana, K. Umekita, Y. Otsuka, and S. Kuwabata, Performance improvement of CdS quantum dots sensitized TiO2 solar cells by introducing a dense TiO2 blocking layer [J]. J. Phys. D: Appl. Phys.,2008,41:102002.
    [128]Y. Tachibana, H. Y. Akiyama, Y. Ohtsuka, T. Tsukasa, and S. Kuwabata, CdS quantum dots sensitized TiO2 sandwich type photoelectrochemical solar cells [J]. Chem. Lett.,2007, 36:88-90.
    [129]I. Mora-Sero, S. Gimenez, T. Moehl, F. Fabregat-Santiago, T. Lana-Villareal, R. Gomez, and J. Bisquert, Factors determining the photovoltaic performance of a CdSe quantum dot sensitized solar cell:the role of the linker molecule and of the counter electrode [J]. Nanotechnology,2008,18:424007.
    [130]Y. L. Lee, Y. S. Lo, Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe [J]. Adv. Funct. Mater.,2009,19:604-609.
    [131]Q. Shen, A. Yamada, S. Tamura, and T. Toyoda, CdSe quantum dot-sensitized solar cell employing TiO2 nanotube working-electrode and Cu2S counter-electrode [J]. Appl. Phys. Lett.,2010,97:12310.
    [132]M. H. Deng, Q. X. Zhang, S. Q. Huang, D. M. Li, Y. H. Luo, Q. Shen, T. Toyoda, and Q. B. Meng, Low-cost flexible nano-sulfide/carbon composite counter electrode for quantum-dot-sensitized solar cell [J]. Nanoscale Res. Lett.,2010,5:986-990.
    [133]M. Gratzel, Photovoltaic and photoelectrochemical conversion of solar energy [J]. Phil. Trans. R. Soc. A,2007,365:993-1005.
    [134]S. H. Kim, J. K. Lee, S. O. Kang, J. Ko, J. H. Yum, S. Fantacci, F. De Angelis, D. D. Censo, M. K. Nazeeruddin, and M. Gratzel, Molecular Engineering of Organic Sensitizers for Solar Cell Applications [J]. J. Am. Chem. Soc.,2006,128:16701-16707.
    [135]J. Chen, J. L. Song, X. W. Sun, W. Q. Deng, C. Y. Jiang, W. Lei, J. H. Huang, and R. S. Liu, An oleic acid-capped CdSe quantum-dot sensitized solar cell [J]. Appl. Phys. Lett., 2009,94:153115.
    [136]林异志,量子点的组装及其在染料敏化太阳能电池的应用[M].国立成功大学硕士论文,1995,41-56.
    [137]Y. L. Lee, and C. H. Chang, Efficient polysulfide electrolyte for CdS quantum dot-sensitized solar cells [J]. J. Power Sources,2008,185:584-588.
    [138]李权倍,纳米多孔性二氧化钛光电极微结构设计在量子点敏化太阳能电池的应用[M].国立成功大学硕士论文,1996,49-50.
    [139]Q. Sheng, J. Kohayashi, L. J. Diguna, and T. Toyoda, Effect of ZnS coating on the photovoltaic properties of CdSe quantum dot-sensitized solar cells [J]. J. Appl. Phys., 2008,103:084304-084306.
    [140]C. C. Wang, and J. Y. Ying, Sol-gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals [J]. Chem. Mater.,1999,11:3113-3120.
    [141]I. Seigo, P. Chen, P. Comte, M. K. Nazeeruddin, P. Liska, P. Pechy, and M. Graetzel, Fabrication of screen-printing pastes from TiO2 powders for Dye-sensitised solar cells [J]. Prog. Photovolt:Res. Appl.2007,15:603-612.
    [142]S. Ito, T. Murakami, P. Comte, P. Liska, C. Gratzel, M. Nazeeruddin, and M. Gratzel, Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10% [J]. Thin Solid Films,2008,516:4613-4619.
    [143]J. Kim, H. Choi, C. W. Nahm, J. Moon, C. Kim, N. Seunghoon, J. Dae-Ryong, and P. Byungwoo, The effect of a blocking layer on the photovoltaic performance in CdS quantum-dot-sensitized solar cells [J]. J. Power Sources,2011,196:10526-10531.
    [144]N. Guijarro, J. M. Campin, Q. Shen, T. Toyoda, T. Lana-Villarreal, and R. Gomez, Uncovering the role of the ZnS treatment in the performance of quantum dot sensitized solar cells [J]. Phys. Chem. Chem. Phys.,2011,13:12024-12032.
    [145]Ivan Mora-Sero, and Juan Bisquert, Breakthroughs in the development of semiconductor sensitized solar cells [J]. J. Phys. Chem. Lett.,2010,1:3046-3052.
    [146]K. P. Musselman, A. Wisnet, D. C. Iza, H. C. Hesse, S. Christina, J. L. MacManus Driscoll, and L. Schmidt Mende, Strong efficiency improvements in ultra-low-cost inorganic nanowire solar cells [J]. Adv. Mater.,2010,22:E254-E258.
    [147]W. J. Lee, S. K. Min, V. Dhas, S. B. Ogaleb, H. Sung-Hwan, Chemical bath deposition of CdS quantum dots on vertically aligned ZnO nanorods for quantum dots-sensitized solar cells [J]. Electrochem. Commun.,2008,11:103-106.
    [148]M. D. Petykiewicz, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications [J]. Nat. Mater.,2010,9:239-244.
    [149]W. T. Sun, Y. Yu, H. Y. Pan, X. F. Gao, Q. Chen, and L. M. Peng, CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes [J]. J. Am. Chem. Soc.,2008, 130:1124-1125.
    [150]X. Feng, K. Shankar, O. K. Varghese, M. Paulose, T. J. Latempa, and C. A. Grimes, Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated Glass:synthesis details and applications [J]. Nano Lett.,2008, 8:3781-3786.
    [151]B. Liu, and E. S. Aydil, Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar sells [J]. J. Am. Chem. Soc., 2009,131:3985-3990.
    [152]J. H. Bang, and P. V. Kamat, Solar Cells by Design: Photoelectrochemistry of TiO2 nanorod arrays decorated with CdSe [J]. Adv. Funct. Mater.,2010,20:1970-1976.
    [153]H. Wang, Y. S. Bai, H. Zhang, Z. H. Zhang, J. H. Li, and L. Guo, CdS quantum dots-sensitized TiO2 nanorod array on transparent conductive glass photoelectrodes [J].J. Phys. Chem. C,114,2010,16451-16455.
    [154]J. Ni, X. Zhao, J. Zhao, B. Liu, Electrical, structural, photoluminescence and optical properties of p-type conducting, antimony-doped SnO2 thin films [J]. Acta Mater.,2009, 57:278-285.
    [155]G. M. Wang, X. Y. Yang, F. Qian, J. Z. Zhang, and Yat Li, Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation [J]. Nano Lett.,2010,10:1088-1092.
    [156]A. Zaban, M. Greenshtein, and J. Bisquert, Determination of the electron lifetime in nanocrystalline dye solar cells by open-circuit voltage decay measurements [J]. Chem. Phys. Chem.,2003,4:860-864.
    [157]A. Hagfeldt, and M. Graetzel, Light-Induced redox reactions in nanocrystalline systems [J]. Chem. Rev.,1995,95:49-68.
    [158]J. H. Park, T. W. Lee, and M. G. Kang, Growth, detachment and transfer of highly-ordered TiO2 nanotube arrays:use in dye-sensitized solar cells [J]. Chem. Commun.,2008, 25:2867-2869.
    [159]N. G. Park, J. V. D. Lagemaat, and A. J. Frank, Comparison of dye-Sensitized rutile- and anatase-based TiO2 solar cells [J]. J. Phys. Chem. B,2000,104:8989-8994.
    [160]B. Liu, D. Deng, J. Y. Lee, J. Y. Lee, and E. S. Aydil, Oriented single-crystalline TiO2 nanowires on titanium foil for lithium ion batteries [J].J. Mater. Res.,2010,25:1588-1594.
    [161]J. E. Boercker, E. Enache-Pommer, and E. S. Aydil, Growth mechanism of titanium dioxide nanowires for dye-sensitized solar cells [J]. Nanotechnology,2008,19:095604.
    [162]B. Liu, J. E. Boercker, and E. S. Aydil, Oriented single crystalline titanium dioxide nanowires [J]. Nanotechnology,2008,19:505604.
    [163]S. P. Albu, A. Ghicov, and P. Schmuki, Lift off strategies for self-organized TiO2 nanotube layers [J]. ECS Trans.,2009,16:195-202.
    [164]J. J. Yang, Z. S. Jin, X. D. Wang, W. Li, J. W. Zhang, S. L. Zhang, X. Y. Guo, and Z. J. Zhang, Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)2 [J]. Dalton Trans.,2003,20:3898-3901.
    [165]陈云霞,无机敏化Ti02基太阳能电池光阳极材料的制备与表征[D].武汉理工大学博士论文,2007,71-72.
    [166]F. M. Courtel, R. W. Paynter, B. Marsan, and M. Morin, Synthesis, characterization, and growth mechanism of n-Type CuInS2 colloidal particles [J]. Chem. Mater.,2009, 21:3752-3762.
    [167]M. Powalla, and B. Dimmler, Scaling up issues of CIGS solar cells [J].Thin Solid Films 2000,361-362:540-546.
    [168]M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, D. Lawrence, A. Dodabalapur, P. F. Barbara, and B. A. Korgel, Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) nanocrystal "Inks" for printable photovoltaics [J]. J. Am. Chem. Soc.,2008,130:16770-16777.
    [169]C. B. Myrray, D. J. Norris, and M. G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E=S, Se, Te) semiconductor nanocrystals [J]. J. Am. Chem. Soc.1993. 115:8706-8715.
    [170]L. H. Qu, Z. A. Peng, and X. G. Peng. Alternative routes toward high quality CdSe nanocrystals [J]. Nano Letters,2001,1:333-337.
    [171]D. Battaglia, and X. G. Peng, Formation of high-quality InP and InAs nanocrystals in a non-coordinating solvent [J].Nano Letters,2002,2:1027-1030.
    [172]L. Motte; F. Billoudet, M. P. Pileni, Self-Assembled monolayer of nanosized particles differing by their sizes [J]. J. Phys. Chem.1995,99:16425-16429.
    [173]C. B. Murray, S. Sun, W. Gaschler, H. Doyle, T. A. Betley, and C. R. Kagan, Colloidal synthesis of nanocrystals and nanocrystal superlattices [J]. IBM J. Res. Dev.,2001, 45:47-47.
    [174]D. S. Wang, W. Zheng, C. H. Hao, Q. Peng, and Y. D. Li, General synthesis of Ⅰ-Ⅲ-Ⅵ2 ternary semiconductor nanocrystals [J].Chem. Commun.,2008,22:2556-2558.
    [175]W. M. Du, X. F. Qian, J. Yin, and Q. Gong, Shape- and phase-controlled synthesis of monodisperse, single-crystalline ternary chalcogenide colloids through a convenient solution synthesis strategy [J]. Chem. Eur. J.,2007,13:8840-8846.
    [176]D. C. Pan, L. J. An, Z. M. Sun, W. Hou, Y. Yang, Z. Z. Yang, and Y. F. Lu, Synthesis of Cu-In-S ternary nanocrystals with tunable structure and composition [J].J. Am. Chem. Soc. 2008,130:5620-5621.
    [177]R. G. Xie, M. Rutherford, and X. G. Peng, Formation of high-quality semiconductor nanocrystals by tuning relative reactivity of cationic precursors [J]. J. Am. Chem. Soc., 2009,131:5691-5697.
    [178]Y. A. Wang, X. Y. Zhang, N. Z. Bao, B. P. Lin, and A. Gupta, Synthesis of shape-controlled monodisperse wurtzite CuInxGaln1-xS2 semiconductor nanocrystals with tunable band gap [J].J. Am. Chem. Soc.2011,133:11072-11075.
    [179]M. Kruszynska, H. Borchert, J. Parisi, and J. Kolny-Olesiak. Synthesis and shape sontrol of CuInS2 nanoparticles [J]. J. Am. Chem. Soc.,2010,132:15976-15986.
    [180]M. E. Norako, M. A. Franzman, and R. L. Brutchey, Growth Kinetics of monodisperse Cu-In-S Nanocrystals using a dialkyl disulfide sulfur source [J].Chem. Mater.,2009,21: 4299-4304.
    [181]H. Z. Zhong, S. S. Lo, T. Mirkovic, Y. C. Li, Y. Q. Ding, Y. F. Li, and G. D. Scholes, Noninjection gram-Scale synthesis of monodisperse pyramidal CuInS2 nanocrystals and their size-Dependent properties [J]. ACS Nano,2010,4:5253-5262.
    [182]N. Katsuhiro, S. Yuki, O. Takahisa, and S. Otsuka-Yao-Matsuo, Synthesis of ternary CuInS2 nanocrystals; phase determination by complex ligand species [J]. Chem. Mater., 2009,21:2607-2613.
    [183]R. G. Parr, and R. G. Pearson, Absolute hardness:companion parameter to absolute electronegativity [J]. J. Am. Chem. Soc.,1983,105:7512-7516.
    [184]J. O. Edwards, and R. G. Pcarson, Hard and soft acids and bases [J].J Am. Chem. Soc., 1962,84:3533-3539.
    [185]T. HO, The hardsoft acids bases (HSAB) principle and organic chemistry [J]. Chemical Reviews,1975,75:1-20.
    [186]P. K. Chattaraj, H. Lee, and R. G. Parr, HSAB Principle [J]. J. Am. Chem. Soc.,1991, 113:1855-1856.
    [187]J. J. Wang, Y. Q. Wang, F. F. Cao, Y. G. Guo, and L. J. Wan, Synthesis of monodispersed wurtzite structure CuInSe2 nanocrystals and their application in high-performance organic-inorganic hybrid photodetectors [J]. J. Am. Chem. Soc.,2010,132:12218-12221.
    [188]邢滨,李万万,孙康.有机体系中Ⅱ-Ⅵ族量子点的制备及其合成机理[J].化学进展,2008,20:841-850.
    [189]J. Llanos, A. Buljan, C. Mujica, and R. Ramirez, Electron transfer and electronic structure of KCuFeS2 [J]. J. Alloys Compd.,1996,234:40-42.
    [190]H. Z. Zhong, Y. C. Li, M. F. Ye, Z. Z. Zhu, Y. Zhou, C. H. Yang, and Y. F. Li, A facile route to synthesize chalcopyrite CuInSe2 nanocrystals in non-coordinating solvent [J]. Nanotechnology,2007,18:025602.
    [191]H. Z. Zhong, Y. Zhou, M. F. Ye, Y. J. He, J. P. Ye, C. He, C. H. Yang, and Y. F. Li, Controlled synthesis and optical properties of colloidal ternary chalcogenide CuInS2 nanocrystals [J]. Chem. Mater.,2008,20:6434-6443.
    [192]J. Lin, J. F. Chen, and X. F. Chen, Facile fabrication of free-standing TiO2 nanotube membranes with both ends open via self-detaching anodization [J]. Electrochemistry Communications,2010,12:1062-1065.
    [193]G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar, and C. Grimes, A review on highly ordered, vertically oriented TiO2 nanotube arrays:Fabrication, material properties, and solar energy applications [J]. Solar Energy Materials & Solar Cells,2006,90:2011-2075.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700